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ABSTRACT. We study the existence of positive solutions of integral equations in C[0, 1] where

the kernel is supposed to be non-negative on [0, 1]× [0, 1] but may vanish at the interior points which

prevent us of some standard cones. We prove existence of one or two positive solutions under some

sharp conditions, and we do not need any convexity assumptions on the nonlinearities. The proof

of the main results is based upon bifurcation techniques.
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1. INTRODUCTION

In recent years, there has been an extensive study of the existence of positive

solutions of boundary value problems (BVPs) for differential equations involving both

local and nonlocal boundary conditions (BCs). A standard method used to show the

existence of positive solutions is to find fixed points of the integral equation

u(t) =

∫ 1

0

G(t, s)g(s)f(s, u(s))ds =: Tu(t) (1.1)

in the space C[0, 1] of continuous functions, where G is the Green’s function of the

differential equation with the given BCs. To show existence of a positive solution

(when g, f ≥ 0), it is required that G(t, s) ≥ 0 and one seeks fixed points of T in the

cone

P := {u ∈ C[0, 1] : u(t) ≥ 0}.

For Sturm-Liouville BCs, see for example [1, 2]; for periodic BCs, see for example [3,

4]; for nonlocal BCs, see for example [5, 6] and references therein. It is worth remark-

ing that the Green’s functions in [1–6] satisfy the following Lan-Webb condition:
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(LW) There exist a subinterval [a, b] ⊂ [0, 1], a measurable function φ, and a constant

c = c(a, b) ∈ (0, 1] such that

G(t, s) ≤ Φ(s) for t ∈ [0, 1] and s ∈ [0, 1],

G(t, s) ≥ cΦ(s) for t ∈ [a, b] and s ∈ [0, 1].
(1.2)

Recently, Graef, Kong and Wang [7] studied the nonlinear periodic BVP

u′′(t) + a(t)u(t) = g(t)f(u(t)), t ∈ (0, 1),

u(0) = u(1), u′(0) = u′(1),
(1.3)

where the Green’s function is assumed to be non-negative on the square [0, 1]× [0, 1],

but can be zero at some interior points of the square. For example, in the case

a(t) ≡ π2, the Green’s function can be explicitly given by

G(t, s) =















cos(π(1/2 − t + s))

2π
, s ≤ t,

cos(π(1/2 − s + t))

2π
, s > t.

Obviously G(s, s) = 0 for s ∈ [0, 1]. (In fact the authors of [7] worked on the interval

[0, 2π] but, since nothing essential is changed, we consider [0, 1].) In such a case the

Green’s function does not satisfy the (LW) condition. In fact, in [7], a new cone of

the form

K =
{

u ∈ P :

∫ 1

0

u(t)dt ≥ c||u||
}

, (1.4)

(where c > 0 is a constant independent of u, and ||u|| := maxt∈[0,1] |u(t)|), was used

and the authors proved the existence of one positive solution under a sub-linear

condition on f and also under a super-linear condition on f provided that f was

convex. A key assumption made by the authors of [7] is that

min
0≤s≤1

∫ 1

0

G(t, s)dt > 0. (1.5)

It was also assumed that the functions f, g are continuous and non-negative and that

min
t∈[0,1]

g(t) > 0. (1.6)

Motivated by [7], Webb [8] used fixed point index theory to study the integral

equation

u(t) =

∫ 1

0

G(t, s)g(s)f(u(s))ds (1.7)

under the assumptions

(H1) The kernel G is non-negative and is continuous on [0, 1] × [0, 1], with

G(t, s) ≤ G0, (t, s) ∈ [0, 1] × [0, 1];
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(H2) The function g is non-negative almost everywhere, g ∈ L1[0, 1], and satisfies

g1 :=

∫ 1

0

g(t)dt > 0;

(H3) There is a constant α > 0 such that
∫ 1

0

G(t, s)g(t)dt ≥ α, s ∈ [0, 1];

(H4) The nonlinearity f : [0,∞) → [0,∞) is continuous.

Denote
(

f̄
)

0
= lim sup

u→0+

f(u)

u
,

(

f
−

)

0
= lim inf

u→0+

f(u)

u
,

(

f̄
)

∞
= lim sup

u→∞

f(u)

u
,

(

f
−

)

∞
= lim inf

u→∞

f(u)

u
.

Let

K̃ := {u ∈ P :

∫ 1

0

u(t)g(t)dt ≥
α

G0
||u||}. (1.8)

Define an operator L : C[0, 1] → C[0, 1] by

Lu(t) :=

∫ 1

0

G(t, s)g(s)u(s)ds.

Then by [8, Lemma 2.1], we have

L(P ) ⊂ K̃. (1.9)

Assume that

(H5) r(L) > 0.

Remark 1.1 By the Krein-Rutman theorem, L has an eigenfunction ϕ ∈ P \ {0}

corresponding to the principal eigenvalue r(L).

We suppose that ||ϕ|| = 1.

Since L(P ) ⊂ K̃, ϕ ∈ K̃. We set

λ1 := 1/r(L), (1.10)

and call it the principal characteristic value of L.

Applying fixed point index theory and an open set in K̃, Webb [8] proved the

following

Theorem A ([8, Theorem 2.2]) Assume that (H1)–(H5) hold. Then the integral

equation (1.7) has at least one positive solution, that is, a nonzero solution in the

cone K̃ if either of the following conditions (S1), (S2) hold.

(S1)
(

f
−

)

0
> λ1 and

(

f̄
)

∞
< λ1.

(S2)
(

f̄
)

0
< λ1 and there exists R > 0 such that f(R)

R
> 1

α
and f is convex on

[

0, G0g1R

α

]

.
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The equation (1.7) has at least two positive solutions if

(D)
(

f̄
)

0
< λ1, there exists R > 0 such that f(R)

R
> 1

α
and f is convex on

[

0, G0g1R

α

]

,

and
(

f̄
)

∞
< λ1.

Notice that a key assumption made by the authors of [7,8] is that f is convex

on [0,∞) or on some subinterval of [0,∞). It is the purpose of our paper to use

bifurcation techniques to prove the existence and multiplicity of positive solutions

without any convexity restriction of f . More precisely, we will prove the following

Theorem 1.1 Assume that (H1)–(H3) and (H5) hold. Moreover, assume that

(A1)
∫ 1

0
G(t, s)ϕ(t)dt ≥ β for some constant β > 0;

(A2) f : R → R is continuous and

sf(s) > 0, s ∈ (0,∞),

and there exist f0, f∞ ∈ (0,∞) such that

f0 = lim
|u|→0+

f(u)

u
, f∞ = lim

|u|→∞

f(u)

u
.

Then (1.7) has one positive solution u+ ∈ K̃ and one negative solution u− with

−u− ∈ K̃ if either of the following conditions (A3), (A4) hold.

(A3) f0 > λ1 and f∞ < λ1;

(A4) f0 < λ1 and f∞ > λ1.

Theorem 1.2 Assume that (H1)–(H3),(H5) and (A1)-(A2) hold. Then (1.7) has at

least two positive solutions if the following condition (A5) holds.

(A5) f0 > λ1, f∞ > λ1, and there exists R > 0 and γ ∈
(

0, α

g2
1
G2

0

)

, such that

f̂(R)

R
< γ

with

f̂(R) := max{f(s) : s ∈ [0, R]}.

Remark 1.2. In Theorem 1.1 and 1.2, we do not need any convexity restriction on

f .

2. PROOF OF THE MAIN RESULTS

Let us denote by || · || the sup norm in C[0, 1]. Recall that the operator L :

C[0, 1] → C[0, 1] defined by

Lu(t) :=

∫ 1

0

G(t, s)g(s)u(s)ds.

It is easy to verify that L is a compact operator in C[0, 1].
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Let ζ, ξ ∈ C(R, R) be such that

f(u) = f0u + ζ(u), f(u) = f∞u + ξ(u).

Clearly,

lim
|u|→0

ζ(u)

u
= 0, lim

|u|→∞

ξ(u)

u
= 0.

Let

ξ∗(u) = max
0≤|s|≤u

|ξ(s)|,

then ξ̄ is nondecreasing and

lim
u→∞

ξ∗(u)

u
= 0. (2.1)

Proof of Theorem 1.1. Let us consider

u(t) := µ

∫ 1

0

G(t, s)g(s)f(u(s))ds, µ ∈ [0,∞) (2.2)

as a bifurcation problem from the trivial solution u ≡ 0.

From (2.2), we obtain

u(t) = µ

∫ 1

0

G(t, s)g(s)[f0u(s) + ζ(u(s))]ds

=: (µL[f0u(·)] + µL[ζ(u(·))])(t).

(2.3)

Further, we note that ‖L[ζ(u(·))]‖ = o(‖u‖) for u near 0 in C[0, 1], since

‖L[ζ(u(·))]‖ = max
t∈[0,1]

∣

∣

∫ 1

0

G(t, s)g(s)ζ(u(s))ds
∣

∣

≤ G0 · g1 · ‖ζ(u(·))‖.

In what follows, we use the terminology of Rabinowitz [9]. Let S+
1 denote the set

of functions in C[0, 1] which is positive on [0, 1], and set S−
1 = −S+

1 , and S1 =

S−
1 ∪ S+

1 . They are disjoint and open in C[0, 1]. Finally, let Φ±
1 = R × S±

1 . The

result of Rabinowitz [9] for problem (2.2) can be stated as follows: For ν = {+,−},

there exists a continuum Cν
1 of solutions of (2.2) joining (λ1

f0
, 0) to infinity. Moreover,

Cν
1 \ {(λ1

f0
, 0)} ⊂ Φν

1 .

Proof of Theorem 1.1. It is clear that any solution of (2.2) of the form (1, u) yields

a solution u of integral equation (1.7). We will show that Cν
1 crosses the hyperplane

{1} × C[0, 1] in R × C[0, 1]. To do this, it is enough to show that Cν
1 joins (λ1

f0
, 0) to

( λ1

f∞
,∞). Let (µn, yn) ∈ Cν

1 satisfy

µn + ‖yn‖ → ∞.

We note that µn > 0 for all n ∈ N since (0, 0) is the only solution of (2.2) for µ = 0

and Cν
1 ∩ ({0} × C[0, 1]) = ∅.

Case 1. λ1

f∞
< 1 < λ1

f0
.
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In this case, we show that the interval

(
λ1

f∞
,
λ1

f0
) ⊆ {λ ∈ R | ∃(λ, u) ∈ Cν

1}.

We divide the proof into two steps.

Step 1. We show that if there exists a constant M1 > 0 such that µn ⊂ (0, M1],

then Cν
1 joins (λ1

f0
, 0) to ( λ1

f∞
,∞).

In this case, it follows that ‖yn‖ → ∞. We divide the equation

yn(t) := µn

∫ 1

0

G(t, s)g(s)f(yn(s))ds. (2.4)

by ‖yn‖ and set ȳn = yn

‖yn‖
. Since ȳn is bounded in C[0, 1], it follows from (2.4) and

the compactness of L (after taking a subsequence if necessary) that ȳn → ȳ for some

ȳ ∈ C[0, 1] with ‖ȳ‖ = 1. From ξ∗ is nondecreasing and limu→∞
ξ∗(u)

u
= 0, we know

that

lim
n→∞

|ξ(yn(t))|

‖yn‖
= 0,

since
|ξ(yn(t))|

‖yn‖
≤

ξ∗(|yn(t)|)

‖yn‖
≤

ξ∗(‖yn‖)

‖yn‖
.

Thus,

ȳ(t) =

∫ 1

0

G(t, s)µ̄g(s)f∞ȳ(s)ds,

where µ̄ := limn→∞ µn, again choosing a subsequence and relabeling, if necessary.

Thus

ȳ = µ̄

∫ 1

0

G(t, s)g(s)f∞ȳ(s)ds, (2.5)

and accordingly

µ̄ =
λ1

f∞
, ȳ = ϕ. (2.6)

Therefore Cν
1 joins (λ1

f0
, 0) to ( λ1

f∞
, ∞).

Step 2. We show that there exists a constant M1 > 0 such that µn ∈ (0, M1] for

all n ∈ N.

Suppose there is no such M1. Choosing a subsequence and relabeling, if necessary,

it follows that

lim
n→∞

µn = ∞.

(µn, yn) ∈ Cν
1 implies that

yn(t) := µn

∫ 1

0

G(t, s)g(s)f(yn(s))ds. (2.7)

By (A2), there exists a constant δ > 0 such that

f(s) > δs, s ∈ [0,∞). (2.8)



INTEGRAL EQUATIONS WITH VANISHING KERNELS 535

Combining this with (2.7) and using (A1), it concludes that

||yn|| ≥

∫ 1

0

ϕ(t)yn(t)dt

= µn

∫ 1

0

[

∫ 1

0

G(t, s)g(s)f(yn(s))ds
]

ϕ(t)dt

≥ µn

∫ 1

0

[

∫ 1

0

G(t, s)g(s)δyn(s)ds
]

ϕ(t)dt

= δµn

∫ 1

0

[

∫ 1

0

G(t, s)ϕ(t)dt
]

g(s)yn(s)ds

≥ δµnβ

∫ 1

0

g(s)yn(s)ds

≥ δµnβ ·
α

G0
||yn||.

(2.9)

This is impossible as n → ∞. Therefore,

|µn| ≤ M1

for some constant M1 > 0, independent of n ∈ N.

Case 2. λ1

f0
< 1 < λ1

f∞
.

In this case, if (µn, yn) ∈ Cν
1 is such that

lim
n→∞

(µn + ‖yn‖) = ∞,

and

lim
n→∞

µn = ∞,

then

(
λ1

f0

,
λ1

f∞
) ⊂

{

λ ∈ (0,∞) : (λ, u) ∈ Cν
1

}

,

and subsequently,

({1} × C[0, 1]) ∩ Cν
1 6= ∅.

Assume that {µn} is bounded, applying a similar argument to that used in Step

1 of Case 1, after taking a subsequence and relabeling, if necessary, it follows that

(µn, yn) → (
λ1

f∞
,∞), n → ∞.

Again Cν
1 joins

(

λ1

f0
, 0

)

to
(

λ1

f∞
, ∞

)

and the result follows.

�

Proof of Theorem 1.2. As in the proof of Theorem 1.1, there exists a continuum

C+
1 of solutions of (2.2) joining (λ1

f0
, 0) to ( λ1

f∞
,∞). Moreover, C+

1 \ {(λ1

f0
, 0)} ⊂ Φ+

1 .

It follows from (A5) that

λ1

f0
< 1,

λ1

f∞
< 1.
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To complete the proof of the Theorem, it is enough to show that

C+
1 ∩ {(µ, y) : 0 < µ ≤ 1, ||y|| = R} = ∅. (2.10)

Suppose on the contrary that there exists (µ, y) ∈ C+
1 ∩{(µ, y) : 0 < µ ≤ 1, ||y|| =

R}, then y ∈ K̃ and

y(t) = µ

∫ 1

0

G(t, s)g(s)f(y(s))ds.

This implies that

α

G0

||y|| ≤

∫ 1

0

g(t)y(t)dt

=

∫ 1

0

[

µ

∫ 1

0

G(t, s)g(s)f(y(s))ds
]

g(t)dt

≤

∫ 1

0

[

∫ 1

0

G(t, s)g(s)f(y(s))ds
]

g(t)dt

=

∫ 1

0

[

∫ 1

0

G(t, s)g(t)dt
]

g(s)f(y(s))ds

≤ G0g1

∫ 1

0

g(s)f(y(s))ds

≤ G0g1

∫ 1

0

g(s)f̂(||y||)ds

≤ G0g1

∫ 1

0

g(s)γ||y||ds

This contradicts the assumption γ < α
g2
1
G2

0

. Therefore, (2.10) is valid.

�

3. FURTHER RESULTS

In Theorem 1.1 and 1.2, we made the assumption:
(

f̄
)

0
=

(

f
−

)

0
=: f0,

(

f̄
)

∞
=

(

f
−

)

∞
=: f∞.

In fact, this assumption is too strong. We may apply the techniques of bifurcating

from interval (see [10]) and the same method to prove Theorem 1.1 and 1.2, with

obvious changes, to establish the following

Theorem 3.1 Let (H1)–(H3), (H5) and (A1) hold. Moreover, assume that

(A2w) f : R → R is continuous,

sf(s) > 0, s ∈ (0,∞),

and
(

f̄
)

0
,
(

f
−

)

0
,
(

f̄
)

∞
,
(

f
−

)

∞
∈ (0,∞).

Then (1.7) has one positive solution u+ ∈ K̃ and one negative solution u− with

−u− ∈ K̃ if either of the following conditions (A6), (A7) hold.
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(A6)
(

f
−

)

0
> λ1 and

(

f̄
)

∞
< λ1;

(A7)
(

f̄
)

0
< λ1 and

(

f
−

)

∞
> λ1.

Theorem 3.2 Assume that (H1)–(H3), (H5), (A1) and (A2w) hold. Then (1.7) has

at least two positive solutions if the following condition (A8) holds.

(A8)
(

f
−

)

0
> λ1,

(

f
−

)

∞
> λ1, and there exists R > 0 and γ ∈

(

0, α

g2
1
G2

0

)

, such that

f̂(R)

R
< γ.
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