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ABSTRACT. By using critical point theory, the authors study the existence of infinitely many

homoclinic solutions to the difference equation

−∆
(

a(k)φp(∆u(k − 1))
)

+ b(k)φp(u(k)) = λf(k, u(k))), k ∈ Z,

where p > 1 is a real number, φp(t) = |t|p−2t for t ∈ R, λ > 0 is a parameter, a, b : Z → (0,∞), and

f : Z × R → R is a continuous function in the second variable. Some known work in the literature

is extended.
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1. INTRODUCTION

The theory of nonlinear discrete dynamical systems has been widely used to

examine discrete models appearing in many fields such as statistics, computing, elec-

trical circuit analysis, dynamical systems, economics, biology, etc [1, 6]. In recent

years, there has been an increasing interest in the literature on the use of variational

methods to study the existence and multiplicity of periodic and homoclinic solutions

for discrete systems. We refer the reader to [2, 4, 7, 8, 9, 10] and the reference therein

for some recent work on this topic. In this paper, we are concerned with the existence

of solutions of the second order difference equation with a p-Laplacian






−∆
(

a(k)φp(∆u(k − 1))
)

+ b(k)φp(u(k)) = λf(k, u(k)), k ∈ Z,

u(k) → 0 as |k| → ∞,
(1.1)

where p > 1 is a real number, φp(t) = |t|p−2t for t ∈ R, λ > 0 is a parameter, ∆

is the forward difference operator defined by ∆u(k) = u(k + 1) − u(k) for k ∈ Z,

a, b : Z → (0,∞), and f : Z×R → R is a continuous function in the second variable.

As in the literature, a solution of problem (1.1) is referred to as a homoclinic solution

of the equation

−∆
(

a(k)φp(∆u(k − 1))
)

+ b(k)φp(u(k)) = λf(k, u(k))), k ∈ Z.
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In a recent paper [4], Iannizzotto and Tersian studied the existence of two solu-

tions of (1.1) with a(k) ≡ 1 on Z. Let

F (k, t) =

∫ t

0

f(k, s)ds for all (k, t) ∈ Z × R, (1.2)

and assume that the following conditions hold:

(H1) b(k) ≥ b0 > 0 for all k ∈ Z, b(k) → ∞ as |k| → ∞;

(H2) limt→0
|f(k,t)|
|t|p−1 = 0 uniformly for all k ∈ Z;

(H3) sup|t|≤T |F (·, t)| ∈ ℓ1 for all T > 0;

(H4) lim sup|t|→∞
F (k,t)
|t|p

≤ 0 uniformly for all k ∈ Z;

(H5) F (k0, t0) > 0 for some k0 ∈ Z and t0 ∈ R.

They proved the following result (see [4, Theorem 1]).

Proposition 1.1. Assume that (H1)–(H5) hold and a(k) ≡ 1 on Z. Then, for all

λ > 0 large enough, problem (1.1) has at least two nonzero solutions. Moreover,

whenever u : Z → R is a nontrivial solution of problem (1.1), there exist integers k+

and k− such that both sequences {u(k)}k≤k−
and {u(k)}k≥k+

are strictly monotone.

In this paper, we will extend Proposition 1.1. In particular, we find sufficient

conditions under which problem (1.1) has infinitely many solutions for λ large enough.

Our proof is mainly based on a critical point theorem obtained by Kajikiya in [5]; see

Lemma 3.4 below.

The following assumptions will be used in our theorems.

(C1) There exists a constant M > 0 such that

a(k) ≤ Mb(k) for all k ∈ Z;

(C2) there exist a constant ρ > 0 and two positive functions w1, w2 ∈ ℓ1 such that

w1(k)|t|p ≤ F (k, t) ≤ w2(k)|t|p (1.3)

for all k ∈ Z and |t| ≤ ρ;

(C3) f(k,−t) = −f(k, t) for all k ∈ Z and t ∈ R.

Remark 1.2. Concerning condition (C2), we want to emphasize that we only need

that (1.3) holds for small |t| ∈ R, and there is no restriction on the behavior of F (k, t)

when |t| is large.

The rest of this paper is organized as follows. Section 2 contains some preliminary

lemmas and Section 3 contains the main results in this paper and their proofs.
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2. PRELIMINARIES

In this section, we will establish the corresponding variational framework for

problem (1.1) and present some lemmas to be used later.

For all 1 ≤ p < ∞, let ℓp be the set of all functions u : Z → R such that

‖u‖p =

(

∑

k∈Z

|u(k)|p

)1/p

< ∞,

and let ℓ∞ be the set of all functions u : Z → R such that

‖u‖∞ = sup
k∈Z

|u(k)| < ∞.

The following lemma can be found in [3, pp. 3 and 429] and [4, Proposition 2].

Lemma 2.1. For all 1 < p < ∞, (ℓp, ‖ · ‖p) is a reflexive and separable Banach space

whose dual is (ℓq, ‖ · ‖q), where 1/p + 1/q = 1. Moreover, (ℓ∞, ‖ · ‖∞) is a Banach

space, and for all 1 ≤ p < ∞, the embedding ℓp →֒ ℓ∞ is continuous as

‖u‖∞ ≤ ‖u‖p for all u ∈ ℓp.

Let

X =

{

u : Z → R :
∑

k∈Z

[

a(k)|∆u(k − 1)|p + b(k)|u(k)|p
]

< ∞

}

(2.1)

and

‖u‖ =

(

∑

k∈Z

[

a(k)|∆u(k − 1)|p + b(k)|u(k)|p
]

)1/p

. (2.2)

Obviously, under condition (H1), we have

‖u‖∞ ≤ ‖u‖p ≤ b
−1/p
0 ‖u‖. (2.3)

Lemma 2.2. For all 1 < p < ∞, (X, ‖ · ‖) is a reflexive and separable Banach space,

and the embedding X →֒ ℓp is compact.

Proof. By Lemma 2.1, (ℓp, ‖ ·‖p) is a reflexive and separable Banach space. Then, the

Cartesian product space ℓp
2 = ℓp × ℓp is also a reflexive and separable Banach space

with respect to the norm

‖v‖ℓp

2
=

(

2
∑

i=1

‖vi‖
p
p

)1/p

, v = (v1, v2) ∈ ℓp
2. (2.4)

Consider the space

Y =
{(

(b(k))1/pu(k), (a(k))1/p∆u(k − 1)
)

: u ∈ X, k ∈ Z
}

.

Then, Y is a closed subset of ℓp
2. Hence, Y is also a reflexive and separable Banach

space with respect to the norm (2.4).
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Let the operator T : X → Y be defined by

Tu =
(

(b(k))1/pu(k), (a(k))1/p∆u(k − 1)
)

for any u ∈ X.

Obviously,

‖u‖ = ‖Tu‖ℓp

2
.

Thus, T : X → Y is an isometric isomorphic mapping and X is isometric isomorphic

to Y . Therefore, X is a reflexive and separable Banach space.

Finally, by using a proof similar to the ones used to prove [4, Proposition 3] or

[7, Lemma 2.1], it can be shown that the embedding X →֒ ℓp is compact. The details

are omitted. This completes the proof of the lemma.

For any u ∈ X and λ > 0, let

Φ(u) =
1

p

∑

k∈Z

[

a(k)|∆u(k − 1)|p + b(k)|u(k)|p
]

,

Ψ(u) =
∑

k∈Z

F (k, u(k)),

and

Iλ(u) = Φ(u) − λΨ(u). (2.5)

Lemma 2.3. For the functionals Φ, Ψ, and Iλ, we have the following:

(a) Assume that (H1) holds. Then Φ ∈ C1(X, R) with

〈Φ′(u), v〉 =
∑

k∈Z

[a(k)φp(∆u(k − 1))∆v(k − 1) + b(k)φp(u(k))v(k)]

for all u, v ∈ X.

(b) Assume that (C2) holds. Then Ψ ∈ C1(ℓp, R) with

〈Ψ′(u), v〉 =
∑

k∈Z

f(k, u(k))v(k) for all u, v ∈ ℓp.

(c) Assume that (H1) and (C2) hold. Then, for all λ > 0, every critical point u ∈ X

of Iλ is a solution of problem (1.1).

Remark 2.4. Part (a) of Lemma 2.3 with a(k) ≡ 1 on Z has been proved in [4,

Proposition 5]; part (b) of the lemma has been shown in [4, Proposition 6] under (H2);

and part (c) of the lemma with a(k) ≡ 1 on Z has been verified in [4, Proposition 7]

under (H1) and (H2). The present version of the lemma can be proved by essentially

the same arguments. We omit the details.
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3. MAIN RESULTS

Theorem 3.1 below extends Proposition 1.1. In particular, it shows that, under

some suitable assumptions on f , problem (1.1) has infinitely many solutions.

Theorem 3.1. Assume that (H1), (H3), (H4), and (C1)–(C3) hold. Then, there

exists a constant λ > 0 such that for all λ > λ, problem (1.1) has a sequence {un(k)}

of nontrivial solutions satisfying

un → 0 in X and Iλ(un) ≤ 0, (3.1)

where X and Iλ are defined by (2.1) and (2.5), respectively.

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.2. Assume that (H1) and (C1) hold, w ∈ ℓ1, and 1 < q < p. Let

g(t) =







φp(t) if |t| ≤ 1,

φq(t) if |t| > 1.

Then, there exists a constant λ > 0 such that for all λ > λ, the problem






−∆
(

a(k)φp(∆u(k − 1))
)

+ b(k)φp(u(k)) = λw(k)g(u(k)), k ∈ Z,

u(k) → 0 as |k| → ∞,
(3.2)

has a sequence {un(k)} of nontrivial solutions satisfying (3.1).

In the rest of this section, we prove our results. To this end, we first recall the

notion of genus.

Definition 3.3. Let X be a Banach space and A be a subset of X. We say that A

is symmetric if u ∈ A implies −u ∈ A. For a closed symmetric set A with 0 6∈ A,

the genus γ(A) of A is defined as the smallest integer k such that there exists an odd

continuous mapping from A to R
k \ {0}. If there does not exist such k, we define

γ(A) = ∞. Moreover, we set γ(∅) = 0. Let Γk denote the family of closed symmetric

subsets of X such that if A ∈ Γk, then 0 6∈ A and γ(A) ≥ k.

Our analysis mainly relies on the following lemma, which follows from [5, Theorem

1].

Lemma 3.4. Let X be an infinite dimensional Banach space and I ∈ C1(X, R) satisfy

the following two conditions:

(A1) I(u) is even, bounded from below, I(0) = 0, and I(u) satisfies the Palais-Smale

(PS) condition, i.e., every sequence {un} ⊂ X, such that I(un) is bounded and

I ′(un) → 0 as n → ∞, has a convergent subsequence. Here, the sequence {un}

is called a PS sequence.
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(A2) For each n ∈ N, there exists an An ∈ Γn such that supu∈An
I(u) < 0.

Then, I(u) has a sequence of critical points un such that

I(un) ≤ 0, un 6= 0, and lim
n→∞

un = 0.

Lemma 3.5. Assume that (H1), (H3), (H4), (C2), and (C3) hold. Then, the func-

tional Iλ defined by (2.5) satisfies condition (A1) of Lemma 3.4 with I = Iλ, i.e.,

Iλ(u) is even, bounded from below, Iλ(0) = 0, and Iλ(u) satisfies the PS condition.

Proof. Obviously, Iλ(0) = 0 and Iλ(u) is even by (C3). Under (H1)–(H4), the rest

part of the lemma has been proved in [4, Proposition 9] when a(k) ≡ 1 on Z. The

proof there can be slightly modified to prove the present version of the lemma. We

omit the details.

Lemma 3.6. Assume that (H1), (C1), and (C2) hold. Then, for each n ∈ N, there

exist Hn ∈ Γn and λ > 0 satisfying

sup
u∈Hn

Iλ(u) < 0 for all λ > λ.

Proof. For any fixed n ∈ N, define

vi(k) = δik =







1 if i = k,

0 if i 6= k,
for i = 1, . . . , n and k ∈ Z,

and

Fn = span{vi(k) : i = 1, . . . , n}.

Then, dim Fn = n. Let

S =
{

u ∈ X : ‖u‖ = ρb
1/p
0

}

, Hn = S ∩ Fn, and H∞ = lim
n→∞

Hn

where ρ is given in (C2). Then, by the property of genus (see, for example, [5,

Lemma 2.6]), γ(Hn) = n. Let

κ = inf
n∈N

inf
u∈Hn

n
∑

k=1

w1(k)|u(k)|p. (3.3)

Since Hn ⊂ Hn+1 for any n ∈ N, we have

κ = inf
u∈H∞

∞
∑

k=1

w1(k)|u(k)|p.

We claim that κ > 0. In fact, assume, to the contrary, that κ = 0. Then for any

l ∈ N, there exists ul ∈ H∞ such that
∞
∑

k=1

w1(k)|ul(k)|p <
1

l
. (3.4)

Thus,

lim
l→∞

ul(k) = 0 for k ∈ Z.
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Then, from the fact that
∑∞

k=1 b(k)|ul(k)|p ≤ ‖ul‖
p = ρpb0 < ∞, we see that there

exists L ∈ N such that

∞
∑

k=1

b(k)|ul(k)|p <
ρpb0

(2pM + 1)
for l ≥ L. (3.5)

By Minkowski’s inequality and (C1), we have

∑

k∈Z

a(k)|∆ul(k − 1)|p =
∑

k∈Z

a(k)|ul(k) − ul(k − 1)|p

≤





(

∑

k∈Z

a(k)|ul(k)|p

)1/p

+

(

∑

k∈Z

a(k)|ul(k − 1)|p

)1/p




p

= 2p

∞
∑

k=1

a(k)|ul(k)|p

≤ 2pM
∞
∑

k=1

b(k)|ul(k)|p.

Thus, from (2.2), we see that

ρpb0 = ‖ul‖
p =

∑

k∈Z

[

a(k)|∆ul(k − 1)|p + b(k)|ul(k)|p
]

≤ (2pM + 1)

∞
∑

k=1

b(k)|ul(k)|p for l ∈ N.

This contradicts (3.5). Hence, the claim is true.

Now, for any u ∈ Hn, from (2.3), we have ‖u‖∞ ≤ b
−1/p
0 ‖u‖ = ρ. This, together

with (C2) and (3.3), implies that

sup
u∈Hn

Iλ(u) = sup
u∈Hn

{

1

p

∑

k∈Z

[

a(k)|∆u(k − 1)|p + b(k)|u(k)|p
]

− λ
∑

k∈Z

F (k, u(k))

}

≤ sup
u∈Hn

{

1

p
‖u‖p − λ

∑

k∈Z

w1(k)|u(k)|p

}

= sup
u∈Hn

{

1

p
ρpb0 − λ

n
∑

k=1

w1(k)|u(k)|p

}

≤ sup
u∈Hn

{

1

p
ρpb0 − λκ

}

(3.6)

Let λ = ρpb0/(κp). Then, (3.6) implies that

sup
u∈Hn

Iλ(u) < 0 for all λ > λ.

This completes the proof of the lemma.
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Proof of Theorem 3.1. For λ given in Lemma 3.6, by Lemmas 3.5 and 3.6, conditions

(A1) and (A2) of Lemma 3.4 with I = Iλ are satisfied if λ > λ. Hence, Lemma 3.4

and Lemma 2.3 (c) imply that for all λ > λ, problem (1.1) has a sequence {un(k)} of

nontrivial solutions satisfying the required properties. This completes the proof the

theorem.

Proof of Corollary 3.2. With f(k, t) = w(k)g(t) and F (k, t) defined by (1.2), it is

easy to see that (H3), (H4), (C2), and (C3) hold. Moreover, in (C2), we can let

w1 = w2 = w and ρ = 1, The conclusion then follows from Theorem 3.1. This

completes the proof of the corollary.
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