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ABSTRACT. In this article we consider the equation x′′ = −µf(x+) + λg(x−), where x+ =

max{x, 0}, x− = max{−x, 0}, together with the boundary conditions x(0) = 0, x(b) = γ
∫ b

0
x(s) ds.

We give description of a set of (µ, λ) such that the problem has a nontrivial solution.
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1. INTRODUCTION

In this paper we consider boundary value problem

x′′ = −µf(x+) + λg(x−), (1)

x(0) = 0, x(b) = γ

∫ b

0

x(s) ds, (2)

where λ and µ are non-negative spectral parameters and x+ = max{x, 0}, x− =

max{−x, 0}. The functions f, g ∈ C1([0, +∞) → [0, +∞)) and f(0) = g(0) = 0.

Our research is motivated by:

• classical results on the Fuč́ık spectrum where the boundary conditions are of the

Dirichlet type ([7]);

• description of spectra for the problem (1), (2), where γ = 0 ([4])

• the results on spectra for the Fuč́ık equation with the integral condition ([11],

[12]).
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In what follows we give description of the spectrum of the problem (1), (2) in

terms of time-map functions (the first zero functions) associated with f and g. We

point out some interesting features of spectra and compare them with those for the

Dirichlet type problems. The detailed analysis of the spectrum is made for the case of

f and q being cubic functions. In this case description of spectra is made analytically

and visualizations of spectra are obtained for selected values of a parameter γ.

2. REVIEW OF PREVIOUS RESULTS

2.1. The classical Fuč́ık spectrum. The Fuč́ık equation

x′′ = −µx+ + λx− (3)

is a semi-linear equation with parameters. It does not satisfy the superposition prin-

ciple (a sum of two solutions need not to be a solution), but it possesses the positive

homogeneity property (if x(t) is a solution of the equation then kx(t) is a solution

also provided that k ≥ 0). A set of all (µ, λ) such that the problem (3),

x(0) = 0, x(b) = 0 (4)

has a nontrivial solution is the Fuč́ık spectrum. It is well known (see the left side of

Fig. 1). It consists of the branches F+

i and F−
i , where the integer i indicates how

many zeros a respective solution x(t) has in the interval (0, 1) and the sign “+” refers

to the initial value x′(0) = 1. Consequently the sign “−” means that a solution x(t)

satisfies the initial condition x′(0) = −1.
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Figure 1. Spectra for the problems (3), (4) and (3), (5)

On the right side in Fig. 1 there is depicted the spectrum of the problem (3),

x(0) = 0,

∫ b

0

x(s) ds = 0. (5)

Both spectra differ significantly.
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2.2. The nonlinear Fuč́ık problem. The nonlinear (in the meaning that f and/or

g may be nonlinear functions) problem (1), (4) was studied in [4], [5], [8] under the

additional condition

|x′(0)| = α. (6)

Without the condition (6) the problem (1), (4) generally has continuous spectrum

filling entire regions in the (µ, λ) plane. This condition was called the normalization

condition.

The normalization condition is not needed in the problem (3), (4) since equa-

tion (3) possesses the positive homogeneity property and any positive multiple of a

nontrivial solution is a solution also.

It was shown in [4], [5], [8] that properties of the spectrum for the problem (1), (4)

depend entirely on the monotonicity properties of the functions Tf (µ, α) and Tg(λ, α)

(see the section below) considered as µ and λ functions respectively with α fixed.

Generally if Tf (µ, ·) and Tg(λ, ·) are strictly monotonically decreasing then the

spectra are similar (topologically equivalent) to the classical Fuč́ık spectrum. If one or

both of the above functions have local extrema then the spectrum may exhibit peculiar

features: branches of the spectrum may contain multiple components, bounded or

unbounded. In the latter case the asymptotics can be described in details.

2.3. The integral conditions. In the works [10], [11], [12] the Fuč́ık equation was

considered together with the integral conditions

x(a) = 0,

∫ b

a

x(s) ds = 0 (7)

or

x(a) = 0, x(b) = γ

∫ b

a

x(s) ds. (8)

The analytical and graphical descriptions of spectra were obtained for both boundary

conditions.

The spectrum for the problem (1), (7) was obtained analytically and described

graphically for the case f = g = x3.

3. TECHNICAL BACKGROUND

In this section we introduce and describe functions and notions which are needed

to investigate and formulate the results for the problem (1), (2).

First consider the Cauchy problem

x′′ = −f(x), x(0) = 0, x′(0) = β, β > 0. (9)

Denote a solution x(t; β) and let tf (β) stand for the first zero of x(t; β). The function

tf (β) is called a time-map function ([9]). This function is defined and continuous if
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Figure 2. The spectra for the problems (16), (4) and (16), (17) for

|α| = 1 and b = 1.

f(x) is a continuously differentiable function. If there is not the first zero for some β

we set tf (β) = +∞.

Consider the problem

X ′′ = −µf(X), X(0) = 0, X ′(0) = α, α > 0. (10)

Proposition 3.1. If x(t; β) solves the problem (9) then X(t; µ, α) = x(
√

µt; α√
µ
)

solves the Cauchy problem (10).

It can be verified directly that x(
√

µt; α√
µ
) satisfies the equation and the initial

conditions in (10).

Corollary 3.1. If tf(β) is a time map for the problem (9) then

Tf(µ, α) =
1√
µ

tf (
α√
µ

) (11)

is a time map for the problem (10).

Proof. If x(t; β) vanishes at tf (β) then X(t; µ, α) = x(
√

µt; α√
µ
) vanishes at 1√

µ
tf (

α√
µ
).

Denote sf (t; β) =
∫ t

0
x(s; β) ds and Sf(t; µ, α) =

∫ t

0
X(s; µ, α) ds, where x and X

are solutions of the Cauchy problems (9) and (10) respectively.

Corollary 3.2.

Sf(t; µ, α) =
1√
µ

sf(
√

µt;
α√
µ

). (12)

The formula (12) can be verified using the rescaling argument.

Similar notation is introduced for a function g.



NON-LOCAL SPECTRAL PROBLEM 561

3.1. Examples of functions t and s. For equation x′′ + ω2x = 0 one has:

t(α) =
π

ω
, s(t; α) =

∫ t

0

sin ωs ds =
α

ω2
[1 − cos ωt]. (13)

The functions T (µ, α) and S(t; µ, α) for the problem

X ′′ + µ ω2X = 0, X(0) = 0, X ′(0) = α > 0

are respectively
1√
µ

π

ω
and

α

µ ω2
(1 − cos

√
µω t).

For equation x′′ + 2x3 = 0 one has:

t(α) = 2
A√
α

, s(t; α) =

∫ t

0

√
α sl

√
αs ds =

π

4
− arctan cl

√
αt, (14)

where A =

∫

1

0

dt√
1 − t4

. The computations yield

T (µ, α) = µ− 1

4 α− 1

2 · 2A,

S(t; µ, α) =
1√
µ

[
π

4
− arctan cl (µ

1

4 α
1

2 t)].

The functions sl t and cl t are lemniscatic sine and cosine functions, the constant

A for the lemniscatic sine is as the constant π
2

for the trigonometrical sin t.

In the sequel A is the value of the above integral, A ≈ 1.311.

More on lemniscatic functions can be learned from [13] as well as from modern

sources [3]. It is important for calculations that lemniscatic functions can be expressed

via the Jacobi elliptic functions.

4. DESCRIPTION OF BRANCHES OF THE SPECTRUM

Consider the problem (1), (2) together with the normalization condition (6).

Suppose that also
∫ ∞

0

f(x)dx = +∞,

∫ ∞

0

g(x)dx = +∞. (15)

These conditions ensure that solutions of the Cauchy problems (9) and the respective

problem for a function g have zeros and therefore the functions tf and tg are finite. It

is true also that solutions of these problems are symmetric in the intervals (0, tf(β))

and (0, tg(β)) with respect to the middle points of the intervals. Therefore solutions

of the equation (1) which satisfy the initial conditions x(0) = 0, x′(0) = α satisfy also

the condition |x′(z)| = α at any zero point.

In order to obtain the relations for finding points of the spectrum we consider

solutions with different nodal structure.

4.1. Solutions with different nodal structure.
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4.1.1. Solutions without zeros. Consider first solutions of the equation (1) which do

not have zeros in the interval (0, b). We distinguish between two cases, namely,

x′(0) = α > 0 or x′(0) = −α < 0.

Define “positive” branch F+

0 by the relation:

x(b; α) = γ Sf(b; µ, α), Tf (µ, α) ≤ b.

The “negative” branch F−
0 is defined by:

−y(b; α) = −γ Sg(b; λ, α), Tg(µ, α) ≤ b,

where y(t) is a solution of y′′ = −g(y), y(0) = 0, y′(0) = α. The above two relations

provide sets of values of µ and λ which form the zero branches of the spectrum. This

sets may be empty, of course, for instance, if γ < 0.

4.1.2. Solutions with exactly one zero. Let Θ := Tf(µ, α) and Φ := Tg(λ, α).

The “positive” branch F+

1 is defined by:

−y(b − Θ; α) = γ [Sf (Θ; µ, α) − Sg(b − Θ; λ, α)],

Θ < b, Θ + Φ ≥ b.

The “negative” branch is defined by:

x(b − Φ; α) = γ [−Sg(Φ; λ, α) + Sf(b − Φ; µ, α)],

Φ < b, Φ + Θ ≥ b.

Generally,

F+

2i−1
:

1

γ
[−y(b− (iΘ + (i− 1)Φ))] = iSf (Θ)− (i− 1)Sg(Φ)− Sg(b− (iΘ + (i− 1)Φ)),

iΘ + (i − 1)Φ < b, iΘ + iΦ > b,

F−
2i−1

:
1

γ
[x(b − ((i − 1)Θ + iΦ))] = (i − 1)Sf(Θ) − iSg(Φ) + Sf(b − ((i − 1)Θ + iΦ)),

(i − 1)Θ + iΦ < b, iΘ + iΦ > b,

F+

2i :
1

γ
[x(b − i(Θ + Φ))] = iSf (Θ) − iSg(Φ) + Sf (b − i(Θ + Φ)),

i(Θ + Φ) < b, i(Θ + Φ) + Θ > b,

F−
2i :

1

γ
[−y(b − i(Θ + Φ))] = iSf(Θ) − iSg(Φ) − Sg(b − i(Θ + Φ)),

i(Θ + Φ) < b, i(Θ + Φ) + Φ > b,

i = 1, 2, . . .

Theorem 4.1. The spectrum for the problem (1), (2) consists of the branches given

by the above relations, where γ 6= 0.

If γ = 0 then the conditions (2) are of the Dirichlet type and the results in [4]

cover this case.
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5. CUBIC NONLINEARITIES

5.1. Zero integral condition. Consider the equation

−x′′ = µ(x+)3 − λ(x−)3, µ > 0, λ > 0 (16)

with the conditions

x(0) = 0,

∫ b

0

x(s)ds = 0, |x′(0)| = α. (17)

Theorem 5.1. The Fuč́ık spectrum for the problem (16), (17) consists of the branches

given by

F+

2i−1
=

{

(µ, λ)
∣

∣

∣

iπ

2

√
λ − (2i − 1)π

4

√
µ −√

µ arctan cl
(√

α
4

√

λ

2
b + 2Ai−

−2Ai
√

α 4

√

λ

µ

)

= 0, 4

√

2

µ
i +

4

√

2

λ
(i − 1) <

b

2A
, 4

√

2

µ
i +

4

√

2

λ
i ≥ b

2A

}

,

F+

2i =
{

(µ, λ)
∣

∣

∣

(2i + 1)π

4

√
λ − iπ

2

√
µ −

√
λ arctan cl

(√
α 4

√

µ

2
+ 2Ai−

−2Ai
√

α 4

√

µ

λ

)

= 0, 4

√

2

µ
i +

4

√

2

λ
i <

b

2A
, 4

√

2

µ
i +

4

√

2

λ
(i + 1) ≥ b

2A

}

,

F−
i =

{

(µ, λ)
∣

∣

∣
(λ, µ) ∈ F+

i

}

,

where i = 1, 2, . . ..

Proof. The proof of this theorem is analogous to the proof of Theorem 5.2.

5.2. Connections between the Dirichlet and the integral condition. Consider

the equation (16) with the conditions

x(0) = 0, |x′(0)| = α, x(b) = γ

∫ b

0

x(s)ds, γ ∈ R. (18)

The expressions of the branches of the spectrum for the problem (16), (18) are

given in the next theorem.

Theorem 5.2. The spectrum for the problem (16), (18) consists of the branches (if

these branches exist for corresponding value of γ) given by

F+

0 =
{

(µ, λ)
∣

∣

∣

√
α 4

√

2

µ
sl (

√
α 4

√

µ

2
b) = γ

√

2

µ

(π

4
− arctan cl (

√
α 4

√

µ

2
b)

)

,

0 < µ ≤ 2
(2A

b

)4
}

,
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F+

2i−1 =
{

(µ, λ)
∣

∣

∣

√
µγ arctan cl (

√
α

4

√

λ

2
− 2Ai

√
α 4

√

λ

µ
+ 2Ai)−

−iπ
√

λ

2
γ +

(2i − 1)π
√

µ

4
γ +

4

√

µ2λ

2
sl (

√
α

4

√

λ

2
− 2Ai

√
α 4

√

λ

µ
+

+2Ai) = 0, 4

√

2

µ
i +

4

√

2

λ
(i − 1) <

b

2A
, 4

√

2

µ
i +

4

√

2

λ
i ≥ b

2A

}

,

F+

2i =
{

(µ, λ)
∣

∣

∣

√
λγ arctan cl (

√
α 4

√

µ

2
− 2Ai

√
α 4

√

µ

λ
+ 2Ai)−

−(2i + 1)π
√

λ

4
γ +

iπ
√

µ

2
γ +

4

√

λ2µ

2
sl (

√
α 4

√

µ

2
− 2Ai

√
α 4

√

µ

λ
+

+2Ai) = 0, 4

√

2

µ
i +

4

√

2

λ
i <

b

2A
, 4

√

2

µ
i +

4

√

2

λ
(i + 1) ≥ b

2A

}

,

F−
i =

{

(µ, λ)
∣

∣

∣
(λ, µ) ∈ F+

i

}

,

where i = 1, 2, . . ..

Proof. The idea of the proof of this theorem is the same as in the works [10] and [12].

Some comments follow.

First of all we obtain the expression for F+

0 . Let us suppose that the solution

without zeroes in the interval (0, b) exists and x′(0) = α > 0. In this case the problem

(16), (18) reduces to the eigenvalue problem

−x′′ = µx3, x(0) = 0, x(b) = γ

∫ b

0

x(s)ds. (19)

A solution which satisfies the initial conditions x(0) = 0, x′(0) = α is

x(t) =
√

α 4

√

2

µ
sl (

√
α 4

√

µ

2
t).

We use this expression to satisfy the integral boundary condition in (19).

It is known from the work [11] (and [1]) that
∫ t

0

sl sds =
π

4
− arctan cl t.

In view of

x(b) =
√

α 4

√

2

µ
sl (

√
α 4

√

µ

2
b)

and
∫ b

0

x(s)ds =

√

2

µ
(
π

4
− arctan cl

√
α 4

√

µ

2
b)

we obtain the expression for F+

0 .

The idea of the proof for other branches is similar. We consider the eigenvalue

problems in the intervals between two consecutive zeroes of the solution and use the

conditions of the solutions for these problems.
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For example, we will prove this theorem for F+

1 .

Suppose that (µ, λ) ∈ F+

1 and let x(t) be the corresponding nontrivial solution

of the problem (16), (18). The solution has only one zero in (0, 1) and x′(0) = α > 0.

Let this zero be denoted by τ .

Consider a solution of the problem (16), (18) in the interval (0, τ). We obtain that

the problem (16), (18) in this interval reduces to the eigenvalue problem −x′′ = µx3

with boundary conditions x(0) = x(τ) = 0. Since x(t) =
√

α 4

√

2

µ
sl

(√
α 4

√

µ

2
t
)

in the

interval (0, τ) and x(τ) = 0 we obtain that τ = 2A
√

1

α
4

√

2

µ
.

It follows that
∫ τ

0

√
α 4

√

2

µ
sl

(√
α 4

√

µ

2
s
)

ds =
π

2

√

2

µ
. (20)

Now consider a solution of the problem (16), (18) in the interval (τ, b). We

obtain the problem −x′′ = λx3 with boundary condition x(τ) = 0 in this interval.

Since x(t) = −√
α 4

√

2

λ
sl

(√
α 4

√

λ
2
(t−2A

√

1

α
4

√

2

µ
)
)

in the interval (τ, b) we obtain that

x(b) = −
√

α
4

√

2

λ
sl

(√
α

4

√

λ

2
b − 2A 4

√

λ

µ

)

(21)

and

∫ b

τ

(−
√

α)
4

√

2

λ
sl

(√
α

4

√

λ

2
t − 2A 4

√

λ

µ

)

ds =

=

√

2

λ

(

arctan cl
(√

α
4

√

λ

2
b − 2A 4

√

λ

µ

)

− π

4

)

. (22)

Using (20), (21) and (22) in the condition x(b) = γ
∫ b

0
x(s)ds we obtain the

expression for F+

1 .

Considering the solution of the problem (16), (18) it is easy to prove that 0 <

2A 4

√

2

µ
< b ≤ 2A 4

√

2

µ
+ 2A 4

√

2

λ
.

The proof for other branches is analogous.

Several first branches of the spectrum to the problem (16), (18) for different γ

values and b = 1, |α| = 1 are depicted in Figure 3, the dashed curve is the spectrum

for the problem with Dirichlet conditions, the positive and the negative branches of

the spectrum for the problem (16), (18) are indicated.
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Figure 3. The spectrum of the problem (16), (18) for different values

of γ, b = 1, |α| = 1.
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[10] N. Sergejeva. On the unusual Fuč́ık spectrum, Discrete and Continuous Dynamical Systems,

Supplement Volume 2007. Dedicated to the 6th AIMS Conference, Poitiers, France (2007),

920–926.

[11] N. Sergejeva. On nonlinear spectra for some nonlocal boundary value problems. Math. Mod-

elling and Analysis, 13 (2008), 1, 87–98

[12] N. Sergejeva. On some problems with nonlocal integral condition. Math. Modelling and Anal-

ysis, 15 (2010), 1, 113–126

[13] E. T. Whittaker and G.N. Watson. A Course of Modern Analysis, Part II. Cambridge Univ.

Press, 1927.


