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ABSTRACT. Let X be a real Banach space and Φ ∈ C1(X,R) a function with a mountain

pass geometry. This ensures the existence of a Palais-Smale, and even a Cerami, sequence {un} of

approximate critical points for the mountain pass level. We obtain information about the location

of such a sequence by estimating the distance of un from S for certain types of set S as n →
∞. Under our hypotheses we can find a Palais-Smale sequence for the mountain pass level with

d(un, S) → 0, but in general there is no Cerami sequence with this property and our result yields

d(un, S)/(1 + ‖un‖) → 0. Our results extend to Cerami sequences the earlier work on localization

of Palais-Smale sequences due to Kuzin-Pohozaev and Ghoussoub-Preiss.

AMS (MOS) Subject Classification. 58E05, 46T05.

1. INTRODUCTION

Let (X, ‖ · ‖) be a real Banach space and Φ ∈ C1(X,R). The search for critical

points of Φ at a given level c ∈ R is often split into two steps. First, one finds a

sequence {un} of approximate critical points for the level c and then one shows that

this sequence has a convergent subsequence. Since the seminal work by Ambrosetti

and Rabinowitz, [2], it is well-known that the so called mountain pass geometry

provides a particularly useful setting in which the first step can be accomplished.

The second step usually involves a compactness property of Φ such as the Palais-

Smale condition, [21]. Of course, for this {un} has to have a bounded subsequence

but, in infinite dimensions, this is not sufficient and other features of Φ come into

play. In trying to establish either of these properties it may be useful to have some

information about the location of the sequence {un} and this paper provides some

results in this direction. To be more precise, let us recall some basic terminology.

A Palais-Smale sequence of approximate critical points of Φ for the level c ∈ R
is a sequence {un} ⊂ X such that Φ(un) → c and ‖Φ′(un)‖∗ → 0 where ‖ · ‖∗ is the

norm on the dual space X∗.
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To deal better with the issue of boundedness, Cerami [4, 5] introduced the fol-

lowing more restrictive notion and its usefulness is now well-established, [6, 20, 10,

25, 23, 22, 24] for example.

A Cerami sequence of approximate critical points of Φ for the level c ∈ R is a

sequence {un} ⊂ X such that Φ(un)→ c and (1+‖un‖)‖Φ′(un)‖∗ → 0. Every Cerami

sequence is a (PS) sequence, but the extra requirement that ‖un‖‖Φ′(un)‖∗ → 0 has

proved to be useful when trying to show that there is a bounded subsequence. In

particular, it implies that |Φ′(un)un| → 0.

The functional Φ is said to have a strong form of the mountain pass geometry

when (SMPG) there exist e ∈ X\{0} and r ∈ (0, ‖e‖) such that

max{Φ(0),Φ(e)} < inf
‖u‖=r

Φ(u).

Supposing that (SMPG) holds, the corresponding mountain pass critical level c is

defined by

c = inf
f∈Γ

max
t∈[0,1]

Φ(f(t)) where Γ = {f ∈ C([0, 1], X) : f(0) = 0 and f(1) = e}.

The following result is well-known and has many interesting applications.

Mountain Pass Lemma If Φ ∈ C1(X,R) and satisfies (SMPG), then there exists a

Cerami sequence {un} for the mountain pass level.

The mountain pass theorem is obtained by adding the hypothesis that Φ satisfies

the compactness condition: every Cerami sequence for the mountain pass level c

contains a convergent subsequence. This yields an element u ∈ X with Φ(u) = c and

∇Φ(u) = 0. (In the original version, this hypothesis was replaced by the stronger

assumption that every Palais-Smale sequence for the level c contains a convergent

subsequence.) The mountain pass theorem has become a corner stone of nonlinear

analysis with many important applications, particularly in the field of elliptic partial

differential equations, [1, 13, 19, 21, 26] for example.

As its title suggests, this paper focusses on trying to provide information about

the position of the elements of the sequence given by the mountain pass lemma.

This can be useful in proving that a convergent subsequence exists and, when this

does occur, we have information about where the resulting critical point is located.

Historically, this seems to have been approached in two ways which now summarize

and relate to the main result of this paper, Theorem 1.1.

1.1 Sequences near almost optimal paths. When (SMPG) holds, a sequence

{fn} ⊂ Γ such that maxt∈[0,1] Φ(fn(t))→ c = inff∈Γ maxt∈[0,1] Φ(f(t)) is called an op-

timal sequence of paths. In this case, Kuzin and Pohozaev ([17], Theorem E.5)1 have

shown that there exists a (PS) sequence, {un}, for the level c such that d(un, fn([0, 1])→
1See the note added in proof.
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0 as n→∞. Of course, if S is a set containing an optimal sequence of paths (in the

sense that fn([0, 1]) ⊂ S for all n ∈ N) this yields a (PS) sequence {un} for the level

c such that d(un, S)→ 0.

Since (SMPG) implies the existence of a Cerami sequence at level c, one might

expect to find a Cerami sequence satisfying d(un, fn([0, 1])→ 0, too. However this is

not the case. Indeed in Section 2 we give an example of a function Φ ∈ C∞(R3,R)

which satisfies (SMPG) and a set S containing an optimal sequence of paths such that

d(un, S)→∞ for every Cerami sequence for the mountain pass level c. Nonetheless

some information about the location of a Cerami sequence can still be obtained. In

Corollary 1.2 we show that, if (SMPG) holds and {fn} is an optimal sequence of paths,

then there exists a Cerami sequence {un} such that d(un, fn([0, 1])/(1 + ‖un‖) → 0

as n → ∞. Although the example in Section 2 shows that it may happen that

d(un, fn([0, 1]) → ∞ for a given choice of optimal sequence fn and every Cerami

sequence for the mountain pass level, Theorem 1.1 shows that there do exist a Cerami

sequence for this level and an optimal sequence of paths {hn} ⊂ Γ such that un ∈
hn([0, 1]) for all n.

In fact, only a weaker form of (SMPG) is required and the full conclusion is that,

for every k ∈ [0, 1], there exists a sequence {ukn}∞n=0 ⊂ X such that

Φ(ukn)→ c, (1 + ‖ukn‖)kΦ′(ukn)→ 0 and
d(ukn, fn([0, 1]))

(1 + ‖ukn‖)k
→ 0 as n→∞. (1.1)

For k = 0 we recover a (PS) sequence of the type found by Kuzin and Pohozaev

and for k = 1 we have a Cerami sequence. If a set S ⊂ X contains an optimal

sequence of paths, then (1.1) implies that, for every k ∈ [0, 1], there exists a sequence

{ukn}∞n=0 ⊂ X such that

Φ(ukn)→ c, (1 + ‖ukn‖)kΦ′(ukn)→ 0 and
d(ukn, S)

(1 + ‖ukn‖)k
→ 0 as n→∞. (1.2)

This trivial observation is useful since, although it may be difficult to find explicitly

an optimal sequence of paths, it may be easy to describe a set containing such a

sequence. For example, if X = H1
0 (Ω) and if Φ satisfies (SMPG) and has the property

that Φ(u) = Φ(|u|) for all u ∈ H1
0 (Ω), then the positive cone S = {u ∈ H1

0 (Ω) : u ≥
0 a.e. in Ω} contains an optimal sequence of paths. See Section 5.

1.2 Sequences near a set separating 0 and e.

In [11], Ghoussoub and Preiss introduced a different way of localizing a (PS)

sequence and, in the spirit of earlier work by Pucci and Serrin, they did not require

(SMPG) but only the following weaker condition. For Φ ∈ C1(X,R) and e ∈ X\{0},
let Γ and c be defined as above. Let W be a closed subset of X such that

(I) {0, e} ∩W ∩ Φc = ∅ and (II) for all f ∈ Γ, f([0, 1]) ∩W ∩ Φc 6= ∅,
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where Φc = {u ∈ X : Φ(u) ≥ c}. In the terminology of Ghoussoub and Preiss,

(I) and (II) mean that W ∩ Φc separates 0 and e in X (i.e. 0 and e belong to

different connected components of X\[W ∩ Φc]) and this does not require (SMPG)

to hold. In Theorem (1) of [11] they proved that (I) and (II) imply the existence of

a (PS) sequence for the level c such that d(un,W )→ 0 as n→∞. Subsequently, in

[8] (Chapter IV.1, Theorem 6), Ekeland showed that, under these conditions, there

exists a Cerami sequence for the level c such that δ(un,W )→ 0 where δ is the metric

on X defined by

δ(u, v) = inf{
∫ 1

0

‖h′(t)‖
1 + ‖h(t)‖

dt : h ∈ C1([0, 1], X) with h(0) = u and h(1) = v}.

(See [7, 10, 13] for further work using other metrics like δ.) In contrast our Theo-

rem 1.1 involves only the usual metric d associated with the norm of X and yields a

Cerami sequence for the level c such that d(un,W )/(1 + ‖un‖)→ 0 as n→∞. How-

ever, when W is unbounded, which as we observe below is the situation where our

results seem new, the relation between our conclusion that d(un,W )/(1 + ‖un‖)→ 0

and statements involving other metrics such as δ(un,W ) → 0 needs to be clarified

and we hope to return to this.2

Under the assumptions (I) and (II), we also we have the more general conclusion

that, for every k ∈ [0, 1], there exists a sequence {ukn}∞n=0 ⊂ X such that

Φ(ukn)→ c, (1 + ‖ukn‖)kΦ′(ukn)→ 0 and
d(ukn,W )

(1 + ‖ukn‖)k
→ 0 as n→∞. (1.3)

For k = 0 we recover the original result of Ghoussoub and Preiss concerning the

existence of a (PS) sequence approaching W . Localization of a (PS) sequence has also

been established by Willem in a rather general setting. See, for example, Theorem

2.20 in his book [26].

1.3 The main result. Having outlined the context for our work and mentioned some

special cases, we now state the main result. By treating both an optimal sequence

and an appropriate set W it covers both of the situations presented above in Sections

1.1 and 1.2. For the case of (PS) sequences, this kind of formulation appears in

Theorem 3.1 of [9], for example.

For d ∈ R, recall that Φd = {u ∈ X : Φ(u) ≥ d}.

Theorem 1.1. Let Φ ∈ C1(X,R) and e ∈ X\{0}. Set

Γ = {f ∈ C([0, 1], X) : f(0) = 0 and f(1) = e} and c = inff∈Γ maxt∈[0,1] Φ(f(t)).

Let {fn} be an optimal sequence of paths: Mn = maxt∈[0,1] Φ(fn(t))→ c.

Let W be a closed subset of X such that

(I) {0, e} ∩W ∩ Φc = ∅ and (II) for all f ∈ Γ, f([0, 1]) ∩W ∩ Φc 6= ∅.
2See the note added in proof.
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Then, for every k ∈ [0, 1], there exists a sequence {ukn} ⊂ X such that

Φ(ukn)→ c, (1 + ‖ukn‖)kΦ′(ukn)→ 0,
d(ukn,W ∩ Φc)

(1 + ‖ukn‖)k
and

d(ukn, fn([0, 1]))

(1 + ‖ukn‖)k
→ 0 as n→∞. (1.4)

Furthermore, if in addition,

(MPG) max{Φ(0),Φ(e)} < c

holds, then for every k ∈ [0, 1], there exists an optimal sequence of paths {hkn} ⊂ Γ

such that ukn ∈ hkn([0, 1]) for all n.

Remark 1.1 If any of these sequences has a convergent subsequence we obtain a

critical point u of Φ with Φ(u) = c and u ∈ W ∩ S where S is any subset of X

containing an optimal sequence of paths.

Note that if there exists f ∈ Γ such that maxt∈[0,1] Φ(f(t)) = c, then fn = f for

all n ∈ N is an optimal sequence of paths and by (1.4), d(u0
n, f([0, 1])) → 0. Since

f([0, 1]) is compact, it follows easily that {u0
n} has a subsequence converging to an

element u ∈ f([0, 1]). Hence, in this case, Φ has a critical point on the optimal path

f .

Remark 1.2 The conditions (I) and (II) are much weaker than (SMPG). Indeed,

taking W = X, the definition of c implies that (II) holds and so (I) and (II) are

satisfied if and only if (MPG) holds.

Clearly (SMPG) implies that c ≥ inf‖u‖=r Φ(u) and hence that (MPG) holds.

However when dim X < ∞, (SMPG) implies that the ball {u ∈ X : ‖u‖ < r}
contains a local minimum of Φ whereas (MPG) imposes no such restriction as is

shown by the example Φ(x, y) = x2 − (y − 1)2 with e = (0, 2) and c = 0.

By the definition of c we always have max{Φ(0),Φ(e)} ≤ c. It is easy to find

examples where (MPG) fails but (I) and (II) are still satisfied for an appropriate

subset W if X, see [18]. A function which is constant on X provides the most trivial

example.

Remark 1.3 For any set S containing ∪fn([0, 1]) for an optimal sequence {fn}, (1.4)

implies that (1.2) holds. Now suppose that at least one of the following conditions is

satisfied.

(i) There is bounded set S containing ∪fn([0, 1]) for an optimal sequence of paths.

(ii) The set W ∩ Φc is bounded.

Then the Palais-Smale sequence {u0
n} given by (1.4) is bounded and so it has “a

fortiori” all the requirements for k ∈ (0, 1] as well. Conversely, if ‖un‖ → ∞, then

d(un, S)/(1+‖un‖)→ 1 when (i) holds and d(un,W )/(1+‖un‖)→ 1 when (ii) holds.

Hence the Cerami sequence {u1
n} given by (1.4) must be bounded and so it has also all
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the requirements for k ∈ [0, 1). Thus we see that, with respect to the earlier work of

Kuzin-Pohozaev and Ghoussoub-Preiss, the novelty of Theorem 1.1 lies in situations

where W is unbounded and no “a priori ”bound for a sequence of optimal paths is

available.

Remark 1.4 In the case where fn([0, 1]) ⊂ S for all n ∈ N and S = tS for all t > 0,

the information that d(un,S)
1+‖un‖ → 0 can be exploited in the following way. Let T > 0 be

fixed and set zn = tnun where tn = T/‖un‖. Then, for un 6= 0,

d(un, S) = inf
v∈S
‖un − v‖ =

1

tn
inf
v∈S
‖zn − tnv‖ =

1

tn
inf

z∈tnS=S
‖zn − z‖ =

‖un‖
T

d(zn, S).

Suppose that, for a subsequence, ‖un‖ → ∞. Then

d(zn, S) =
T (1 + ‖un‖)
‖un‖

d(un, S)

1 + ‖un‖
→ 0.

If in addition, X is reflexive and S is a cone (i.e. a closed convex subset of X

such that tS = S for all t > 0), we can go further by passing to a subsequence such

that zn ⇀ z weakly in X. Since d(zn, S) → 0, there exist sn ∈ S and rn ∈ X such

that zn = sn + rn and ‖rn‖ → 0. This implies that sn ⇀ z and, since S is closed

and convex, we conclude that z ∈ S. This information, together with the property

that (1 + ‖un‖)‖Φ′(un)‖∗ → 0, may lead to a contradiction and hence establish the

boundedness of {un}. See [24] for an example of this procedure using the cone S of

positive elements in the space H1(RN) as discussed in Section 5. Indeed the original

motivation for the present work was to prove the following corollary to Theorem 1.1

which was used in [24].

Corollary 1.2. Let Φ ∈ C1(X,R) satisfy (MPG) and let {fn} be an optimal sequence

of paths: Mn = maxt∈[0,1] Φ(fn(t))→ c where c is the mountain pass level.

Then, for every k ∈ [0, 1], there exists a sequence {ukn}∞n=0 ⊂ X such that

Φ(ukn)→ c, (1 + ‖ukn‖)kΦ′(ukn)→ 0 and
d(ukn, fn([0, 1]))

(1 + ‖ukn‖)k
→ 0

as n→∞.

Hence, if S is a subset of X such that fn([0, 1]) ⊂ S for all n, then {ukn} satisfies

(1.2).

Proof In Remark 1.2 we have already observed that when (MPG) holds the hypothe-

ses of Theorem 1.1 are satisfied for the set W = X. �

The proof of Theorem 1.1 is given in Section 4. It is based on a deformation

lemma which is proved in Section 3, using the approach found in [3], but adapting it

so as to incorporate information about the factor (1 + ‖u‖)k.
As has been already mentioned, this work was stimulated by the need to overcome

difficulties in proving that a Cerami sequence is bounded during the preparation of
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[24]. Of course, localization is not the only way of overcoming such obstacles, notably

Jeanjean’s elaboration [14] of Struwe’s monotonicity trick has proved remarkably

successful. See [15] for an early example of this and [16] for ramifications.

2. EXAMPLES

Our main aim here is to show that, contrary to what one might expect, the

hypotheses of Corollary 1.2 (and hence the more general Theorem 1.1) do not ensure

the existence of a Cerami sequence {un} for the level c with d(un, S) → 0 for a set

S which contains an optimal sequence of paths. In fact, we construct and example

where X = R3 and d(un, S)→∞ for all Cerami sequences for this level. The starting

point is a well-known example due to Brézis and Nirenberg of a function on R2 which

does not satisfy the Palais-Smale condition at level c.

2.1 Cerami sequences for the B-N example. In [3], Brézis and Nirenberg use

the following example to illustrate the failure of the Mountain Pass Theorem in the

absence of the Palais-Smale condition.

Ψ : R2 → R, Ψ(x, y) = x2(1 + y)3 + y2 (2.1)

It is easy to see that Ψ(0, 0) = 0 and that Ψ has a strict local minimum at (0, 0).

Also Ψ(3,−4) < 0 and so Ψ satisfies (SMPG). Let

G = {f ∈ C([0, 1],R2) : f(0) = (0, 0) and f(1) = (3,−4)} (2.2)

and

c = inf
f∈G

max
t∈[0,1]

Ψ(f(t)). (2.3)

A study of the level sets of Ψ shows that c = 1. From the Mountain Pass Lemma

(or Corollary 1.2 with X = S = R2 and k = 1) it follows that there exists a Cerami

sequence {(xn, yn)}:

Ψ(xn, yn)→ 1 and (1 + ‖(xn, yn)‖)‖∇Ψ(xn, yn)‖ → 0 as n→∞. (2.4)

However, it is easily checked that (0, 0) is the only critical point of Ψ. This implies

that ‖(xn, yn)‖ → ∞ for every sequence having the properties (2.4), showing that Ψ

does not satisfy the Palais-Smale condition at level c = 1. Of course, one can find a

sequence satisfying (2.4) by elementary calculations. Here is an example, which we

shall use later,

(xn, yn) = (n

√
2

3
(1− 1

n
),−1 +

1

n
).

Clearly Ψ(xn, yn)→ 1 and

∂xΨ(xn, yn) = 2xn(1 + yn)3 =
2

n2

√
2

3
(1− 1

n
) whereas ∂yΨ(xn, yn) = 0.
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Hence ‖(xn, yn)‖/n →
√

2
3

and n2‖∇Ψ(xn, yn)‖ → 2
√

2
3

from which it follows that

‖(xn, yn)‖‖∇Ψ(xn, yn)‖ → 0.

2.2 An example where d(un, S)→∞ for every Cerami sequence.

We begin by defining a function Φ : R3 → R which satisfies the hypotheses of

Corollary 1.2 with S = R2 × {0}. This definition requires the introduction of some

auxiliary functions:

• ϕ ∈ C∞([0,∞)) with ϕ(r) = 1 for 0 ≤ r ≤ 1/2, ϕ(r) = 0 for r ≥ 1 and ϕ′(r) < 0

for r ∈ (1/2, 1)

• ψ ∈ C∞([0,∞)) with ψ(r) = 0 for 0 ≤ r ≤ 8, ψ(r) = 1 for r ≥ 9 and ψ′(r) > 0

for r ∈ (8, 9)

• g ∈ C∞(R) with g(−z) = −g(z) and g′(z) > 0 for all z and limz→∞ g(z) = 1.

Now define Φ by

Φ(x, y, z) = Ψ(x, y) + ϕ(r)z2 + ψ(r)g(z)(1 + y){x(1 + y) + 2} (2.5)

where Ψ is given by (2.1) and r =
√
x2 + y2.

Clearly Φ ∈ C∞(R3) and Φ(x, y, 0) = Ψ(x, y) since g(0) = 0. Hence Φ(0, 0, 0) = 0

and Φ(3,−4, 0) < 0.

Furthermore, Φ has the following properties.

(A) (0, 0, 0) is the only critical point of Φ and it is a strict local minimum.

(B) If (1 + ‖(xn, yn, zn)‖)‖∇Φ(xn, yn, zn)‖ → 0 and {zn} is bounded, then

(xn, yn, zn)→ (0, 0, 0) and Φ(xn, yn, zn)→ 0.

(C) The function Φ satisfies the hypotheses of Corollary 1.2 with e =

(3,−4, 0) and c = 1. The set S = R2 × {0} contains an optimal sequence of

paths and there is a (PS) sequence for the level c = 1 with d(un, S)→ 0, but

d(un, S)→∞ for any Cerami sequence for the level c = 1.

By (C), there exists a Cerami sequence {u1
n = (x1

n, y
1
n, z

1
n)} for the level c = 1

such that d(u1
n, S)/(1 + ‖u1

n‖) → 0. Since Φ(u1
n) → 1, it follows from (B) that

|z1
n| = d(u1

n, S) → ∞ and the property d(u1
n, S)/(1 + ‖u1

n‖) → 0 is equivalent to

z1
n/r

1
n → 0 where r1

n =
√

(x1
n)2 + (y1

n)2.

Note that (B) implies that |zn| → ∞ if (xn, yn, zn) is a Cerami sequence for any

level d 6= 0.

Checking (A): For r < 1/2, y > −1/2 and so

Φ(x, y, z) = x2(1 + y)3 + y2 + z2 >
1

8
x2 + y2 + z2,

showing that Φ has a strict local minimum at (0, 0, 0).
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Suppose now that ∇Φ(x, y, z) = (0, 0, 0). If z = 0, this implies that ∇Ψ(x, y) =

(0, 0) and hence (x, y) = (0, 0). Suppose henceforth that z 6= 0. Concerning r, there

are three cases:

(a) r < 1, (b) 1 ≤ r ≤ 8, (c) r > 8.

(a) Since ψ(r) = 0, ∂zΦ(x, y, z) = 2ϕ(r)z where ϕ(r) > 0 and z 6= 0. Hence

∂zΦ(x, y, z) 6= 0, contradicting ∇Φ(x, y, z) = (0, 0, 0).

(b) We have ϕ(r) = ϕ′(r) = ψ(r) = ψ′(r) = 0 and so 0 = ∂xΦ(x, y, z) = ∂xΨ(x, y)

and 0 = ∂yΦ(x, y, z) = ∂yΨ(x, y). Hence ∇Ψ(x, y) = (0, 0), which implies r = 0, a

contradiction.

(c) Now ϕ(r) = 0 and 0 = ∂zΦ(x, y, z) = ψ(r)g′(z)(1 + y){x(1 + y) + 2}, where

ψ(r) 6= 0 and g′(z) 6= 0. Hence, either y = −1 or x = −2/(1 + y).

If y = −1, we find that ∂yΦ(x, y, z) = ∂yΨ(x,−1)+2g(z)ψ(r) = −2+2g(z)ψ(r) <

0 since 0 < ψ(r) ≤ 1 and g(z) < 1, contradicting∇Φ(x, y, z) = (0, 0, 0). Hence 1+y 6=
0 and x = −2/(1+y). But, in this case, ∂xΦ(x, y, z) = 2x(1+y)3 +ψ(r)g(z)(1+y)2 =

(1 + y)2{−4 + ψ(r)g(z)} < 0 again since 0 < ψ(r) ≤ 1 and g(z) < 1. Thus we have a

contradiction and there are no critical points with z 6= 0.

Checking (B): Suppose that (1 + ‖(xn, yn, zn)‖)‖∇Φ(xn, yn, zn)‖ → 0 and that

{zn} is bounded. Suppose that there exist δ > 0 and a subsequence {(xnk
, ynk

, znk
)}

such that ‖(xnk
, ynk

, znk
)‖ ≥ δ for all nk. By passing to a further subsequence, we can

suppose that znk
→ z and either (a) (xnk

, ynk
) → (x, y) ∈ R2 or (b) rnk

→ ∞ where

rnk
=
√
x2
nk

+ y2
nk

.

Case (a) We have that (1 + ‖(x, y, z)‖)‖∇Φ(x, y, z)‖ = 0 and so (x, y, z) = (0, 0, 0)

by property (A). But we also have ‖(x, y, z)‖ ≥ δ, a contradiction.

Case (b) We may suppose that rnk
> 9 for all nk. Then

∂yΦ(uk) = 3w2
k + 2ynk

+ g(znk
)2[wk + 1] and ∂zΦ(uk) = g′(znk

)(1 + ynk
)[wk + 2]

where we have set uk = (xnk
, ynk

, znk
) and xnk

(1 + ynk
) = wk for convenience. Since

xnk
∂zΦ(uk) → 0 and g′(znk

) → g′(z) 6= 0, we must have wk[wk + 2] → 0 and hence

wk → w∞, where w∞ = 0 or −2. But we also have that ∂yΦ(uk) → 0 from which it

follows that

ynk
→ y∞ = −1

2
{3w2

∞ + g(z)2[w∞ + 1]}.

For w∞ = 0, this yields y∞ = −g(z) > −1 and so xnk
= wk/(1 + ynk

) → 0. Hence

rnk
→ |g(z)| < 1, a contradiction.

For w∞ = −2, y∞ = g(z) − 6 ∈ (−7,−5) and so xnk
→ −2/(1 + y∞), again

contradicting the fact that rnk
→∞. Hence case (b) cannot occur either and we have

established (B).

Checking (C): Let

Γ = {h ∈ C([0, 1],R3) : h(0) = (0, 0, 0) and h(1) = (3,−4, 0)}
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and observe that, for all f ∈ G as defined by (2.2), h = (f1, f2, 0) ∈ Γ. It follows that

inf
h∈Γ

max
t∈[0,1]

Φ(h(t)) ≤ inf
f∈G

max
t∈[0,1]

Φ(f1(t), f2(t), 0) = inf
f∈G

max
t∈[0,1]

Ψ(f(t)) = 1.

On the other hand, Φ(x,−1, z) = Ψ(x,−1) = 1 for all x, z ∈ R and, for all h ∈ Γ,

there exists a t ∈ [0, 1] such that h2(t) = −1 since h2 ∈ C([0, 1]) with h2(0) = 0 and

h2(1) = −4. Hence, for all h ∈ Γ, maxt∈[0,1] Φ(h(t)) ≥ 1, so in fact,

c = inf
h∈Γ

max
t∈[0,1]

Φ(h(t)) = 1.

Clearly 0 = Φ(0, 0, 0) > Φ(e) = Ψ(3,−4) so by (A) we see that Φ satisfies

(SMPG) and hence (MPG). Furthermore, if {fn} is an optimal sequence of paths for

Ψ and G, then {hn = (f 1
n, f

2
n, 0)} is an optimal sequence of paths for Φ and Γ, showing

that S contains an optimal sequence. By Corollary 1.2, Φ has a (PS) sequence {u0
n}

for the level c = 1 such that d(u0
n, S) → 0. In fact, we give an example below where

we even have u0
n ∈ S for all n. However, it follows from (B) that d(un, S) → ∞ for

any Cerami sequence for the level c = 1.

Examples of sequences

For the cases 0 ≤ k < 1 in (1.2), we can even obtain ukn ∈ S since we can use

ukn = (xkn, y
k
n, z

k
n) = (n

√
2

3
(1− 1

n
),−1 +

1

n
, 0).

Indeed, we have already noted in Section 2.1 that for this sequence,

‖ukn‖/n = ‖(xkn, ykn)‖/n→
√

2

3
and Φ(ukn) = Ψ(xkn, y

k
n)→ 1 as n→∞.

Furthermore, ∂xΦ(ukn) = ∂xΨ(xkn, y
k
n) and ∂yΦ(ukn) = ∂yΨ(xkn, y

k
n) so

(1 + ‖ukn‖)‖(∂xΦ(ukn), ∂yΦ(ukn))‖ = (1 + ‖(xkn, ykn)‖)‖∇Ψ(xkn, y
k
n)‖ → 0

since {(xkn, ykn)} is a Cerami sequence for Ψ. Clearly d(ukn, S) = 0 so it only remains

to study ∂zΦ(ukn) as n→∞. Since ‖(xkn, ykn)‖ → ∞ we have that, for n large,

∂zΦ(ukn) = g′(0)(1 + ykn){xkn(1 + ykn) + 2} =
g′(0)

n
{
√

2

3
(1− 1

n
) + 2}

and

(1 + ‖ukn‖)k∂zΦ(ukn)→ 0 since ‖ukn‖/n→
√

2/3 and 0 ≤ k < 1.

Hence we see that, for 0 ≤ k < 1, the sequence {(n
√

2
3
(1− 1

n
),−1 + 1

n
, 0)} has

all the properties required for (1.2). But it is not as Cerami sequence for Φ since

‖ukn‖∂zΦ(ukn)→ g′(0)
√

2
3
{
√

2
3

+ 2} 6= 0 and consequently it does not satisfy (1.2) for

k = 1.

To write down a suitable Cerami sequence, we need more precise information

about the asymptotic behaviour of g, so we make the additional assumption that

for some α > 1 and z0 > 0, g(z) = 1− z−α for all z > z0.
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Now setting un = (n,−1− 2
3n
, (n

2
)1/α), we find that,

Φ(un)→ 1, ‖un‖/n→ 1, n2‖∇Φ(un)‖ → 16/27 and d(un, S) = (
n

2
)1/α.

Hence this sequence has all the properties required by (1.2) for any k ∈ ( 1
α
, 1].

3. A DEFORMATION LEMMA

We shall use the following well-known and elementary results from the theory of

differential equations.

Lemma 3.1 (Gronwall). Suppose that a ∈ R and b, h ∈ C([0,∞)) satisfy the inequal-

ities

b(t) ≥ 0 and h(t) ≤ a+

∫ t

0

b(s)h(s)ds for all t ≥ 0.

Then h(t) ≤ ae
∫ t
0 b(s)ds for all t ≥ 0.

Proposition 3.2. Let f : X → X be locally Lipschitz continuous and suppose that

there exists a constant A such that

‖f(u)‖ ≤ A(1 + ‖u‖) for all u ∈ X. (3.1)

Then, for every u0 ∈ X, the initial value problem{
u′(t) = f(u(t)) for t > 0

u(0) = u0

has a unique solution η(·, u0) ∈ C1([0,∞), X). Furthermore,

1. η ∈ C([0,∞)×X,X),

2. η(t, ·) : X → X is a homeomorphism for all t ≥ 0,

3. η(t, η(s, u)) = η(t+ s, u) for all t, s ≥ 0 and u ∈ X.

The main result of this section is an appropriate version of what is usually referred

to as a deformation lemma. We begin by recalling the definition and existence of a

pseudo-gradient, [26].

Let F ∈ C1(X,R) and let Ω = {u ∈ X : F ′(u) 6= 0}. There is a locally Lipschitz

continuous function p : Ω→ X such that, for every u ∈ Ω,

‖p(u)‖ ≤ 2‖F ′(u)‖∗ and 〈F ′(u), p(u)〉 ≥ ‖F ′(u)‖2
∗.

Such a mapping p is called a pseudo-gradient for F . Note that ‖p(u)‖ ≥ ‖F ′(u)‖∗ for

all u ∈ Ω.

We now sharpen the deformation lemma proved in [3] in various ways required

for the proof of Theorem 1.1.
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Theorem 3.3. Let F ∈ C1(X,R), c ∈ R, k ∈ [0, 1] and δ > 0.

Set N = {u ∈ X : |F (u)− c| < 2δ and (1 + ‖u‖)k‖F ′(u)‖∗ >
√
δ}.

There exists η : [0,∞)×X → X such that

(d1): η ∈ C([0,∞)×X,X) and

η(t, ·) : X → X is a homeomorphism for all t ≥ 0.

(d2): η(0, u) = u and η(t− s, η(s, u)) = η(t, u) for all u ∈ X and t ≥ s ≥ 0.

(d3): η(t, u) = u for all t ≥ 0 if u 6∈ N .

(d4): F (η(t, u)) ≤ F (η(s, u)) ≤ F (u) for all t ≥ s ≥ 0 and u ∈ X.

(d5): F (u)− F (η(t, u)) ≤ 4δ for all t ≥ 0 and u ∈ X.

(d6): ‖η(t, u)− η(s, u)‖ ≤ 16
√
δe16k

√
δ(1 + ‖η(s, u)‖)k for all t ≥ s ≥ 0 and u ∈ X

(d7): ‖η(t, u)− η(s, u)‖ ≤ 32
√
δe16k

√
δ(1 + ‖η(t, u)‖)k for all t ≥ s ≥ 0 and u ∈ X

provided that 16
√
δe16k

√
δ ≤ 1

2
.

(d8): Suppose that F (u) < c + δ. Then, for all t ≥ 8δ, either F (η(t, u)) ≤ c − δ
or there exists τ ∈ [0, t] such that (1 + ‖η(τ, u)‖)k‖F ′(η(τ, u))‖∗ < 2

√
δ.

Proof Let M = {u ∈ X : |F (u)− c| ≤ δ and (1 + ‖u‖)k‖F ′(u)‖∗ ≥ 2
√
δ}. We have

M ⊂ N , M and N c = X\N are closed, M ∩N c = ∅. Set

ψ(u) =
d(u,N c)

d(u,M) + d(u,N c)

Then ψ : X → [0, 1] is locally Lipschitz continuous with ψ(u) =

1 for u ∈M

0 for u ∈ N c.

Let p : Ω = {u ∈ X : F ′(u) 6= 0} → X by a pseudo-gradient field for F .

Noting that N ⊂ Ω, we define f : X → X by f(u) =

−
ψ(u)p(u)
‖p(u)‖2 for u ∈ N

0 for u 6∈ N.
Then f : X → X is locally Lipschitz continuous and, for u ∈ N ,

‖f(u)‖ ≤ 1
‖p(u)‖ ≤

1
‖F ′(u)‖∗ ≤

(1+‖u‖)k√
δ

.

Since f(u) = 0 on N c, we have that ‖f(u)‖ ≤ (1+‖u‖)k√
δ
≤ 1√

δ
(1 + ‖u‖) for all

u ∈ X.

Let η(t, u) be the flow defined by the unique solution of initial value problem

η′(t) = f(η(t)) for t > 0, η(0) = u.
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By Theorem 3.2, η ∈ C([0,∞)×X,X) and (d1),(d2) and (d3) are satisfied. Also, for

t > 0 and η = η(t, u),

d

dt
F (η) = 〈F ′(η), f(η)〉 =

−
〈F ′(η),ψ(η)p(η)〉
‖p(η)‖2 for η ∈ N

0 for η 6∈ N

≤

−ψ(η)‖F
′(η)‖2∗
‖p(η)‖2 for η ∈ N

0 for η 6∈ N
≤

−1
4
ψ(η) for η ∈ N

0 for η 6∈ N
= −1

4
ψ(η) ≤ 0,

proving (d4) and showing that

F (u)− F (η(t, u)) ≥ 1

4

∫ t

0

ψ(η(s, u))ds for all t ≥ 0 and u ∈ X. (3.2)

By (d3), (d5) is trivial for u 6∈ N . Considering u ∈ N , we have F (u) − c < 2δ

and hence F (u) − F (η(t, u)) < c + 2δ − F (η(t, u)) ≤ 4δ if F (η(t, u)) ≥ c − 2δ. But

F (η(0, u)) = F (u) > c − 2δ since u ∈ N and so, if F (η(t, u)) < c − 2δ, there exists

s ∈ (0, t) such that F (η(s, u)) = c − 2δ and we have F (u) − F (η(s, u)) ≤ 4δ. Since

η(s, u) 6∈ N , η(t, u) = η(t − s, η(s, u)) = η(s, u) for all t ≥ s ≥ 0 by (d2) and (d3).

Thus F (u)− F (η(t, u)) = F (u)− F (η(s, u)) ≤ 4δ in this case too. This proves (d5).

Combining (3.2) and (d5) we get∫ t

0

ψ(η(s, u))ds ≤ 16δ for all t ≥ 0 and u ∈ X. (3.3)

To prove (d6) we consider t > 0 and u ∈ X. Let A(t, u) = (0, t) ∩ {s : η(s, u) ∈
N}. Then

‖η(t, u)− u‖ ≤
∫ t

0

‖ d
ds
η(s, u)‖ds =

∫ t

0

‖f(η(s, u))‖ds

≤
∫
A(t,u)

‖f(η(s, u))‖ds =

∫
A(t,u)

ψ(η(s, u))

‖p(η(s, u))‖
ds ≤

∫
A(t,u)

ψ(η(s, u))

‖F ′(η(s, u))‖∗
ds

≤
∫
A(t,u)

ψ(η(s, u))
(1 + ‖η(s, u)‖)k√

δ
ds ≤

∫ t

0

ψ(η(s, u))
(1 + ‖η(s, u)‖)k√

δ
ds (3.4)

Hence

1 + ‖η(t, u)‖ ≤ 1 + ‖u‖+ ‖η(t, u)− u‖

≤ 1 + ‖u‖+
1√
δ

∫ t

0

ψ(η(s, u))(1 + ‖η(s, u)‖)ds

since k ≥ 0 and this can be written as h(t) ≤ a(t) +
∫ t

0
b(s)h(s)ds where

h(t) = ‖1 + η(t, u)‖, a(t) = 1 + ‖u‖, b(t) =
ψ(η(t, u))√

δ
.

The Gronwall inequality yields

1 + ‖η(t, u)‖ ≤ (1 + ‖u‖)e
∫ t
0 b(s)ds
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where
∫ t

0
b(s)ds ≤ 16

√
δ by (3.3).

Hence ‖1 + η(t, u)‖ ≤ (1 + ‖u‖)e16
√
δ for all t ≥ 0 and u ∈ X and consequently

(3.4) yields

‖η(t, u)− u‖ ≤
∫ t

0

ψ(η(s, u))
(1 + ‖u‖)ke16k

√
δ

√
δ

ds.

Using (3.3) we now have that

‖η(t, u)− u‖ ≤ (1 + ‖u‖)ke16k
√
δ

√
δ

∫ t

0

ψ(η(s, u))ds ≤ 16
√
δe16k

√
δ(1 + ‖u‖)k

for all t ≥ 0 and u ∈ X, proving (d6) for s = 0. We get the complete conclusion with

s 6= 0 by using (2).

To deduce (d7) from (d6), we observe that, for all v, w ∈ X and for k ∈ [0, 1],(
1 + ‖v‖
1 + ‖w‖

)k
≤
(

1 +
‖w − v‖
1 + ‖w‖

)k
≤ 1 +

‖w − v‖
1 + ‖w‖

≤ 1 +
‖w − v‖

(1 + ‖w‖)k
.

Returning to (d6) and putting v = η(s, u) and w = η(t, u), we obtain

‖η(t, u)− η(s, u)‖
(1 + ‖η(t, u)‖)k

≤ 16
√
δe16k

√
δ

(
1 + ‖η(s, u)‖
1 + ‖η(t, u)‖

)k
≤ 16

√
δe16k

√
δ{1 +

‖η(t, u)− η(s, u)‖
(1 + ‖η(t, u)‖)k

},

from which (d7) follows easily.

For (d8), we consider t ≥ 8δ and u such that F (u) < c + δ. Suppose that

F (η(t, u)) > c − δ. By (d4), this implies that c − δ < F (η(s, u)) ≤ F (u) < c + δ for

all s ∈ [0, t]. If (1 + ‖η(s, u)‖)k‖F ′(η(s, u))‖∗ ≥ 2
√
δ for all s ∈ [0, t], we have that

η(s, u) ∈M for all s ∈ [0, t] and so, by (3.2) and the definition of ψ,

F (u)− F (η(t, u)) ≥ 1

4

∫ t

0

ds =
t

4
.

Hence c− δ < F (η(t, u)) ≤ F (u)− t
4
< c+ δ − t

4
and so 8δ > t. �

4. THE PROOF OF THEOREM 1.1

In addition to Theorem 3.3 the following simple lemma will be used.

Lemma 4.1. Let S be a closed subset of X. For some k ∈ [0, 1] and ε > 0, let

Sε = {v ∈ X :
‖v − u‖

(1 + ‖u‖)k
≤ ε for some u ∈ S}.

(i) If w 6∈ S, then w 6∈ Sε for ε < min{1
2
, d(w,S)

[2(1+‖w‖)]k }.

(ii) For all w ∈ X, d(w, Sε) + d(w,X\S2ε) > 0.
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Proof (i) For u ∈ S with ‖u‖ ≤ 2‖w‖+ 1, ‖w−u‖
(1+‖u‖)k ≥

d(w,S)
(2+2‖w‖)k .

whereas for u ∈ S with ‖u‖ ≥ 2‖w‖+ 1,

‖w−u‖
(1+‖u‖)k ≥

‖u‖−‖w‖
(1+‖u‖)k ≥

1
2
(1 + ‖u‖)1−k ≥ 1

2
.

(ii) Suppose that d(w, Sε) = 0. Then there exists {vn} ⊂ Sε such that ‖w−vn‖ →
0. But, for each n, there exists un ∈ S such that ‖vn−un‖

(1+‖un‖)k ≤ ε and so

‖w − un‖
(1 + ‖un‖)k

≤ ‖vn − un‖+ ‖w − vn‖
(1 + ‖un‖)k

≤ ε+ ‖w − vn‖.

For any δ > ε, we can choose n such that ε+ ‖w − vn‖ < δ, showing that w ∈ Sδ for

all δ > ε.

On the other hand, if d(w,X\S2ε) = 0, there exists a sequence {zn} such that

‖w − zn‖ → 0 and ‖zn−u‖
(1+‖u‖)k > 2ε for all u ∈ S. Hence, for all u ∈ S,

‖w − u‖
(1 + ‖u‖)k

≥ ‖u− zn‖ − ‖w − zn‖
(1 + ‖u‖)k

> 2ε− ‖w − zn‖.

For any δ < 2ε, we can choose n such that 2ε− ‖w − zn‖ > δ, showing that w 6∈ Sδ.

If d(w, Sε) = 0 and d(w, S2ε) = 0, we would have w ∈ S 3
2
ε ∩ (X\S 3

2
ε). �

Remark The proof of (ii) shows that Sε ⊂ Sδ for all δ > ε and that X\Sε ⊂ X\Sδ
for all δ < ε.

Proof of Theorem 1.1 Set S = W ∩ Φc.

Choose and fix k ∈ [0, 1]. For δ > 0, let ε(δ) = 32
√
δe16k

√
δ and observe that

ε(δ) is a strictly increasing function of δ with limδ→0 ε(δ) = 0. Since S is closed and

0, e 6∈ S by the hypothesis (I), d(0, S) > 0 and d(e, S) > 0. By Lemma 4.1(i), there

exists δ0 > 0 such that {0, e}∩S2ε(δ) = ∅ for all δ ∈ (0, δ0). By reducing δ0 if necessary,

we can also obtain δ0 < 1/8 and 16
√
δ0e

16k
√
δ0 < 1/2.

Consider δ ∈ (0, δ0). By Lemma 4.1(ii) we can define a function Tδ : X → [0, 1]

by

Tδ(u) =
d(u,X\S2ε(δ))

d(u, Sε(δ)) + d(u,X\S2ε(δ))

and it follows that Tδ is locally Lipschitz continuous with Tδ(u) = 0 for all u 6∈ S2ε(δ)

and Tδ(u) = 1 for all u ∈ Sε(δ).

By (II), Mn ≥ c for all n and, since {fn} is an optimal sequence, there exists

n0 ∈ N such that Mn < c + δ0 for all n ≥ n0. For each n ≥ n0, choose some

δn ∈ (Mn − c, δ0) in such a way that δn → 0 as n → 0. For example, we could use

δn = Mn− c+ 1
n

for all large enough n. Then, to simplify the notation, set T n = Tδn .

Let Nn and ηn be the set and the deformation given by Theorem 3.3 for F = Φ

and these values of c, k and δ = δn where n ≥ n0. Define gn : [0, 1]→ X by

gn(t) = ηn(T n(fn(t)), fn(t)) for t ∈ [0, 1].
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Clearly gn ∈ C([0, 1], X) and, since T n(0) = T n(e) = 0, we have that gn ∈ Γ. Hence

by hypothesis (II), there exists tn ∈ (0, 1) such that gn(tn) ∈ S. Setting wn = fn(tn),

we have that gn(tn) = ηn(T n(wn), wn). By property (d7) of ηn, it follows that

‖gn(tn)− fn(tn)‖
(1 + ‖g(tn)‖)k

=
‖ηn(T n(wn), wn)− wn‖
(1 + ‖ηn(T n(wn), wn)‖)k

≤ 32
√
δne

16k
√
δn

and so wn = fn(tn) ∈ Sε(δn). Thus T n(wn) = 1 and gn(tn) = η(1, wn). But gn(tn) ∈
S ⊂ Φc which implies that

c ≤ Φ(ηn(1, wn)) ≤ Φ(wn) = Φ(fn(tn)) ≤Mn < c+ δn.

Using property (d8) of ηn (with t = 1 and recalling that 0 < δn < δ0 < 1/8), there

exists τn ∈ [0, 1] such that

(1 + ‖ηn(τn, wn)‖)k‖Φ′(ηn(τn, wn))‖∗ < 2
√
δn.

By property (d6) of ηn we also have that

‖ηn(1, wn)− ηn(τn, wn)‖
(1 + ‖ηn(τn, wn)‖)k

≤ 16
√
δne

16k
√
δn

and so

d(ηn(τn, wn), S)

(1 + ‖ηn(τn, wn)‖)k
≤ 16

√
δne

16k
√
δn since ηn(1, wn) = gn(tn) ∈ S.

On the other hand, by property (d7) of ηn,

d(ηn(τn, wn), fn([0, 1]))

(1 + ‖ηn(τn, wn)‖)k
≤ ‖ηn(τn, wn)− fn(tn)‖

(1 + ‖ηn(τn, wn)‖)k
=
‖ηn(τn, wn)− wn‖
(1 + ‖ηn(τn, wn)‖)k

≤ 32
√
δne

16k
√
δn .

Finally we observe that

c ≤ Φ(ηn(1, wn)) ≤ Φ(ηn(τn, wn)) ≤ Φ(wn) < c+ δn

and that δn → 0 as n→∞.

Setting ukn = ηn(τn, wn), we see that the sequence {ukn} has all the required

properties for the value of k chosen at the beginning of the proof.

Suppose now that (MPG) holds. In this case, we can add to the conditions on δ0

imposed at the beginning of the proof the requirement that c−max{Φ(0),Φ(e)} > 2δ0.

This ensures that {0, e} ∩Nn = ∅ for all n.

Recalling that ukn = ηn(τn, wn) where ηn, τn and wn = fn(tn) also depend on k

although this was not indicated explicitly, consider the path hkn defined by hkn(t) =

ηn(τn, fn(t)) for t ∈ [0, 1]. Clearly hkn ∈ C([0, 1], X) and, since {0, e} ∩ Nn = ∅, it

follows from (d3) that hkn ∈ Γ. Furthermore, for all t ∈ [0, 1], by (d4),

Φ(hkn(t)) = Φ(ηn(τn, fn(t)) ≤ Φ(fn(tn)) ≤Mn

and so {hkn} is an optimal sequence of paths with ukn = ηn(τn, fn(tn)) ∈ hkn([0, 1]). �
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The final property that the sequence {ukn} lies on an optimal sequence of paths

is probably true under the general hypotheses (I) and (II), but proving this seems to

require a different form of deformation lemma.

5. THE POSITIVE CONE IN H1
0 (Ω)

We outline a typical situation where Corollary 1.2 has proved useful when dealing

with certain types of second order elliptic partial differential equations. It deals with

a case where S is a cone, as discussed in Remark 1.4.

Let Ω be an open subset of RN and H = H1
0 (Ω) with the usual norm

‖u‖1 = {
∫

Ω

u2 + |∇u|2dx}1/2.

Proposition 5.1. For all u ∈ H, |u| ∈ H and u 7→ |u| is continuous from H into H.

Proof It is well known that |u| ∈ H for all u ∈ H with

∇|u| =


∇u on {x ∈ Ω : u(x) > 0}
0 on {x ∈ Ω : u(x) = 0}
−∇u on {x ∈ Ω : u(x) < 0}

and it follows that |∇|u|| = |∇u| a.e. on Ω. Suppose that there exists an element

w ∈ H such that u 7→ |u| is not continuous at w. Then there exist δ > 0 and a

sequence {un} ⊂ H such that

‖un − w‖1 → 0 and ‖|un| − |w|‖1 ≥ δ for all n.

Since ∫
Ω

(un − w)2 + |∇(un − w)|2dx→ 0

we have that ∫
Ω

(|un| − |w|)2dx ≤
∫

Ω

|un − w|2dx→ 0.

Furthermore, since {un} is a bounded sequence in H and we have that∫
Ω

|∇|un||2dx =

∫
Ω

|∇un|2dx ≤ ‖un‖2
1,

it follows that, for i = 1, . . . , N , {∂i|un|} is a bounded sequence in L2(Ω) and so there

exist wi ∈ L2(Ω) and a subsequence {unk
} such that ∂i|unk

| ⇀ wi weakly in L2(Ω).

Hence, for any z ∈ L2(Ω), ∫
Ω

∂i|unk
| z dx→

∫
Ω

wi z dx.

On the other hand, for z ∈ C∞0 (Ω),∫
Ω

∂i|unk
| z dx = −

∫
Ω

|unk
|∂iz dx→ −

∫
Ω

|w|∂iz dx
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since we have already noted that |un| → |w| strongly in L2(Ω). This implies that

∂i|w| = wi and hence ∂i|unk
|⇀ ∂i|w| weakly in L2(Ω). But then, for i = 1, . . . , N ,∫

Ω

{∂i[|unk
| − |w|]}2dx =

∫
Ω

{∂i|unk
|}2 + {∂i|w|}2 − 2∂i|unk

|∂i|w| dx

=

∫
Ω

{∂iunk
}2 + {∂iw}2 − 2∂i|unk

|∂i|w| dx

→
∫

Ω

{∂iw}2 + {∂iw}2 − 2∂i|w|∂i|w| dx = 0

since ∂iunk
→ ∂iw strongly in L2(Ω) and ∂i|unk

|⇀ ∂i|w| weakly in L2(Ω). This shows

that ∫
Ω

|∇{|unk
| − |w|}|2dx→ 0

and consequently

‖|unk
| − |w|‖2

1 =

∫
Ω

(|unk
| − |w|)2 + |∇{|unk

| − |w|}|2dx→ 0,

contradicting the fact that ‖|un| − |w|‖1 ≥ δ for all n. This proves that u 7→ |u| is

continuous from H into H at every u ∈ H. �

Let S = {u ∈ H1
0 (Ω) : u ≥ 0 a.e. on Ω}.

Suppose that Φ ∈ C1(H,R), that Φ(u) = Φ(|u|) for all u ∈ H and that Φ satisfies

(MPG). Replacing e by |e| we can suppose that e ∈ S. Let

Γ = {f ∈ C([0, 1], H) : f(0) = 0 and f(1) = e} and c = inff∈Γ maxt∈[0,1] Φ(f(t)).

By Proposition 5.1, |f | ∈ Γ whenever f ∈ Γ and so Φ(f(t)) = Φ(|f |(t)) for all

t ∈ [0, 1]. Thus S contains an optimal sequence of paths and Corollary 1.2 ensures

that, for every k ∈ [0, 1], there exists a sequence {ukn} ⊂ H = H1
0 (Ω) such that

Φ(ukn)→ c, (1 + ‖ukn‖)kΦ′(ukn)→ 0 and
d(ukn, S)

(1 + ‖ukn‖)k
→ 0.

6. Note added in proof

While this paper was being refereed, the issue raised in Section 1.2 concerning

the the metrics d and δ has been resolved by P.J. Rabier,

Rabier, P.J.: On the Ekeland-Ghoussoub-Preiss and Stuart criteria for locat-

ing Cerami sequences, preprint.

In the notation of our Section 1.2, Rabier’s Theorem 1.1 establishes that, for any

non-empty subset S of X and for any sequence {un} ⊂ X,

lim
n→∞

δ(un, S) = 0⇔ lim
n→∞

d(un, S)

1 + ‖un‖
= 0.
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A similar conclusion holds when S is replaced by an arbitrary sequence {Sn} of non-

empty subsets of X. Consequently, our conclusion (1.4) with k = 1 can be obtained

by combining Rabier’s result with Theorem 1 from

Ghoussoub, N.: A min-max principle with a relaxed boundary condition,

Proc. AMS, 117 (1993), 439-447,

which is a more complete version of the result by Ekeland mentioned in Section 1.2

above. It includes localization near an optimal sequence of paths.

In fact, Rabier also deals with a broad class of weights, not just 1 + ‖ · ‖. His

Corollary 3.2 shows that, for any sequence {Sn} of non-empty subsets of X,

lim
n→∞

δ(un, Sn) = 0⇔ lim
n→∞

d(un, Sn)

ω(‖un‖)
= 0

where ω ≥ 1 is concave and non-decreasing and δ is the corresponding metric defined

by

δ(u, v) = inf{
∫ 1

0

‖h′(t)‖
ω(‖h(t)‖)

dt : h ∈ C1([0, 1]), X) with h(0) = u and h(1) = v}.

Together with Ghoussoub’s result, this leads to a proof of (1.4) for all k ∈ [0, 1].

I am grateful to Patrick Rabier for his illuminating correspondance with me on

these matters.

ACKNOWLEDGMENTS

It is with great pleasure that I thank the Wuhan Institute for Physics and Mathe-

matics, Chinese Academy of Sciences, Wuhan, China and OxPDE, Oxford University,

England for their hospitality and support. Much of this work was carried out during

these visits.

REFERENCES

[1] Ambrosetti, A. and Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems, Cam-

bridge University Press, Cambridge 2007

[2] Ambrosetti, A. and Rabinowitz, P. H.: Dual variational methods in critical point theory and

applications, J. Funct. Anal., 14 (1973), 349-381
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