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1. INTRODUCTION

This paper deals with oscillatory behavior of all solutions of the nonlinear second

order damped dynamic inclusions with distributed deviating arguments
b
(r(z®))2(t) + p(x®)*(t) € / q(t, 7)F(t,x(g(t,7)))AT for ae. t > to € T, (1.1)

on an arbitrary time scale T with supT =o0c and 0 < a < b, a,b € T . Whenever we

write ¢t > t;, we mean t € [t;,00) N'T := [ty, 00)7.

We assume that

1. « is the ratio of positive odd integers;

2. p,r: T — R* are single-valued rd-continuous functions such that 72(¢) > 0 for

t €T and )
/to (@erp (s, to)) As = o0; (1.2)

where e,(t,%p) is the exponential function satisfying the semigroup property

ep(a,b)ey(b,c) = eyla,c).
3. ¢: T x [a,b]r — R* is a rd-continuous function;
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4. g : T x [a,b]r — T is decreasing with respect to its second variable, g(¢t,7) <t
and g(t,7) — 0o as t — oo, T € [a, b]T;

5. F : [ty,00)r xR — 2% is a multi function (here 2% denotes the family of nonempty
subsets of R).

We note that the usual standard notation in inclusion theory is used here, e.g.,
|F'(t,u)| = supf{|v] : v € F(t,u)}

and
F(t,u) > 0 means w > 0 for each w € F(t,u).
A)a

By a solution to inclusion (1.1), we mean a function z € C.q with r(z and

p(z2)® € Ciq and (r(22)*)2 + p(z®)® € L} [to,00)r. We assume throught that
inclusion (1.1) possesses such solutions. We recall that a solution of (1.1) is said to
be nonoscillatory if there exists a t; € T such that z(¢)z?(t) > 0 for all ¢t € [ty,00).
Otherwise, it is said to be oscillatory. Inclusion (1.1) is said to be oscillatory if all its

solutions are oscillatory.

The theory of time scales which has recently received a lot of attention, was
introduced in [17], in order to unify continuous and discrete analysis.

In recent years, there has been much research acitivity concerning the oscillation
and nonoscillation of solutions of various dynamic equations on time scales, and we
refer the reader to the papers [8,18]. However, there are few results dealing with
the oscillation of second order dynamic inclusions on time scales [2-7] and for second
order dynamic equations with distributed deviating arguments [10].

In this article, we study oscillatory behaviour of all solutions of inclusion (1.1).
We also establish an oscillation result for (1.1) via comparison with second order
dynamic equations whose oscillatory character are known. We also present similar
oscillation results for (1.1) when condition (1.2) fails. Finally, we investigate some
possible extensions to the results obtained. The results of this paper are new for the
cases T =R and T = Z.

2. MAIN RESULTS

We assume that
F(t,z) <0 for (t,z) € [ty,00)r x Rt
F(t,z) >0 for (t,z) € [ty,00)r X R™.
We now present the following result.

Lemma 2.1. Let conditions (1)—(5), (1.2) and (2.1) hold. Assume that x(t) is an

eventually positive solution of (1.1). Then there exists a t; € [tog, 00)r such that

() >0, 22(t)>0 and z°°(t) <0 eventually. (2.2)
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Proof. Let z be an eventually positive solution of (1.1). Then there exists a t; €
[to, 00) such that x(t) > 0 and x(g(t,7)) > 0 for t > t; and 7 € [a, b]. Let

y(t) = (r(@®))2 (1) + p(x®)*(t) with y(t) € [ q(t, 7)F(t, 2(g(t, 7)) A7
and (2.3)
Y € Li,[to, 00)r.
From (2.1), we obtain
(r(z))2(t) + p(x®)*(t) < 0 for ae. t >t
w(t) + —tw(t) <0 for a.e. t>t,

where
w(t) = r(z®)%(t), t>t.

w(t)
e g (t,to)

We assert that is decreasing for t > t;. Clearly, we see that

and the assertion is proved. Next, we claim that z2(t) > 0 for ¢+ > t;. To this
end, assume that () < 0 eventually. Then there exists a to € [t;,00) such that
22(t) < 0 for ¢t > t. Using the fact that —29_ is decreasing we have

efg(t,to)
@S (0)* _ r(ta) (x(82)"
< . |
e_g(t,to) - e—%(tmto) b < 0 for t € [ta, 00)T
Thus,
At) < —ba e plt:to)]® for t € [t, 00)
v - r(t) or 2, 00)T.

Integrating this inequality from ¢, to t > ¢y we find

2(t) < z(ts) — ba /t: (#) . As.

As t — oo, z(t) approaches to —oo, which contradicts the fact that z(t) is
eventually positive, and thus 22(t) > 0 eventually. Next, we prove that z22(t) < 0
eventually. From [2, Theorem 1.90] we find

()™ > a /0 1[hx + (1 — h)z]* Y22 (t)dh

= az” ! (t)a2 (1),
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and then we calculate
(@2(1)™)° = o (22(1) " 222(1). (2.4)

Hence

A

(r(®)(@>(£)")> = r2 (@2 ()* +r7(8) («2(1)7)
> qri (1) (@ (1) + ar? () (x5(1) " 22(1),

in view of the fact that x2(t) > 0 and r®(¢) > 0, we obtain x22(t) < 0 eventually.
This completes the proof. O

Lemma 2.2 ([15]). Let the hypotheses of Lemma 2.1 hold. Then there exist a constant
€(0,1) and at € T, t > to such that

w(g(t) _ a7(t)
o) = o)

for all t > t, (2.5)
where g is as in (4).

We let )
Q) = [ atr)ar
and
g(t) = g(t,b).
We now present the following oscillation results for (1.1).

Theorem 2.3. Let conditions (1)—(5), (1.2) and (2.1) hold and assume that

( there exists f i lto,00) x R— R with of(t,z) > 0 for a.e. t >t
and x # 0 with |%\ >c>0 for a.e. t>tg,

and (2.6)
|F(t,x)| > f(t,x) for (t,x) € [ty,00)r x RT
|F(t,x)] < —f(t,x) for (t,x) € [ty,00)r x R™.

\

If there exists a function £(t) € CY(T,RT) such that

r7 ()€ (t)
p(t) > (1) ER(t) fort € [tg, 00)r (2.7)
and
x 96)\* A — oo
e (£9) a5 - 25)

then inclusion (1.1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of (1.1) on [ty,00)r. Suppose x(t) > 0
and z(g(t,7)) > 0 fort >ty and a < 7 < b. Let

y(t) = (r(@®)?)2 () + p(e)2 (1) with y(t) € [ q(t, ) F(t, 2(g(t, 7)) AT

Yy € Ll [to, OO)']T.

loc

From (2.1) and (2.6) we have
(r(@)*)2(t) + p(a®)*(t) < 0

and

(r(@®))2(t) + (%) (1) +/ q(t, 7)f(t, 2(g(t, 7)) AT <0

or
b

(r(x®)®)2(t) + p(a®)(t) +/ cq(t, T)x*(g(t, 7))AT <0 ae. t >t (2.9)

a

By Lemma 2.1, z is an increasing function on [ty, co)r and by (4), (2.9) becomes
(r(z®))2 () + p(a®)*(t) + cQ(t)z*(g(t)) <0 ae. t > t. (2.10)

By Lemma 2.2, then there exist a t; > to and a constant ¢ € (0, 1) such that (2.5)
holds. Using (2.5) in (2.10) we get

(r(z))2 (1) + p(x®)*(t) + c(e)*Q(t) (%)axo‘(a(t)) <0 ae t>t;. (2.11)
Define the function w(t) by
U ICaC)
w(t) - £(t> Z’a(t) [tla )T' (212>
Then we have w(t) > 0 and
g e OEREO) | GOEA)E ) 1)
(0 I C0) BT ORI C20)
(2.13)
Using (2.4) and (2.11) in (2.13) we obtain
A o
w0 < S uton) - 0 o) +dora (49 e (o)
A
R Or0)
« A SL’A «
w0 < —c(eree (45 ) +Siguteo) - LT 00
r(t)(x? (1))t
— a&(t) it()t()xaE?()t)) for a.e. t > t;. (2.14)
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By Lemma 2.1, 222(t) < 0 and 22(t) > 0, we get
z2(t) > 2®(o(t))  and  xz(t) < x(o(t)), t>t. (2.15)

Using (2.15) in (2.14), one can easily find

) N R R R
(0% I EORO " + |5 - rriom) Yo
SO (1)) for ae. £ > 1. (2.16)

~ o)™

Using conditions (2.7) in (2.16) we get

,a 9(t)\"
w?(t) < —c(6)*E()Q(1) <@) for a.e. t > ty.

Integrating this inequality from ¢; to ¢ we have

o<w@Sww»ﬂ@wﬁl@@@(ﬁngyeﬂm%tem,

a contradiction. This completes the proof. O

The following result is concerned with the oscillation of (1.1) when condition
(2.7) fails.

Theorem 2.4. Let conditions (1)—(5), (1.2), (2.1) and (2.6) hold. If there exists a
function £(t) € C!,(T,RY) such that

r(o(t)E(a(t))
p(t) < o

and for t > t; and for every constant ¢ € (0,1)

h?lsogp /t {5(8)@(8) (%)a

= (do ~tetom) (ot )

then inclusion (1.1) is oscillatory.

E3(t) fort € [t1,00)7 (2.17)

Proof. Let x(t) be a nonoscillatory solution of (1.1), say z(¢) > 0 and z(g(¢,7)) > 0
for t >ty and a < 7 < b. Proceeding as in the proof of Theorem 2.3, we obtain (2.16)
which takes the form

N e 90"
w(t) < —c(e)*¢(1)Q(1) <U(t)))
A
+ { £2(1) £(t)p(t)

(o) r(o())E((t)

(x;(g))“ < (é)a for t > t, (2.20)

} w(o(t)) for a.e. t > 1. (2.19)

From (2.5) we have
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and so,
IZ'A @ T
w(t) = £B)r(t) ( 2 é?) < (c)—ag(tza(t) for t > t,. (2.21)
Using (2.21) in (2.19) we get
I B g(t)\" 1 &23()
a0 = €000 (55) + (o)
e\
@) oy Ttz @)

Integrating this inequality from ¢; to ¢ and taking lim sup of both sides of the resulting
inequality as t — oo, we arrive at the desired contradiction. This completes the

proof. O

Following corollary is immediate.

Corollary 2.5. Let the hypotheses of Theorem 2.4 hold and condition (2.18) be re-
placed by condition (2.8) and

[ [t~ risiaten) () 20 <o

then conclusion of Theorem 2.4 holds.

Next, we establish the following oscillation result for (1.1).

Theorem 2.6. Let conditions (1)—(5), (1.2), (2.1) and (2.6) hold. If
limsupi/oo Q(s) (9(5))QAS — o0, (2.23)

too T (1) e_z(o(s),t) \o(s)

then inclusion (1.1) is oscillatory.

Proof. Let z(t) be a nonoscillatory solution of (1.1), say x(t) > 0 and x(g(¢,7)) > 0

for t € [tg,00)r and a < 7 < b. Proceeding as in the proof of Lemma 2.1 we obtain

(r(t)(a:A(ma)A _ (rOEA)MA + ) A1)

6_% (t7 tO)

for all t € [t1,00)T,t; > to. Now, for all u > t, u,t € [t;, 00)r, we have

rW(@ W) _ i) 0)” / (r(s)(x%))a)A AL

e_z(u,to) e_r(t, o) e_r(s, o)

T

OO [ G (1) g,

IA

e_z(t,t()) (O’(S),to)

T
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Letting u — oo, we have

r(t) (@ (1)” >c(c)a/oo pQ(S) (g(s))axo‘(s)As

e_g(t,t()) - T(U(S)atO)

or

(xj(g))a > C;Z); /too 6_;57(2”) (gg)am for ace. t € [tr,00)r.  (2.24)

Using (2.20) in (2.24) we have
@) =5 | ot ()

w255 S (o)

Taking lim sup of both sides of this inequality as t — oo we obtain a contradiction to
condition (2.23). This completes the proof. O

Theorem 2.7. Let conditions (1)—(5), (1.2), (2.1) and (2.6) hold and o > 1. If there
exists a function £(t) € Cly(T,R™) such that

s / {eleresan (£23)

N GCIO), s PEEO Y 0L
a(@ 1o (s)r(DE() {5 (%) r(a(s))} pass = oo, (2:25)

where ¢ € (0,1), then inclusion (1.1) is oscillatory on [ty, 00)r.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0 and x(g(¢,7)) > 0
for t € [ty,00)r and a < 7 < b. Proceeding as in the proofs of Theorems 2.3 and 2.4
to obtain (2.16) and (2.21). Now, from (2.16) we obtain

N o0\ [0 pwEn ],
wi(t) < ~(e) ““Q(”< <t>) * Lv() r0<t>5v<t>} )
N §(0)r(t) e ws"Yo
o) (2.26)
for t > t;. Using (2.21) in (2.26) and noting that o > 1 we have
R o) 0 pwen ],
w() ( <t) [ 0 <>£0<>] )
a(@) o () Do) (2.27)

(€ (r(t))”
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for ¢ > t; and so

A —c(e)® @ : (r(o(t))? Ay p()E(t) ’
w(t) < —c(e)*¢(1)Q(1) <0(t)) a(e)to1(t)r(t)E(t) [6 ®) T(U(t))}
= w(o(t)) — PO 2
- (\/Ra) (o) R(t)> ,
where A
M plEr)
PO= 0wy ~ remEem)
and
a1 asigy (D)
R(t) = a(c o
= e e
Thus,
WA () < —c(e)° 9\ _ (r(a(t))? A POED]
(t) < —c(6)*¢H)Q(1) <U(t)) a(c)etoe=1(t)r(t)E(t) [6 (¥ T(U(t))}

for t > t;. Integrating this inequality from ¢y to ¢ and taking lim sup of both sides of
the resulting inequality as ¢ — oo, we arrive at the desired conclusion. This completes
the proof. O

Next and for convenience, we consider the set
D=A(t,s) :t>s>tyt,s € [ty,o0)r}-
We say that a function H(t,s) € Ciq(D,R) satisfies condition [H] if
[H] H(t,t)=0fort >ty, H(t s)>0fort>s >ty t,s€ [ty o0)r

and has nonpositive A- partial derivative H2 (¢, s) with respect to the second variable,
ie.,

H2(t,s) € C,q and H2(t,s) <0.
Theorem 2.8. Let conditions (1)—(5), (1.2), (2.1) and (2.6) hold and H satisfies
condition [H]. If there exist A-differentiable functions &,n: T — RY such that

st ﬁ / [ HE DE@nER0) (M)A

lim su
P , o(s)

N 0TV 0 L PV
da(e)=TH(t, s)n(s)o=1(s)r(s)&(s)

for some ty > to, where constants ¢, ¢ are as in Theorem 2.3 and

Alg s)E(s
h(t,s) = (H(t, s)n(s))5 + H(t, s)n(s) {;(UES;) B g(ajzi);igg(s»} ’

(2.28)

then inclusion (1.1) is oscillatory.
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Proof. Let z(t) be a nonoscillatory solution of (1.1), say x(t) > 0 and x(g(¢,7)) > 0

for t € [ty,00)r and a < 7 < b. Proceeding as in the proof of Theorem 2.7, we obtain

(2.27). Now, multiplying both sides of (2.27) by n(s)H(t,s) and integrating from
t1 > tg to t, we obtain

b (r7()€7(s))

. Yo (s)E(s))?

t h2(t, s) (r7(s) €°(s))?
= H(t, t)n(t)w(t:) — / [4a( c)omH(t, s)n(s)o=(s)r(s)E(s) A

—/t ( R(t,s)w"(s)—2h(;’(j)s)> A
and so

@ [ HeseQ (%) As < H(t t)n(t)w(h)

[ (ht,5)r(5)€7(5)) N
| Bal@ @ s)(s)rm (5 (s)E) | =

where
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Now, we can easily see that

e / [a(a)“H(t, D()Q(s) ( o ;)
g

(h(t,s)r(s)€7(s))"
da(e) = tH(t, s)n(s)o> = (s)r(s)€(s)

Taking lim sup of both sides of this inequality as ¢ — oo, we obtain a contradiction.

As < n(ty)w(ty).

This completes the proof. O

The following result is immmediate.

Theorem 2.9. Let conditions (1)—(5), (1.2), (2.1) and (2.6) hold and H satisfies
condition [H]. If there exist A-differentiable functions &,n: T — RT such that

s 7ot [ e (47 ) - M Ao
(2.29)

for some t; € [ty,00), ¢ € (0,1) and h is defined as in (2.28), then inclusion (1.1) is
oscillatory.

Remark 2.10. e In condition (4), we may select g(¢,7) to be nondecreasing with
respect to the second variable 7. In this case, we assume g(t) = g(¢,a) and the
obtained results are valid.

e In Theorems 2.8 and 2.9, we may assume H to be

H(t,s)=(t—9s)", t>s>ty, t,s€ty,00)r andm > 1,

s+1
etc. The details are left to the readers.

t+1\"
(ln ) , t>s>ty, t,s€lto,00)rand m>1
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