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ABSTRACT. In this paper we use the well–known Guo–Krasnoselskii fixed point theorem to

establish conditions which guarantee the existence of at least one positive solution for a terminal

value problem concerning a second order differential equation.
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1. INTRODUCTION

In this paper we discuss the second order nonlinear differential equation

x′′(t) + f(t, x(t)) = 0, t ∈ [0,∞), (1.1)

along with the terminal condition

lim
t→∞

x(t) = ξ, (1.2)

where f : [0, +∞) × R → R is a continuous function and ξ ∈ (0,∞). More precisely,

we are looking for conditions yielding existence of positive solutions of (1.1), defined

on the whole interval [0, +∞), which satisfy the terminal condition (1.2).

As we know this problem was initiated by Hille [7] in 1948 and consequently was

the subject of several papers [2, 4, 6, 11, 12, 13]. In these papers the existence of at

least one or exactly one solution is proved mainly by using the Schauder’s fixed point

theorem or the contraction principle respectively. Recently, an increasing interest has

also been observed concerning the existence of positive solutions on the half–line for

second order differential equations. Fixed point theorems on Banach spaces ordered

by appropriate cones are usually the tools to derive such results (see, among others,

[3, 9, 10, 14, 15] and the references therein).
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Our purpose in this paper is to establish simple conditions under which the above

terminal value problem (1.1)–(1.2) has at least one positive solution. The results we

present here are obtained by using the well–known Guo–Krasnoselskii fixed point

theorem [5, 8].

2. PRELIMINARIES

Definition 2.1. A function x ∈ C([0,∞), R) is a solution of the problem (1.1)–(1.2)

if and only if x satisfies the differential equation (1.1) and the terminal condition

(1.2).

At this point we establish the following assumption.

(H) It holds that

|f(t, s)| ≤ a(t)L(s) + b(t),

where L, a, b : [0,∞) → [0,∞) are continuous functions and L is increasing. Moreover,

assume that

A =

∫

∞

0

∫

∞

s

a(r)drds < ∞ and B =

∫

∞

0

∫

∞

s

b(r)drds < ∞.

Definition 2.2. Let B be a real Banach space. A cone in B is a nonempty closed

set K ⊆ B, such that

κu + λv ∈ K for all u, v ∈ K and all κ, λ ≥ 0,

and

u,−u ∈ K implies u = 0.

Theorem 2.3 ([5, 8]). Let B be a Banach space and let K be a cone in B. Assume

that Ω1, Ω2 are open bounded subsets of B, with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and let T :

K ∩
(

Ω2\Ω1

)

→ K be a completely continuous operator such that either

‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2

or

‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩
(

Ω2\Ω1

)

.

3. MAIN RESULTS

Let E = {x ∈ C([0,∞), R) : x is bounded}, c ≥ 0 and consider the sets

K = {x ∈ E : x(t) ≥ 0}

and

Kc = {x ∈ K : ‖x‖ < c}.
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It is not difficult to verify that E endowed with the usual sup-norm, defined as

‖x‖ := sup{|x(t)| : t ∈ [0,∞)},

is a Banach space and K is a cone in E. Also, for c > 0, define the operator

T : Kc → C([0,∞), R)) by the formula

(Tx)(t) = ξ −

∫

∞

t

∫

∞

s

f(r, x(r))drds. (3.1)

Under the assumption (H), operator T is well defined. Indeed, for any x ∈ Kc and

every t ≥ 0, we obviously have

0 ≤ x(t) ≤ c.

Hence taking into account assumption (H), we have

|Tx(t)| = |ξ −

∫

∞

t

∫

∞

s

f(r, x(r))drds|

≤ ξ +

∫

∞

t

∫

∞

s

|f(r, x(r))|drds

≤ ξ +

∫

∞

t

∫

∞

s

(a(r)L(x(r)) + b(r))drds

≤ ξ + AL(c) + B

< ∞,

for all t ∈ [0,∞).

Since a completely continuous operator is a continuous function, which maps

bounded sets into relatively compact sets, we need the following compactness criterion

for subsets U of E, which is a consequence of the well–known Arzela–Ascoli theorem

(see Avramescu [1]). In order to formulate this criterion, we note that the a set U

of real functions defined on [0,∞) is called equiconvergent at ∞ if all functions in U

have finite limits at ∞ and, in addition, for each ǫ > 0, there exists T ≡ T (ǫ) > 0

such that, for all functions u ∈ U , we have |u(t) − lims→∞ u(s)| < ǫ for all t ≥ T .

Lemma 3.1. Let U be an equicontinuous and uniformly bounded subset of the Banach

space E. If U is equiconvergent at ∞, it is also relatively compact.

Lemma 3.2. Let M > 0 and suppose that assumption (H) is satisfied. Then a

function x ∈ KM is a solution of the problem (1.1)–(1.2) if and only if x is a fixed

point of the operator T : KM → C([0,∞), R)) defined by equation (3.1).

Proof. Let x ∈ KM be a fixed point of the operator T , i.e. x(t) = Tx(t), t ∈ [0,∞).

Then, by the definition of T , we have

x′(t) =

∫

∞

t

f(r, x(r))dr, t ≥ 0,
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and consequently

x′′(t) = −f(t, x(t)), t ≥ 0.

Moreover

lim
t→∞

x(t) = lim
t→∞

Tx(t)

= lim
t→∞

(

ξ −

∫

∞

t

∫

∞

s

f(r, x(r))drds

)

= ξ.

So, we proved that every fixed point of T in KM is a solution of the problem (1.1)–

(1.2).

Assume that x is a solution of the problem (1.1)–(1.2) in KM . We will prove that

x = Tx. Integrating (1.1) on [s, t], t > s ≥ 0, we have

x′(t) − x′(s) = −

∫

t

s

f(r, x(r))dr

and

lim
t→∞

x′(t) − x′(s) = −

∫

∞

s

f(r, x(r))dr

or

x′(s) =

∫

∞

s

f(r, x(r))dr,

since by condition (1.2) we have limt→∞ x′(t) = 0. Now, integrating the above formula

on [t, σ], σ > t ≥ 0, we have

x(σ) − x(t) =

∫

σ

t

∫

∞

s

f(r, x(r))drds

and, for σ → ∞,

ξ − x(t) =

∫

∞

t

∫

∞

s

f(r, x(r))drds,

i.e.

x(t) = Tx(t),

and the proof is complete.

Lemma 3.3. Suppose that assumption (H) is satisfied and that there exists M > 0

such that AL(M) + B ≤ ξ. Then

T (KM) ⊆ K.

Proof. For every x ∈ KM and t ∈ [0,∞), we have

Tx(t) = ξ −

∫

∞

t

∫

∞

s

f(r, x(r))drds

≥ ξ −

∫

∞

t

∫

∞

s

(a(r)L(x(r)) + b(r))drds
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≥ ξ −

∫

∞

t

∫

∞

s

(a(r)L(M) + b(r))drds

= ξ − L(M)

∫

∞

t

∫

∞

s

a(r)drds −

∫

∞

t

∫

∞

s

b(r)drds

≥ ξ − (L(M)A + B)

≥ 0.

Theorem 3.4. Suppose that assumption (H) is satisfied and that there exist M1, M2 ∈

(0,∞) such that M1 < ξ < M2 and

AL(M1) + B ≤ ξ − M1, AL(M2) + B ≤ min{ξ, M2 − ξ}.

Then there exists at least one positive solution y of the boundary value problem (1.1)–

(1.2) such that

M1 ≤ ‖y‖ ≤ M2.

Proof. Our purpose is to apply Theorem 2.3. Since A+L(M2)+B ≤ ξ, using Lemma

3.3, we have that

T (KM2
\KM1

) ⊆ K.

Now, we will prove that operator

T : KM2
\KM1

→ K

is completely continuous. First of all, we will show that T (KM2
\KM1

) is relatively

compact. For that purpose, let x ∈ KM2
\KM1

. Then, for every t ∈ [0,∞), we have

|Tx(t) =

∣

∣

∣

∣

ξ −

∫

∞

t

∫

∞

s

f(r, x(r))drds

∣

∣

∣

∣

≤ |ξ| +

∣

∣

∣

∣

∫

∞

t

∫

∞

s

f(r, x(r))drds

∣

∣

∣

∣

≤ |ξ| +

∫

∞

0

∫

∞

s

|f(r, x(r))|drds

≤ |ξ| +

∫

∞

0

∫

∞

s

(a(r)L(x(r)) + b(r))drds

≤ |ξ| +

∫

∞

0

∫

∞

s

(a(r)L(M2) + b(r))drds

≤ |ξ| + AL(M2) + B

< ∞.

So, the set T (KM2
\KM1

) is uniformly bounded. Moreover, this set is equiconvergent

at ∞, since for every t ∈ [0,∞), we have

|Tx(t) − ξ| ≤

∫

∞

t

∫

∞

s

(a(r)L(M2) + b(r))drds.
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Furthermore, for every x ∈ KM2
\KM1

and 0 ≤ t1 ≤ t2, we have

|Tx(t2) − Tx(t1)| =

∣

∣

∣

∣

∫

∞

t1

∫

∞

s

f(r, x(r))drds −

∫

∞

t2

∫

∞

s

f(r, x(r))drds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

t2

t1

∫

∞

s

f(r, x(r))drds

∣

∣

∣

∣

≤

∫

t2

t1

∫

∞

s

|f(r, x(r))|drds

≤

∫

t2

t1

∫

∞

s

(a(r)L(x(r)) + b(r))drds

≤

∫

t2

t1

∫

∞

s

(a(r)L(M2) + b(r))drds.

So, the set T (KM2
\KM1

) is equicontinuous. Therefore, by Lemma 3.1, this set is rel-

atively compact. Moreover, the mapping T is continuous. Indeed, let x ∈ KM2
\KM1

and (xn)n∈N an arbitrary sequence in KM2
\KM1

, with lim xn = x. Then, we have

lim xn(t) = x(t), t ≥ 0. Thus, by applying the Lebesgue dominated convergence

theorem, we have

lim
n

∫

∞

t

∫

∞

s

f(r, xn(r))drds =

∫

∞

t

∫

∞

s

f(r, x(r))drds.

So, for every t ≥ 0, we have the pointwise convergence

lim
n

Txn(t) = Tx(t).

It remains to prove that

lim Txn = Tx.

Consider any subsequence (um) of (Txn). Because T (KM2
\KM1

) is relatively compact,

there exists a subsequence (uλ) of (um) and a function y ∈ E, so that lim uλ = y.

Since the uniform convergence implies the pointwise one to the same limit function,

we must have y = Tx, which means that lim Txn = Tx.

Also, let x ∈ K with ‖x‖ = M1. Then 0 ≤ x(t) ≤ M1, t ∈ [0,∞), and since

AL(M1) + B ≤ ξ − M1, we have

(Tx)(t) = ξ −

∫

∞

t

∫

∞

s

f(r, x(r))drds

≥ ξ −

∫

∞

t

∫

∞

s

(a(r)L(x(r)) + b(r))drds

≥ ξ −

∫

∞

t

∫

∞

s

(a(r)L(M1) + b(r))drds

= ξ − (L(M1)A + B)

≥ M1 = ‖x‖.
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Also, for every x ∈ K with ‖x‖ = M2, and since AL(M2) + B ≤ M2 − ξ, we have

(Tx)(t) = ξ −

∫

∞

t

∫

∞

s

f(r, x(r))drds

≤ ξ +

∫

∞

t

∫

∞

s

(a(r)L(x(r)) + b(r))drds

≤ ξ +

∫

∞

t

∫

∞

s

(a(r)L(M2) + b(r))drds

= ξ + L(M2)A + B

≤ M2 = ‖x‖.

Consequently, by Theorem 2.3, the boundary value problem (1.1)–(1.2) has at

least one positive solution y, such that

M1 ≤ ‖y‖ ≤ M2.

4. AN APPLICATION

Let a, b : [0,∞) → [0,∞) be continuous functions such that
∫

∞

0

∫

∞

s

a(r)drds = 1 and

∫

∞

0

∫

∞

s

b(r)drds = 1.

Consider the boundary value problem consisting of the differential equation

x′′(t) + f(t, x(t)) = 0, t ∈ [0,∞), (4.1)

along with the terminal condition

lim
t→∞

x(t) = 2, (4.2)

where f : [0, +∞) → R is any continuous function such that

|f(t, s)| ≤ a(t)

(

2

π
Arctan(s)

)

+ b(t).

We will prove that the boundary value problem (4.1)–(4.2) has at least one positive

solution y, with 1

2
≤ ‖y‖ ≤ 4.

Indeed, here we have ξ = 2, L(t) = 2

π
Arctan(t), t ∈ [0,∞), and A = B = 1. Also,

it is easy to see that function L is increasing on [0,∞). So, we have

ξ − (L(M1)A + B) ≥ M1 ⇔
2

π
Arctan(M1) + M1 − 1 ≤ 0,

ξ − (L(M2)A + B) ≥ 0 ⇔ Arctan(M2) ≤
π

2
and

ξ + L(M2)A + B ≤ M2 ⇔ Arctan(M2) ≤
π

2
(M2 − 3).

The above equations are satisfied for M1 = 1

2
and M2 = 4. This completes the proof.
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