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ABSTRACT. In this paper we are concerned with the fractional self-adjoint equation

∆µ

µ−1
(p∆x)(t) + q(t + µ − 1)x(t + µ − 1) = h(t), t ∈ N0, (0.1)

where 0 < µ ≤ 1, p : Nµ−1 → (0,∞), q : Nµ−1 → [0,∞), h : N0 → R. Our sole reason for calling this

equation self-adjoint is that when µ = 1 we get the well-studied second order self-adjoint difference

equation [16, Chapters 6-9]. We will prove various results concerning the existence and uniqueness

of positive solutions of the nonlinear fractional equation

∆µ

µ−1
(p∆x)(t) + F (t, x(t + µ − 1)) = 0, t ∈ N0, (0.2)

where 0 < µ ≤ 1, p : Nµ−1 → (0,∞), and F : N0×R → [0,∞) by applying the Contraction Mapping

Theorem. We also give examples illustrating our main results.

AMS (MOS) Subject Classification. 39A10.

1. INTRODUCTION

We will obtain qualitative and quantitative properties of solutions of certain

fractional difference equations. We refer the reader to the related results in [1] and

[2]. In particular, we would like to compare some of our results to the following

theorem.

Theorem 1.1 (Awasthi [2]). Let 0 < µ ≤ 1, p : Nµ−1 → R, f : N0 → R, q : Nµ−1 →

R and assume

1. p(t) > 0 and q(t) ≥ 0, for all t ∈ Nµ−1

2.
∞
∑

τ=µ

1

p(τ)
< ∞

3.
∞
∑

τ=0

f(τ) < ∞

4.

∞
∑

τ=µ

1

p(τ)

(

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
q(s + µ − 1)

)

< ∞
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hold; then the forced self-adjoint fractional difference equation

∆µ
µ−1(p∆x)(t) + q(t + µ − 1)x(t + µ − 1) = f(t), t ∈ N0

has a solution x which satisfies lim
t→∞

x(t) = 0.

We now introduce a few basic definitions and lemmas which will be helpful for

the reader to understand the material in this paper.

Definition 1.2. If a ∈ R and t ∈ Na := {a, a + 1, . . .}, the forward jump operator is

denoted by σ(t) and is defined by σ(t) = t + 1.

Definition 1.3 ([16]). We define the falling function in terms of the gamma function

by

tµ :=
Γ(t + 1)

Γ(t + 1 − µ)

whenever the right hand side is defined. Furthermore, we use the standard convention

that tµ = 0 when t + 1 − µ is a nonpositive integer and t + 1 is not a nonpositive

integer.

Definition 1.4 ([13]). Let N ∈ N, a ∈ R and µ > 0, we define the µ-th order

fractional sum of a function f which is defined on Na := {a, a + 1, . . . } by

∆−µ
a f(t) :=















1
Γ(µ)

t−µ
∑

s=a

(t − σ(s))µ−1 f(s), N − 1 < µ < N

∆Nf(t), µ = N,

where t ∈ {a + µ, a + µ + 1, . . . } =: Na+µ. We also define the µ-th order fractional

difference with µ > 0 and N ∈ N by

∆µ
a f(t) :=















1
Γ(−µ)

t+µ
∑

s=a

(t − σ(s))−µ−1 f(s), N − 1 < µ < N

∆Nf(t), µ = N,

where t ∈ Na+N−µ.

Remark 1.5. If f : Na → R and c, d ∈ Na, we use the standard convention that

d
∑

t=c

f(t) = 0

whenever d < c.

Lemma 1.6 ([13]). If t ∈ N0 and N − 1 < µ ≤ N , we have that

∆−µ
0 ∆µ

µ−N y(t) = y(t) +

N−1
∑

i=0

Ci ti+µ−N ,

for some constants Ci, 0 ≤ i ≤ N − 1.
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Lemma 1.7 ([3]). If we let ∆sf(t, s) := f(t, s + 1) − f(t, s), then

∆s(t − s)µ = −µ(t − σ(s))µ−1.

Lemma 1.8 ([14]). If t ∈ Na and h : Na → R, then the general solution to the

equation

∆µ
a+µ−N y(t) = h(t)

is given by,

y(t) =

N−1
∑

i=0

ci (t − a)i+µ−N + ∆−µ
a h(t), t ∈ Na+µ−N (1.1)

where ci, 0 ≤ i ≤ N − 1, are arbitrary constants.

For papers related to the results in this paper and other references to papers on

discrete fractional calculus see the papers by Goodrich, [4], [5], [6], [7], [8], [9], [10],

[11], and [12].

Definition 1.9 (Contraction Mapping). If (ζ, d) and (ξ, d
′

) are metric spaces then

a map T : ζ → ξ is called a contraction mapping if there exist a non-negative real

number 0 ≤ k < 1 such that

d
′

(T (x), T (y)) ≤ kd(x, y).

We will use the following well-known result in this paper.

Theorem 1.10 (Contraction Mapping Theorem). If (ζ, d) is a complete metric space

and T : ζ → ζ is a contraction mapping then T has a unique fixed point in ζ.

2. EXISTENCE OF SOLUTIONS WITH POSITIVE HORIZONTAL

ASYMPTOTES

In this section we will give conditions under which the following nonlinear frac-

tional equation

∆µ
µ−1(p∆x)(t) + F (t, x(t + µ − 1)) = 0, t ∈ N0

has a solution with a positive limit as t goes to ∞. The following theorem relates the

above fractional equation to a summation equation.

Theorem 2.1. Let p : Nµ−1 → (0,∞) and F : N0 × R → [0,∞). Let M > 0 and

define

ζM =
{

x : Nµ−1 → [M,∞) : ∆x(t) ≤ 0, ∆x(µ − 1) = 0
}

.

Suppose for all the functions x defined on Nµ−1, the following series

∞
∑

τ=µ−1

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]
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is convergent. Then the fractional equation

∆µ
µ−1(p∆x)(t) + F (t, x(t + µ − 1)) = 0 (2.1)

has a positive solution x ∈ ζM such that lim
t→∞

x(t) = M if and only if the summation

equation

x(t) = M +
∞
∑

τ=t

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

(2.2)

has a solution x on Nµ−1.

Proof. Suppose the fractional equation

∆µ
µ−1(p∆x(t)) + F (t, x(t + µ − 1)) = 0 (2.3)

has a positive solution x ∈ ζM such that lim
t→∞

x(t) = M . First we let y(t) = (p∆x)(t).

Then applying the fractional sum operator on both sides of equation (2.3) and using

the fractional composition rule given in Lemma 1.6 we get that

y(t) = −∆−µ
0 F (t, x(t + µ − 1)) + ctµ−1

= −

t−µ
∑

s=0

(t − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1)) + ctµ−1.

It follows that

∆x(t) = −
1

p(t)

[

t−µ
∑

s=0

(t − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

.

Now summing from τ = t to ∞ we get that

M − x(t) = −
∞
∑

τ=t

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

+ ctµ−1.

Note that ∆x(µ − 1) = 0 implies c = 0. Hence,

x(t) = M +
∞
∑

τ=t

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

.

Thus x is a solution to the summation equation (2.2).

On the other hand, if the summation equation given by (2.2) has a solution x on

Nµ−1, then

x(t) = M +

∞
∑

τ=t

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

. (2.4)

Now by taking the delta difference on both sides of the last equation, we get that

∆x(t) = −
1

p(t)

[

t−µ
∑

s=0

(t − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

. (2.5)
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Hence,

(p∆x)(t) = −
[

∆−µ
0 F (·, x(· − µ + 1)

]

(t).

Taking the fractional difference of both sides of the last equation and using a particular

case of composition rules as proved in [13], we get that

∆µ
µ−1(p∆x)(t) = −∆µ

µ−1∆
−µ
0 (F (·, x(· + µ − 1))(t)

= −F (t, x(t + µ − 1)), t ∈ N0.

This implies that

∆µ
µ−1(p∆x)(t) + F (t, x(t + µ − 1)) = 0.

Hence x is a solution of the fractional equation (2.1). We also observe that x(t) ≥ M ,

since p(t) > 0 for all t ∈ Nµ−1 and F (t, u) ≥ 0 for all (t, u) ∈ N0 × R. Moreover,

notice that

∆x(µ − 1) = −
1

p(µ − 1)

[

−1
∑

s=0

(µ − 1 − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

= 0

by the convention given in Remark 1.5. From the expression for ∆x(t) given by

equation (2.5), we see that ∆x(t) ≤ 0 for all t ∈ Nµ−1. Thus x ∈ ζM . Furthermore,

since the series
∞
∑

τ=t

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

is convergent it follows from equation (2.4) that lim
t→∞

x(t) = M . This completes the

proof.

Remark 2.2. If µ = 1 (non-fractional case) in the preceding theorem, the fractional

summation equation reduces to the summation equation

x(t) = M +

∞
∑

τ=t

1

p(τ)

[

τ−1
∑

s=0

F (s, x(s))

]

.

The proof of the following lemma is straight forward and left to the reader.

Lemma 2.3. Assume M > 0 and

ζM =
{

x : Nµ−1 → [M,∞) : ∆x(t) ≤ 0, ∆x(µ − 1) = 0
}

,

where F : N0 × R → [0,∞). Assume p : Nµ−1 → (0,∞) satisfies
∞
∑

τ=µ−1

ln(1 +

1

p(τ)
) < ∞ and define d : ζM × ζM → [0,∞) by d(x, y) = sup

t∈Nµ−1

|x(t) − y(t)|

w(t)
, where

w(t) = e

−

[

t
∑

τ=µ−1

ln(1 +
1

p(τ)
)
]

. Note that 0 < L := lim
t→∞

w(t) ≤ 1. Then the pair

(ζM , d) is a complete metric space.
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Next we prove a theorem regarding the existence and uniqueness of a positive

solution of the fractional equation (2.1) tending to M as t goes to ∞ by applying the

Contraction Mapping Theorem.

Theorem 2.4. Assume F : N0 × R → [0,∞) satisfies a uniform Lipschitz condition

with respect to its second variable, i.e. if u, v ∈ R and t ∈ N0 then
∣

∣F (t, u)−F (t, v)
∣

∣ ≤

K
∣

∣u − v
∣

∣ and assume p : Nµ−1 → (0,∞) and let (ζM , d) be the complete metric space

as defined in Lemma 2.3. Assume the following hypotheses (H1) and (H2):

(H1) The series
∞
∑

τ=µ

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

is convergent for each

x ∈ ζM ,

(H2) 1
Γ(µ+1)

K
L

[

∞
∑

τ=µ

τµ

p(t)

]

= α < 1

are satisfied. Then there exists a unique positive solution of the fractional equation

(2.1). Moreover lim
t→∞

x(t) = M .

Proof. Let (ξM , d) be the complete metric space as defined in Lemma 2.3. Consider

the map T on ζM defined by

Tx(t) = M +
∞
∑

τ=t

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

.

First we will show that T : ζM → ζM . Note that the above expression for Tx(t)

guarantees that Tx(t) ≥ M since F (t, u) ≥ 0 for all (t, u) ∈ N0 × R and p(t) > 0 for

all t ∈ Nµ−1. Next note that

∆Tx(t) = −
1

p(t)

[

t−µ
∑

s=0

(t − σ(s))µ−1F (s, x(s + µ − 1))

Γ(µ)

]

≤ 0.

Also it can be easily verified that (∆Tx)(µ − 1) = 0 by our convention as mentioned

in Remark 2.2. Thus T : ξM → ξM . Moreover we will show that T is a contraction

mapping on ζM . Let t ∈ Nµ−1 be arbitrary, then

∣

∣

∣

∣

Tx(t) − Ty(t)

w(t)

∣

∣

∣

∣

=
1

w(t)

∞
∑

τ=t

1

p(t)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
|F (s, x(s + µ − 1))

− F (s, y(s + µ − 1)|
]

.

≤
K

w(t)

∞
∑

τ=t

1

p(t)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
w(s + µ − 1)

]

d(x, y).

d(T (x), T (y)) ≤
K

L

∞
∑

τ=t

1

p(t)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
w(s + µ − 1)

]

d(x, y)



NON LINEAR FRACTIONAL DIFFERENCE EQUATION 67

≤
K

L

∞
∑

τ=t

1

p(t)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)

]

d(x, y)

=
K

L

∞
∑

τ=t

1

p(t)

[

τµ

Γ(µ + 1)

]

d(x, y)

≤
1

Γ(µ + 1)

K

L

[

∞
∑

τ=µ−1

τµ

p(t)

]

d(x, y)

= α d(x, y).

Since α < 1, T is a contraction mapping on ζM . Then it follows from the Contraction

Mapping Theorem that there exists a unique fixed point x of T in ζM such that

T (x) = x and therefore x is the unique positive solution to the summation equation

(2.2). Hence, by Theorem 2.1, x is the unique positive solution to the fractional

equation (2.1). Moreover, since the series

∞
∑

τ=µ−1

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

is convergent,

lim
t→∞

x(t) = M + lim
t→∞

∞
∑

τ=t

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

= M.

This completes the proof.

Next we give an example to illustrate the above theorem.

Example 2.5. As an example let us choose F (t, x) = K|x| − M for t ∈ N0. Then

F clearly satisfies a uniform Lipschitz condition with respect to the second variable

x with Lipschitz constant K. Let p : Nµ−1 → (0,∞) be defined by

p(t) =







4, t = µ − 1

K2(t−µ+3)tµ

Γ(µ+1)L
, t ∈ Nµ.

(2.6)

We claim all the hypotheses in Theorem 2.4 hold. First notice that

∞
∑

τ=µ−1

1

p(t)
=

1

4
+

∞
∑

τ=µ

1

p(t)

=
1

4
+

L

K

∞
∑

τ=µ

Γ(µ + 1)

2(t−µ+3)tµ

≤
1

4
+

L

K

∞
∑

τ=µ

1

2(t−µ+3)
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=
1

4
+

L

4K

< ∞.

Since ln
(

1 + 1
p(t)

)

≤ 1
p(t)

, for t ∈ Nµ, we have by the comparison theorem that

∞
∑

τ=µ−1

ln
(

1 +
1

p(t)

)

< ∞.

Next we will show that (H1) is satisfied. Let x ∈ ζM be arbitrary but fixed. The

following calculations show (H1) is satisfied for each such x ∈ ζM :

∞
∑

τ=µ−1

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

=
∞
∑

τ=µ

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

≤ K|x(µ − 1)|

∞
∑

τ=µ

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)

]

=
1

4
+ Kx(µ − 1)

∞
∑

τ=µ

1

p(τ)

τµ

Γ(µ + 1)

=
1

4
+ Kx(µ − 1)(

1

4
)

< ∞.

Next we will show that the second hypothesis (H2) is also satisfied. Notice that

1

Γ(µ + 1)

K

L

[

∞
∑

τ=µ−1

τµ

p(t)

]

=
1

Γ(µ + 1)

[

∞
∑

τ=µ

τµΓ(µ + 1)

τµ2(τ−µ+3)

]

=
∞
∑

τ=µ

1

2(τ−µ+3)

=
1

4

<1.

Thus the second hypothesis (H2) is also satisfied. Hence, Theorem 2.4 implies that

with the above defined functions F , p with their respective domains

∆µ
µ−1(p∆x(t)) + F (t, x(t + µ − 1)) = 0 (2.7)

has a unique positive solution that converges to M as t goes to ∞.
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3. MORE RESULTS CONCERNING SOLUTIONS WITH POSITIVE

LIMITS AT INFINITY

In this section, we will give conditions under which the fractional equation

∆µ
µ−1(p∆x)(t) + F (t, x(t + µ − 1)) = 0

has a solution with a positive limit at ∞. Our methods of proofs in this section

are to use weighted norms and the Contraction Mapping Theorem. First we give a

relationship between the existence of solutions of the above fractional equation and

solutions of a summation equation.

Theorem 3.1. Assume p : Nµ−1 → (0,∞) and F : N0 ×R → [0,∞). Let M > 0 and

define

ζM =
{

x : Nµ−1 → [M,∞) : ∆x(t) ≤ 0, ∆x(µ − 1) = 0
}

.

Let P (τ, t) :=
τ
∑

u=t

1

p(u)
, where t ∈ Nµ−1. Suppose for all the functions x defined on

Nµ−1, the following two series

∞
∑

τ=µ−1

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1)

]

, (3.1)

∞
∑

τ=µ−1

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, x(s + µ − 1))

]

are convergent and moreover, the later series satisfies the condition that

∞
∑

τ=µ−1

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, x(s + µ − 1))

]

≤ 0. (3.2)

Then the fractional equation

∆µ
µ−1(p∆x)(t) + F (t, x(t + µ − 1)) = 0

has a positive solution x ∈ ζM such that lim
t→∞

x(t) = M if and only if the summation

equation

x(t) = M −
∞
∑

τ=t

P (τ, t)

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, x(s + µ − 1))

]

(3.3)

has a solution x ∈ Nµ−1.

Proof. Suppose the fractional equation

∆µ
µ−1(p∆x)(t) + F (t, x(t + µ − 1)) = 0 (3.4)

has a positive solution x ∈ ζM such that lim
t→∞

x(t) = M . We let y(t) = (p∆x)(t)

in equation (3.4). Then by applying the fractional sum operator on both sides of
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equation (3.4) and using the fractional composition rule given in Lemma 1.6 we get

that

y(t) = −∆−µ
0 F (t, x(t + µ − 1)) + ctµ−1

= −

t−µ
∑

s=0

(t − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1)) + ctµ−1.

This implies that

∆x(t) = −
1

p(t)

[

t−µ
∑

s=0

(t − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

. (3.5)

Now summing from τ = t to ∞ we get that

M − x(t) = −
∞
∑

τ=t

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

.

Therefore,

x(t) = M +

∞
∑

τ=t

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

.

Now by using the definition of P (τ, t) as defined in the statement of this theorem we

can rewrite the preceding equation as

x(t) = M +

∞
∑

τ=t

[∆τ (P (τ − 1, t))]

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

,

and then by applying the summation by parts formula and the convergence of the

series in (3.1) we get that

x(t) =M + P (τ − 1, t)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

∣

∣

∣

∞

τ=t

−
∞
∑

τ=t

P (τ, t)
[

τ−µ
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, x(s + µ − 1))

+ F (τ − µ + 1, x(τ))
]

= M −

∞
∑

τ=t

P (τ, t)

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, x(s + µ − 1))

]

.

On the other hand, if the summation equation

y(t) =M −
∞
∑

τ=t

P (τ, t)

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, y(s + µ − 1))

]

has a solution x on Nµ−1, then

x(t) = M −
∞
∑

τ=t

P (τ, t)

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, x(s + µ − 1))

]

.
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Note that since the series

∞
∑

τ=µ−1

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1)

]

is convergent and

(

τ−1
∑

u=t

1

p(u)

)

|τ=t = 0 , we have that

[(

τ−1
∑

u=t

1

p(u)

)

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

|∞τ=t = 0

and hence the expression for x(t) as mentioned above can be rewritten as

x(t) = M +
(

τ−1
∑

u=t

1

p(u)

)

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))|∞τ=t

−

∞
∑

τ=t

P (τ, t)

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, x(s + µ − 1))

]

= M +

∞
∑

τ=t

[

∆τP (τ − 1, t)
]

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

= M +

∞
∑

τ=t

1

p(τ)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

.

Now by taking the delta difference of both sides of the last equation, we get that

∆x(t) = −
1

p(t)

[

t−µ
∑

s=0

(t − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1))

]

. (3.6)

Hence,

(p∆x)(t) = −
[

∆−µ
0 F (., x(. − µ + 1)

]

(t).

Taking the fractional difference of both sides of the last equation, we get that

∆µ
µ−1(p∆x)(t) = −∆µ

µ−1∆
−µ
0 (F (., x(. + µ − 1))(t)

= −F (t, x(t + µ − 1)), t ∈ N0.

Therefore,

∆µ
µ−1(p∆x)(t) + F (t, x(t + µ − 1)) = 0, t ∈ N0.

Hence, x is the solution of equation (3.4). Moreover it is not hard to see from the

expression for ∆x as given by equation (3.6), that ∆x(t) ≤ 0 and ∆x(µ − 1) = 0.

Also, since the series

∞
∑

τ=µ−1

P (τ, µ − 1)
[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, x(s + µ − 1))

]
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is convergent we have that lim
t→∞

x(t) = M . Furthermore, since

∞
∑

τ=µ−1

P (τ, µ − 1)
[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, x(s + µ − 1))

]

≤ 0, (3.7)

we have that

M −
∞
∑

τ=t

P (τ, t)
[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, y(s + µ − 1))

]

≥ M,

i.e. x(t) ≥ M . Hence, we conclude that the fractional equation (3.4) has a positive

solution x ∈ ζM .

Next we will prove the following theorem which is an application of the Contrac-

tion Mapping Theorem.

Theorem 3.2. Assume F : N0 × R → [0,∞) satisfies a uniform Lipschitz condition

with respect to its second variable, i.e. if u, v ∈ R and t ∈ N0 then
∣

∣F (t, u)−F (t, v)
∣

∣ ≤

K
∣

∣u − v
∣

∣ and assume p : Nµ−1 → (0,∞), P (τ, t) :=
τ
∑

u=t

1

p(u)
and let (ζM , d) be the

complete metric space as defined in Lemma 2.3. Assume the following hypotheses

(H1), (H2), (H3) and (H4) are satisfied:

(H1) The series

∞
∑

τ=µ−1

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1)

]

is conver-

gent for each x ∈ ζM .

(H2) The series
∞
∑

τ=µ−1

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2F (s, x(s + µ − 1)

Γ(µ)

]

is

convergent for each x ∈ ζM .

(H3)
∞
∑

τ=µ−1

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2F (s, x(s + µ − 1)

Γ(µ)

]

≤ 0 for each

x ∈ ζM .

(H4) K
L

∞
∑

τ=µ−1

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

|µ − 1||(τ − σ(s))µ−2|w(s + µ − 1)

Γ(µ)

]

= α < 1,

where in hypothesis (H4) we defined L =: lim
t→∞

w(t) > 0 as mentioned in Lemma 2.3.

Then there exist a unique positive solution x of (3.4) such that lim
t→∞

x(t) = M .

Proof. Let (ζM , d) be the complete metric space as defined in Lemma 2.3 and consider

the map T on ζM defined by

Tx(t) = M −

∞
∑

τ=t

P (τ, t)
[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, x(s + µ − 1))

]

.
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First, we will show that T : ζM → ζM . Let x ∈ ζM be arbitrary. Then similar to the

derivation of (3.5) in Theorem 3.1 we have

∆Tx(t) = −
1

p(t)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1F (s, x(s + µ − 1))

Γ(µ)

]

.

Also since p(t) > 0 for all t ∈ Nµ−1 and F (t, u) ≥ 0 for all (t, u) ∈ N0 × R, we have

that

∆Tx(t) = −
1

p(t)

[

τ−µ
∑

s=0

(τ − σ(s))µ−1F (s, x(s + µ − 1))

Γ(µ)

]

≤ 0.

Also it is not hard to see that

∆Tx(µ − 1) = 0.

Moreover, by using hypotheses (H2) and (H3) we conclude that T (x)(t) ≥ M for

t ∈ Nµ−1. Hence, we proved that T : ζM → ζM . Next we will show that T is a

contraction mapping on ζM . Let t ∈ Nµ−1 be arbitrary. Then notice that
∣

∣

∣

∣

Tx(t) − Ty(t)

w(t)

∣

∣

∣

∣

≤
1

w(t)

∞
∑

τ=t

P (τ, t)
[

τ−µ+1
∑

s=0

|(µ − 1)||(τ − σ(s))µ−2|

Γ(µ)
|F (s, x(s + µ − 1))

− F (s, y(s + µ − 1)|
]

.

≤
K

w(t)

[

∞
∑

τ=t

P (τ, t)

(

τ−µ+1
∑

s=0

|(µ − 1)||(τ − σ(s))µ−2|

Γ(µ)
w(s + µ − 1)

)]

d(x, y).

Thus

d(T (x), T (y))

≤ K/L

[

∞
∑

τ=µ−1

P (τ, µ − 1)

(

τ−µ+1
∑

s=0

|(µ − 1)||(τ − σ(s))µ−2|

Γ(µ)
w(s + µ − 1)

)]

d(x, y)

= αd(x, y).

Since α < 1, by the hypothesis (H4), T is a contraction mapping on ζM . Hence, by

the Contraction Mapping Theorem there exist a unique positive fixed point x of T

in ζM such that T (x) = x. Therefore, Theorem 3.1 guarantees that x is the unique

positive solution to the summation equation

x(t) = M −

∞
∑

τ=t

P (τ, t)
[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, x(s + µ − 1))

]

.

Moreover, by using hypothesis (H2), we observe

lim
t→∞

x(t) = M − lim
t→∞

∞
∑

τ=t

P (τ, t)
[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2

Γ(µ)
F (s, x(s + µ − 1))

]

= M.

This completes the proof.
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Next we provide an interesting example to illustrate the above theorem.

Example 3.3. Let P (τ, t) =
τ
∑

u=t

1

p(u)
= arctan[(

e

3
)−(τ−t)], for fixed t ∈ Nµ−1 so that

P (τ, µ − 1) =
τ
∑

u=µ−1

1

p(u)
=arctan[( e

3
)−(τ−µ+1)]. Note that

∆τP (τ, µ − 1) = ∆τ

τ
∑

u=µ−1

1

p(u)
= ∆τ arctan[(

e

3
)−(τ−µ+1)]

= arctan[
(3/e− 1)

( e
3
)(τ−µ+1) + ( e

3
)−(τ−µ+2)

].

Thus,

1

p(τ + 1)
= arctan[

(3/e − 1)

( e
3
)(τ−µ+1) + ( e

3
)−(τ−µ+2)

]

and hence

p(τ) =
1

arctan[ (3/e−1)

( e
3
)(τ−µ)+( e

3
)−(τ−µ+1) ]

.

But note that
(3/e − 1)

( e
3
)(τ−µ) + ( e

3
)−(τ−µ+1)

> 0,

which implies that

arctan[
(3/e − 1)

( e
3
)(τ−µ) + ( e

3
)−(τ−µ+1)

] > 0

and hence p(τ) > 0. Next we will show that all four hypotheses of the previous

theorem are satisfied. First of all it is important to mention that the series

∞
∑

τ=µ−1

P (τ, µ − 1) =

∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

and
∞
∑

τ=µ

(τ − µ + 2) arctan[(
e

3
)−(τ−µ+1)]

converge by the ratio test. We will use the convergence of these series in the following.

We let S =
∞
∑

τ=µ

(τ−µ+2) arctan[(
e

3
)−(τ−µ+1)] and observe that 0 < S < ∞. Moreover,

let

F (t, x) :=







L
2S

x

1+x
if t = 0

0 if t 6= 0.

Clearly F satisfies a uniform Lipschitz condition with respect to the second variable

with Lipschitz constant K = L
2S

. Here L is chosen as it is defined in Lemma 2.3. Next

we will show that the hypotheses of Theorem 3.2 are satisfied.
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Claim (H1) holds:

∞
∑

τ=µ−1

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

(τ − σ(s))µ−1

Γ(µ)
F (s, x(s + µ − 1)

]

=
∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

[

(τ − 1)µ−1

Γ(µ)

L
2S

.x(µ − 1)

1 + x(µ − 1)

]

.

Notice that
[

(τ − 1)µ−1

Γ(µ)

L
2
x(µ − 1)

1 + x(µ − 1)

]

< 1.

Therefore,

arctan[(
e

3
)−(τ−µ+1)]

[

(τ − 1)µ−1

Γ(µ)

L
2S

.x(µ − 1)

1 + x(µ − 1)

]

<
1

S
arctan[(

e

3
)−(τ−µ+1)],

and the series
∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

is convergent by the ratio test, which implies that the series in (H1) is convergent by

the comparison test.

Next in order to show that (H2) is satisfied we show the series in (H2) converges

absolutely.

Claim (H2) holds:

∞
∑

τ=µ−1

∣

∣

∣

∣

∣

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2F (s, x(s + µ − 1)

Γ(µ)

]
∣

∣

∣

∣

∣

=
∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

∣

∣

∣

∣

∣

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2F (s, x(s + µ − 1)

Γ(µ)

]
∣

∣

∣

∣

∣

≤
∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

∣

∣

∣

∣

(µ − 1)(τ − 1)µ−2F (0, x(µ − 1))

Γ(µ)

∣

∣

∣

∣

=

∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

∣

∣

∣

∣

∣

(µ − 1)(τ − 1)µ−2

Γ(µ)

L
2S

.x(µ − 1)

1 + x(µ − 1)

∣

∣

∣

∣

∣

.

Again since
∣

∣

∣

∣

∣

(µ − 1)(τ − 1)µ−2

Γ(µ)

L
2
x(µ − 1)

1 + x(µ − 1)

∣

∣

∣

∣

∣

< 1,

and the series
∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

is convergent by the ratio test, we have by the comparison test that the series in (H2)

converges.
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Claim (H3) holds: Note that

∞
∑

τ=µ−1

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2F (s, x(s + µ − 1)

Γ(µ)

]

=
∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]





(µ − 1)(τ − 1)µ−2
(

L
2S

.x(µ−1)

1+x(µ−1)

)

Γ(µ)





=
Lx(µ − 1)

2S(1 + x(µ − 1))

∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

[

(µ − 1)(τ − 1)µ−2

Γ(µ)

]

.

It follows that

=
(

L
2S

.x(µ − 1)

1 + x(µ − 1)

)

[π

4
+

∞
∑

τ=µ

arctan[(
e

3
)−(τ−µ+1)]

[

(µ − 1)(τ − 1)µ−2

Γ(µ)

]

]

≤
(

L
2S

.x(µ − 1)

1 + x(µ − 1)

)

[π

4
+

π

4

∞
∑

τ=µ

[

∆τ (τ − 1)µ−1

Γ(µ)

]

]

=
(

L
2S

.x(µ − 1)

1 + x(µ − 1)

)

[π

4
+

π

4

(τ − 1)µ−1

Γ(µ)
|τ=∞

τ=µ

]

=
(

L
2S

.x(µ − 1)

1 + x(µ − 1)

)

[π

4
+

π

4
[0 − 1]

]

=
(

L
2S

.x(µ − 1)

1 + x(µ − 1)

)

[π

4
−

π

4

]

= 0.

Thus,

∞
∑

τ=µ−1

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

(µ − 1)(τ − σ(s))µ−2F (s, x(s + µ − 1)

Γ(µ)

]

≤ 0.

Hence (H3) is satisfied.

Claim (H4) holds:

K

L

∞
∑

τ=µ−1

P (τ, µ − 1)

[

τ−µ+1
∑

s=0

|(µ − 1)|
∣

∣(τ − σ(s))µ−2
∣

∣w(s + µ − 1)

Γ(µ)

]

≤
L

2SL

∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

[

τ−µ+1
∑

s=0

|(µ − 1)||(τ − 1)µ−2|.1

Γ(µ)

]

=
1

2S

∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

[

τ−µ+1
∑

s=0

|(µ − 1)||(τ − 1)µ−2|.1

Γ(µ)

]

=
1

2S

∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

[

τ−µ+1
∑

s=0

|(µ − 1)||(τ − 1)µ−2|.1

Γ(µ)

]
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=
1

2S

∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

[

τ−µ+1
∑

s=0

|(µ − 1)||(τ − 1)µ−1|.1

(τ − µ + 1)Γ(µ)

]

≤
1

2S

∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

[

τ−µ+1
∑

s=0

|(µ − 1)||(τ − 1)µ−1|.1

Γ(µ)

]

<
1

2S

∞
∑

τ=µ−1

arctan[(
e

3
)−(τ−µ+1)]

[

τ−µ+1
∑

s=0

1

]

=
1

2S

∞
∑

τ=µ−1

(τ − µ + 2) arctan[(
e

3
)−(τ−µ+1)]

=
1

2S
S

=
1

2
< 1.

Hence all four hypotheses in Theorem 3.2 are satisfied therefore we have that if

we define F , P , K and L as in this example, then there exists a unique solution to

the fractional equation (3.4) with a given positive horizontal asymptote.
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