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ABSTRACT. New results on existence of positive solutions in Lp(Ω, Rn) of systems of Hammer-

stein integral equations are obtained by using Leray-Schauder fixed point theorem. The principal

eigenvalues of the corresponding linear Hammerstein integral equations are employed. Our results

improve some previous results on existence of (not necessarily positive) solutions in Lp(Ω) of a single

Hammerstein integral equation.
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1. INTRODUCTION

We are interested in existence of positive solutions in Lp(Ω, Rn) of systems of

Hammerstein integral equations of the form

zi(t) = gi(t) +

∫

Ω

k(t, s)fi(s, z(s)) ds for a.e. t ∈ Ω and i ∈ In, (1.1)

where Ω ⊂ R
m and In = {1, . . . , n}.

When n = 1, existence of one (not necessarily positive) solution in Lp(Ω) of

(1.1) is studied in [19], where Ω = [0, 1] and the nonlinear alternative theorem of

Leray-Schauder type is used, and in [18], where Ω = [a, b] and Schaefer’s fixed point

theorem is used. None of these results use the principal eigenvalue of the correspond-

ing linear Hammerstein integral equation. When gi(t) ≡ 0, the existence of at least

one solution in Lp(Ω) of (1.1) with n = 1 was studied by Krasnosel’skii [9] (also see

[10, Chapter VI]) and existence of nonzero solutions is studied in [3, 6] under the

superlinear conditions involving the principal eigenvalue of the corresponding linear

integral equation. We refer to [16, 17, 20, 21] for the study of existence of solutions

in L1[0, 1], where measures of noncompactness are involved.
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In this paper, by using Leray-Schauder theorem, we prove new results on existence

of positive solutions in Lp(Ω, Rn) of the system (1.1), where the principal eigenvalue of

the corresponding linear Hammerstein integral equation is involved. Unlike the study

on existence of positive solutions in C(Ω, Rn), where a smaller cone than the standard

cone C(Ω, Rn
+) is considered (see [1, 4, 5, 8, 12, 13, 14, 15, 22]), only the standard

cone Lp(Ω, Rn
+) can be applied here. Therefore, there is difficulty to obtain results

on existence of one or several nonzero positive solutions in Lp(Ω, Rn
+) of (1.1). We

refer to [11] for the study of nonzero positive solutions of systems of elliptic boundary

value problems, where only the standard cone C(Ω, Rn
+) is applied.

As illustrations of our results, we consider existence of positive solutions in

Lp(Ω, Rn
+) of the following systems

zi(t) = gi(t) +

∫

Ω

k(t, s)[ai(s) + ui(s)|z|
αi

0 (s) + vi(s)|z|
βi

0 (s)] ds a.e. on Ω and i ∈ In,

where | · |0 denotes a norm in R
n. Specific functions gi and kernels k are provided.

2. POSITIVE SOLUTIONS OF SYSTEMS OF HAMMERSTEIN

INTEGRAL EQUATIONS

In this section, we study existence of positive solutions in Lp(Ω, Rn) of systems

of Hammerstein integral equations of the form

zi(t) = gi(t) +

∫

Ω

k(t, s)fi(s, z(s)) ds for a.e. t ∈ Ω and i ∈ In, (2.1)

where z(s) = (z1(s), . . . , zn(s)) and Ω ⊂ R
m is measurable with 0 < meas(Ω) < ∞.

We use the following maximum norm in R
n:

|z| = max{|zi| : i ∈ In}, (2.2)

where z = (z1, . . . , zn) ∈ R
n. We define

(Rn
+)I = {z ∈ R

n
+ : |z| ∈ I}, (2.3)

where I = [a, b] if a, b ∈ [0,∞) with a ≤ b and I = [a, b) if a, b ∈ [0,∞] with a < b.

Let p, q ∈ (1,∞) be such that
1

p
+

1

q
= 1. We list the following conditions:

(h1) For each i ∈ In, gi ∈ Lp(Ω).

(h2) k ∈ Lp(Ω × Ω).

(h3) For each i ∈ In, fi : Ω × R
n
+ → R+ satisfies Carathéodory conditions, that is,

f(·, z) is measurable on Ω for each fixed z ∈ R
n
+ and f(s, ·) is continuous on R

n
+

for a.e. s ∈ Ω, and there exist ai ∈ Lq
+(Ω) and bi > 0 such that

fi(s, z) ≤ ai(s) + bi|z|
p−1 for a.e. s ∈ Ω and all z ∈ R

n
+. (2.4)

(h4) For each i ∈ In, fi : Ω × R
n
+ → R+ satisfies Carathéodory conditions, and for

each r > 0 there exist ai,r ∈ Lq
+(Ω) such that

fi(s, z) ≤ ai,r(s) for a.e. s ∈ Ω and all z ∈ (Rn
+)[0,r]. (2.5)
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When n = 1, (h1)-(h3) are used in [18, 19]. It is obvious that (h3) implies (h4). We

shall see that (h4) together with some additional conditions implies (h3) (see Theorem

2.4 below).

We can write (2.1) into the following fixed point equation:

z(t) = (g1(t), . . . , gn(t)) + (L(F1z)(t), . . . , L(Fnz)(t)) := Az(t) a.e. on Ω, (2.6)

where

(Fiz)(t) = fi(t, z(t)) for i ∈ In (2.7)

and

(Lu)(t) =

∫

Ω

k(t, s)u(s) ds. (2.8)

We write Lp(Ω) = Lp(Ω, R), Lp
+(Ω) = Lp(Ω, R+) and ‖ · ‖ = ‖ · ‖Lp(Ω). We use the

following norm in Lp(Ω, Rn): for z = (z1, . . . , zn) ∈ Lp(Ω, Rn), let

‖z‖ = max{‖zi‖Lp(Ω) : i ∈ In}.

Let P = Lp(Ω, Rn
+) be the standard positive cone in Lp(Ω, Rn).

The following results show that the linear operator L defined in (2.8) and the

map A defined in (2.6) are compact.

Lemma 2.1. (i) Under the hypothesis (h2) the linear operator L defined in (2.8)

maps Lq(Ω) into Lp(Ω) and is compact. Moreover, L(Lq
+(Ω)) ⊂ Lp

+(Ω).

(ii) Under the hypotheses (h1)–(h3), the map A defined in (2.6) maps P into P

and is compact.

Proof. (i) Since meas(Ω) ∈ (0,∞), it follows from (h2) and a result mentioned in [10,

page 19] that L : Lq(Ω) → Lp(Ω) is compact. The result (i) follows.

(ii) By [10, Theorem 2.3], for each i ∈ In, Fi : P → Lp
+(Ω) is continuous. This,

together with the result (i) implies that the result (ii) holds.

Let ρ > 0 and let Pρ = {x ∈ P : ‖x‖ < ρ}, ∂Pρ = {x ∈ P : ‖x‖ = ρ} and

P ρ = {x ∈ P : ‖x‖ ≤ ρ}.

We need the following Leray-Schauder fixed point theorem (see [2]).

Lemma 2.2. (i) Assume that A : P ρ → P is a compact map and satisfies the

following Leray-Schauder condition:

(LS) z 6= ̺Az for x ∈ ∂Pρ and ̺ ∈ (0, 1].

Then A has a fixed point in Pρ.

(ii) Assume that A : P → P is a compact map and satisfies

lim
‖x‖→∞

‖Ax‖

‖x‖
< 1.

Then A has a fixed point in P .

We first give the following result on existence of positive solutions in Lp(Ω, Rn)

of (2.1) when p ∈ (1, 2].
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Theorem 2.3. Assume that p ∈ (1, 2], (h1)–(h3) hold and one of the following con-

ditions hold.

(i) 1 < p < 2.

(ii) p = 2 and b‖k‖ < 1,

where b = max{bi : i ∈ In} and ‖k‖ =
(∫

Ω

∫

Ω
(k(t, s))p dsdt

)
1

p .

Then (2.1) has a positive solution in Lp(Ω, Rn).

Proof. By (2.4), we have

‖Aiz‖ ≤ ‖gi‖Lp(Ω) + ‖Lai‖Lp(Ω) + bi‖k‖‖z‖
p−1

and

‖Az‖ ≤ ‖g‖ + ω + b‖k‖‖z‖p−1, (2.9)

where ‖g‖ = max{‖gi‖Lp(Ω) : i ∈ In} and ω = max{‖Lai‖Lp(Ω) : i ∈ In}.

If 1 < p < 2, then by (2.9) we have

lim
‖z‖→∞

‖Az‖

‖z‖
≤ lim

‖z‖→∞

‖g‖

‖z‖
+ lim

‖z‖→∞

ω

‖z‖
+ lim

‖z‖→∞

b‖k‖

‖z‖2−p
= 0.

If p = 2, then by (2.9) we have

lim
‖z‖→∞

‖Az‖

‖z‖
≤ lim

‖z‖→∞

‖g‖

‖z‖
+ lim

‖z‖→∞

ω

‖z‖
+ b‖k‖ = b‖k‖ < 1.

The result follows from Lemma 2.2 (ii).

When n = 1 and Ω = [a, b], existence of (not necessarily positive) solutions of

(2.1) is obtained in [18, Theorem 6 ].

Now, we give new results on existence of positive solutions in Lp(Ω, Rn) of (2.1)

when p ∈ [2,∞).

Recall that the radius of the spectrum of the linear operator L, denoted by r(L),

is given by the well-known spectral radius formula

r(L) = lim
m→∞

m
√

‖L‖m, (2.10)

where ‖L‖ is the norm of L. We write µ1 = 1/r(L).

Notation: Let E be a fixed subset of [0, 1] of measure zero and let

fi(z) = sup
s∈Ω\E

fi(s, z) and (fi)
∞ = lim sup|z|→∞ fi(z)/|z|.

Theorem 2.4. Assume that p ∈ [2,∞), (h1), (h2), (h4) hold, r(L) > 0 and the

following condition holds.

(fi)
∞ < µ1 for each i ∈ In.

Then (2.1) has a positive solution in Lp(Ω, Rn).
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Proof. Since (fi)
∞ < µ1, there exist ε > 0 and ρ1 > 0 such that for each i ∈ In,

fi(s, z) ≤ (µ1 − ε)|z| for a.e. s ∈ Ω and all z ∈ (Rn
+)[ρ1,∞). (2.11)

Let ρ2 > max{1, ρ1}. Then when p ∈ [2,∞), we have

|z| ≤ |z|p−1 for z ∈ (Rn
+)[ρ2,∞).

This, together with (2.11), implies

fi(s, z) ≤ (µ1 − ε)|z| ≤ (µ1 − ε)|z|p−1 for a.e. s ∈ Ω and all z ∈ (Rn
+)[ρ2,∞). (2.12)

Let u0(s) = max{ai,ρ2
(s) : i ∈ In}. Then u0 ∈ Lq

+(Ω). By (h4) and (2.12), we have

fi(s, z) ≤ u0(s) + (µ1 − ε)|z|p−1 for a.e. s ∈ Ω and all z ∈ R
n
+

and (h3) holds.

Let u(s) = max{ai,ρ1
(s) : i ∈ In}. By (h4) and (2.11), we have

fi(s, z) ≤ u(s) + (µ1 − ε)|z| for a.e. s ∈ Ω and all z ∈ R
n
+. (2.13)

Since r((µ1 − ε)L) = (µ1 − ε)r(L) < 1, (I − (µ1 − ε)L)−1 exists and is bounded and

satisfies

(I − (µ1 − ε)L)−1(Lp
+(Ω)) ⊂ Lp

+(Ω). (2.14)

Let g(s) = max{gi(s) : i ∈ In}. Then g ∈ Lp
+(Ω). Let

ρ∗ = ‖((I − (µ1 − ε)L)−1(g + Lu))‖

and ρ > ρ∗. We prove

z 6= ̺Az for z ∈ ∂Pρ and ̺ ∈ [0, 1]. (2.15)

Indeed, if not, there exist z ∈ ∂Pρ and ̺ ∈ [0, 1] such that z = ̺Az. By (2.13), we

have for each i ∈ In,

zi(s) ≤ g(s) + Lu(s) + (µ1 − ε)(L|z|)(s) for a.e. s ∈ Ω,

where |z|(s) = max{|zi(s)| : i ∈ In}. Taking the maximum in the above inequality

implies

|z|(s) ≤ g(s) + Lu(s) + (µ1 − ε)(L|z|)(s) for a.e. s ∈ Ω

and (I − (µ1 − ε)L)|z|(s) ≤ g(s) + Lu(s) for a.e. s ∈ Ω. This, together with (2.14),

implies

|z|(s) ≤ ((I − (µ1 − ε)L)−1(g + Lu))(s) for a.e. s ∈ Ω.

Hence, we have

ρ = ‖z‖ ≤ ‖|z|‖ ≤ ‖((I − (µ1 − ε)L)−1(g + Lu)))‖ = ρ∗ < ρ,

a contradiction. By (2.15) and Lemma 2.2 (i), (2.1) has a positive solution in Pρ.
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Note that both Theorems 2.3 and 2.4 contain the case when p = 2. However,

in some cases, they are different. In fact, since r(L) ≤ ‖L‖ ≤ ‖k‖, when p = 2 and

ai ∈ L∞
+ (Ω), then (h3) implies

(fi)
∞ ≤ bi <

1

‖k‖
≤ µ1 for each i ∈ In.

Hence, if p = 2 and ai ∈ L∞
+ (Ω), then Theorem 2.3 (ii) is a special case of Theorem 2.4.

However, if ai 6∈ L∞
+ (Ω), Theorems 2.3 and 2.4 may not be same.

In Theorem 2.4, r(L) > 0 is required. In the following, we show that if p ∈ [2,∞)

and k is symmetric, then r(L) > 0.

Lemma 2.5. Assume that p ∈ [2,∞) and k satisfies (h2) and the following condition:

(S) k(t, s) = k(s, t) for t, s ∈ Ω and k(t, s) 6= 0 a.e. on Ω × Ω.

Then r(L) ∈ (0,∞).

Proof. Since p ∈ [2,∞) and meas(Ω) ∈ (0,∞), we have

Lp(Ω, Rn) ⊂ L2(Ω, Rn) ⊂ Lq(Ω, Rn) (2.16)

and by (h2) we obtain
∫

Ω

∫

Ω

|k(t, s)|2 dsdt < ∞.

It follows from (S) that L|L2(Ω) : L2(Ω) → L2(Ω) is a compact self-adjoint linear

operator and L|L2(Ω,R) has a nonzero real eigenvalue denoted by λ0. Hence,

r(L|L2(Ω)) ≥ |λ0| > 0.

Since r(L) ≥ r(L|L2(Ω)), we obtain r(L) > 0.

By Lemma 2.5 and Theorem 2.4, we obtain the following result.

Corollary 2.6. If the condition r(L) > 0 in Theorem 2.4 is replaced by the condition

(S) of Lemma 2.5, then (2.1) has a positive solution in Lp(Ω, Rn).

We refer to [3, Theorem 5.8] and [7, Theorem 3.4.1] for results on nonzero positive

solutions under superlinear conditions, where n = 1.

As illustration, we consider existence of positive solutions in Lp(Ω, Rn) of the

following system

zi(t) = gi(t) +

∫

Ω

k(t, s)[ai(s) + ui(s)|z|
αi

0 (s) + vi(s)|z|
βi

0 (s)] ds a.e. on Ω and i ∈ In,

(2.17)

where | · |0 denotes a norm in R
n.

Since | · | and | · |0 are norms in R
n, there exists σ > 0 such that

|z|0 ≤ σ|z|. (2.18)

Theorem 2.7. Assume that p ∈ [2,∞), (h1), (h2) and the condition (S) of Lemma 2.5

hold and for each i ∈ In, the following conditions hold.

(i) ai ∈ L∞
+ (Ω).



POSITIVE SOLUTIONS 527

(ii) 0 < αi < 1 and ui, vi ∈ L∞
+ (Ω).

(iii) One of the following conditions holds:

(C1) 0 < βi < 1.

(C2) βi = 1 and ‖vi‖C(Ω) < µ1/σ, where σ is same as in (2.18).

Then (2.17) has a positive solution in Lp(Ω, Rn).

Proof. For each i ∈ In, we define a function fi : Ω × R
n
+ → R+ by

fi(s, z) = ai(s) + ui(s)|z|
αi

0 + vi(s)|z|
βi

0 .

Then fi satisfies Carathéodory conditions. For each r > 0, let

ai,r(s) = ai(s) + ui(s)σ
αirαi + vi(s)σ

βirβi.

Then ai,r ∈ L∞
+ (Ω) ⊂ Lq

+(Ω) and we have for a.e. s ∈ Ω and all z ∈ (Rn
+)[0,r],

fi(s, z) ≤ ai(s) + ui(s)σ
αi|z|αi + vi(s)σ

βi|z|βi ≤ ai,r(s). (2.19)

Hence, (h4) holds. By (2.19), we obtain

fi(z) ≤ ‖ai‖L∞(Ω) + ‖ui‖L∞(Ω)σ
αi |z|αi + ‖vi‖L∞(Ω)σ

βi|z|βi for i ∈ In. (2.20)

If (C1) holds, then by (2.20) we have

(fi)
∞ = lim sup

|z|→∞

fi(z)/|z| = 0 < µ1.

If (C2) holds, then by (2.20) we have

(fi)
∞ = lim sup

|z|→∞

fi(z)/|z| ≤ ‖vi‖σ < µ1.

The result follows from Corollary 2.6.

Remark 2.8. There are a lot of functions gi and kernels k which satisfy the conditions

of Theorem 2.7. For example, for each i ∈ In, let αi ∈ (0, 1/p), gi(t) = 1/tαi for

t ∈ (0, 1) and

k(t, s) =

{

s(1 − t), if 0 ≤ s ≤ t ≤ 1,

t(1 − s), if 0 ≤ t < s ≤ 1,
(2.21)

then gi ∈ Lp(0, 1) and by [22, Theorem 5.1], we obtain µ1 = π2. The kernel k can

be replaced by a more general kernel arising from the separeted boundary conditions

given in [22, section 5].
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