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ABSTRACT. Conditions are given for the existence of local solutions of the nth order ordinary

differential equation, y(n)+f(x, y, y′, . . . , y(n−1)) = 0, satisfying the respective Dirichlet and nonlocal

integral boundary conditions, y(i−1)(a) = Ai, i = 1, . . . , n − 1, and
∫ b

a
y(x)dx = An.
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1. INTRODUCTION

In this paper, for fixed n ≥ 2, our primary consideration is with local solutions

of the nth order differential equation,

y(n) + f(x, y, y′, . . . , y(n−1)) = 0, a ≤ x ≤ b, (1.1)

satisfying the respective Dirichlet and nonlocal integral boundary conditions,

y(i−1)(a) = Ai, i = 1, . . . , n− 1, and

∫ b

a

y(x)dx = An, (1.2)

where f(x, r1, . . . , rn) : [a, b] × R
n → R is continuous and Ai ∈ R, i = 1, . . . , n.

A great deal of recent attention has been given to boundary value problems for

ordinary differential equations subject to nonlocal boundary conditions in the form

of integral boundary conditions. Results in many of these papers have involved a

great variety of methods including Krasnosel’skii cone expansion and compression

theory, the contraction mapping principle, the Avery and Peterson multiple fixed

point theorem, the Leggett and Williams triple fixed point theorem, Leray-Schauder

degree theory, Mawhin coincidence degree theory, and so on. For a few papers

applying these methods, in the presence of integral boundary conditions, we cite

[1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 17, 18].

For this work, we first impose a Lipschitz condition on f , along with conditions

in terms of the Lipschitz coefficients on the interval length b− a, such that an appli-

cation of the Banach Fixed Point Theorem [7, 16] yields a unique solution of (1.1),
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(1.2). Following that, the Lipschitz condition on f is removed and replaced by other

conditions on the interval length b− a and on the values Ai, i = 1, . . . , n, so that an

application of the Schauder-Tychonoff Fixed Point Theorem [7, 16] yields a solution of

(1.1), (1.2). In the last section, local solutions are obtained via an application of the

Leray-Schauder Nonlinear Alternative [7]. Sections 2 and 3 constitute generalizations

of the recent paper [8] dealing with (1.1), (1.2), when n = 2.

Each of the arguments involves establishing the existence of fixed points for a

completely continuous operator whose kernel is a Green’s function. In the next sec-

tion, a few results are presented for an appropriate Green’s function.

2. A GREEN’S FUNCTION

Since the only solution of

−y(n) = 0, a ≤ x ≤ b (2.1)

y(i−1)(a) = 0, i = 1, . . . , n− 1,

∫ b

a

y(x)dx = 0, (2.2)

is y(x) ≡ 0, it follows that there exists a Green’s function, G(x, s), for (2.1), (2.2). A

direct computation gives that

G(x, s) =











(x−a)n−1

(n−1)!
(b−s)n

(b−a)n , a ≤ x ≤ s ≤ b,

(x−a)n−1

(n−1)!
(b−s)n

(b−a)n − (x−s)n−1

(n−1)!
, a ≤ s ≤ x ≤ b,

(2.3)

with the properties

(i) For each fixed a < s < b, as a function of x on [a, s] and on [s, b], −∂nG(x,s)
∂xn = 0,

(ii) For each fixed a < s < b,
∫ b

a
G(x, s)dx = 0, and as a function of x on [a, s],

∂i−1G(a,s)
∂xi−1 = 0, i = 1, . . . , n− 1,

(iii) ∂i−1G(x,s)
∂xi−1 is continuous on [a, b] × [a, b], i = 1, . . . , n− 1,

and

(iv) For each fixed a < s < b, as a function of x, ∂n−1G(x,s)
∂xn−1 is continuous on [a, s] and

on [s, b], and
∂n−1G(s+, s)

∂xn−1
−
∂n−1G(s−, s)

∂xn−1
= −1.

Next, let w(x) be the solution of (2.1), (1.2). Then,

w(x) =
n

(b− a)n

{

An −
n−1
∑

i=1

Ai

i!
(b− a)i

}

(x− a)n−1 +
n−2
∑

j=0

Aj+1

j!
(x− a)j. (2.4)

It is immediate that y ∈ C(n)[a, b] is a solution of (1.1), (1.2) iff y ∈ C(n−1)[a, b] is a

solution of

y(x) = w(x) +

∫ b

a

G(x, s)f(s, y(s), y′(s), . . . , y(n−1))ds. (2.5)
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In subsequent sections, we also will have need of the values γi > 0, i = 1, . . . , n,

defined by

γi := (b− a)i−1−n max
a≤x≤b

∫ b

a

∣

∣

∣

∣

∂i−1G(x, s)

∂xi−1

∣

∣

∣

∣

ds. (2.6)

3. UNIQUE LOCAL SOLUTIONS OF (1.1), (1.2)

In this section, we put restrictions on f and the length of the interval [a, b] which

are sufficient for the existence of unique solutions of (1.1), (1.2). Use will be made of

the constants in (2.6) and the Banach Fixed Point Theorem.

Theorem 3.1. Let f(t, r1, . . . , rn) : [a, b] × R
n → R be continuous, and for some

Ki ≥ 0, i = 1, . . . , n, satisfy a Lipschitz condition,

|f(x, r1, . . . , rn) − f(x, s1, . . . , sn)| ≤
n
∑

i=1

Ki|ri − si|, (3.1)

on [a, b] × R
n. If

n
∑

i=1

Kiγi(b− a)n−i+1 < 1, (3.2)

then, for each Ai ∈ R, i = 1, . . . , n, the boundary value problem (1.1), (1.2) has a

unique solution on [a, b].

Proof. Our proof involves an application of the Banach Fixed Point Theorem. We

let M := C(n−1)[a, b], with norm, ‖h‖ :=
∑n

i=1Ki|h
(i−1)|∞, for h ∈ M and where

| · |∞ = maxa≤x≤b | · |.

Next, let Ai ∈ R, i = 1, . . . , n, be given, and define a mapping T : M → M by

(Th)(x) := w(x) +

∫ b

a

G(x, s)f(s, h(s), h′(s), . . . , h(n−1)(s))ds,

where a ≤ x ≤ b, h ∈ M, w(x) is defined by (2.4), and G(x, s) is the Green’s function

given in (2.3). In view of (2.5), fixed points of T are solutions of (1.1), (1.2).

And we shall show that T is a contraction with respect to the norm ‖ · ‖. So, let

Ai ∈ R be as above, and let h, g ∈ M. Then, by the Lipschitz condition (3.1) and
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the constants in (2.6), we have, for a ≤ x ≤ b and i = 1, . . . , n,

|(Th)(i−1)(x) − ((Tg)(i−1)(x)| ≤

∫ b

a

∣

∣

∣

∣

∂i−1G(x, s)

∂xi−1

∣

∣

∣

∣

∣

∣f(s, h(s), . . . , h(n−1)(s))

−f(s, g(s), . . . , g(n−1)(s))
∣

∣ ds

≤

∫ b

a

∣

∣

∣

∣

∂i−1G(x, s)

∂xi−1

∣

∣

∣

∣

n
∑

j=1

Kj |h
(j−1)(s) − g(j−1)(s)|ds

≤

∫ b

a

∣

∣

∣

∣

∂i−1G(x, s)

∂xi−1

∣

∣

∣

∣

n
∑

j=1

Kj |h
(j−1) − g(j−1)|∞ds

=

∫ b

a

∣

∣

∣

∣

∂i−1G(x, s)

∂xi−1

∣

∣

∣

∣

‖h− g‖ds

≤ γi(b− a)n−i+1‖h− g‖,

so that |(Th)(i−1) − (Tg)(i−1)|∞ ≤ γi(b− a)n−i+1‖h− g‖. Consequently,

‖Th− Tg‖ =

n
∑

i=1

Ki|(Th)
(i−1) − (Tg)(i−1)|∞

≤

(

n
∑

i=1

Kiγi(b− a)n−i+1

)

‖h− g‖.

So by (3.2), T : M → M is a contraction, and by the Banach Fixed Point Theorem,

there exists a unique y ∈ M such that Ty = y, and as such from (2.5), y is the unique

solution of (1.1), (1.2). �

4. LOCAL SOLUTIONS OF (1.1), (1.2)

In this section, we remove the Lipschitz condition on f , but impose restrictions

on both interval length and boundary conditions so that local solvability can still be

established. In particular, we will make use of the Schauder-Tychonoff Fixed Point

Theorem to show the existence of local solutions of (1.1), (1.2) in the absence of

condition (3.1).

In what follows, let M := C(n−1)[x1, x2], let Ni > 0, i = 1, . . . , n, be given and

define

K := {h ∈ M | |h(i−1)|∞ ≤ 2Ni, i = 1, . . . , n},

and where for h ∈ M, we define ‖h‖ := max1≤i≤n{|h
(i−1)|∞ }. The conditions of the

Schauder-Tychonoff Fixed Point Theorem are satisfied relative to (M, ‖ · ‖) and K,

in that (M, ‖ · ‖) is a Banach space and K is closed, bounded and convex.

Theorem 4.1. Assume f(x, r1, . . . , rn) : [a, b] × R
n → R is continuous, and let

Ni > 0, i = 1, . . . , n, be given. Let Q := max{|f(x, r1, . . . , rn)| | a ≤ x ≤ b, |ri| ≤

2Ni, i = 1, . . . , n}. Then, for any [x1, x2] ⊆ [a, b], the boundary value problem

y(n) + f(x, y, . . . , y(n−1)) = 0, x1 ≤ x ≤ x2, (4.1)
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y(i−1)(x1) = yi, i = 1, . . . , n− 1,

∫ x2

x1

y(x)dx = yn, (4.2)

has a solution, provided x2 − x1 ≤ δ(N1, . . . , Nn) := min1≤i≤n

{

n−i+1

√

Ni

γiQ

}

, and for

i = 1, . . . , n, maxx1≤x≤x2

∣

∣w(i−1)(x)
∣

∣ ≤ Ni, where w(x) is the solution of −w(n) = 0

satisfying w(i−1)(x1) = yi, i = 1, . . . , n− 1, and
∫ x2

x1
w(x)dx = yn.

Proof. Let Ni > 0, i = 1, . . . , n, be given, let a ≤ x1 ≤ x2 ≤ b, with x2 − x1 ≤

δ(N1, . . . , Nn), let yi ∈ R, i = 1, . . . , n, and w(x) satisfy the conditions of the state-

ment of the theorem, and let (M, ‖ · ‖) and K be as above.

Define the mapping T : M → M by

(Th)(x) := w(x) +

∫ x2

x1

G(x, s)f(s, h(s), . . . , h(n−1)(s))ds,

where G(x, s) is the Green’s function in (2.3) relative to the interval endpoints x1 and

x2. Moreover, by (2.5) to obtain a solution of (4.1), (4.2), it suffices to establish a

fixed point of T in K. We proceed via a few claims.

Claim 1. T maps K into K.

Choose h ∈ K. Then, for x1 ≤ x ≤ x2 and i = 1, . . . , n,

|(Th)(i−1)(x)| ≤ |w(i−1)(x)| +

∫ x2

x1

∣

∣

∣

∣

∂i−1G(x, s)

∂xi−1

∣

∣

∣

∣

|f(s, h(s), . . . , h(i−1)(s))|ds

≤ Ni +

∫ x2

x1

∣

∣

∣

∣

∂i−1G(x, s)

∂xi−1

∣

∣

∣

∣

Qds

≤ Ni +Qγi(x2 − x1)
n−i+1

≤ Ni +Qγi

(

n−i+1

√

Ni

γiQ

)n−i+1

= 2Ni.

So, |(Th)(i−1)|∞ ≤ 2Ni, and Th ∈ K.

Claim 2. T is continuous on K.

Let the compact subset H ⊆ [a, b] × R
n be defined by H := [a, b] ×

∏n

i=1[−2Ni, 2Ni].

Then, given ǫ > 0, there exists a δ(ǫ) > 0 such that for (η1, r1, . . . , rn), (η2, s1, . . . , sn) ∈

H , with |η1 − η2| < δ and |ri − si| < δ, i = 1, . . . , n, it follows that |f(η1, r1, . . . , rn)−

f(η2, s1, . . . , sn)| < ǫ.

Now, choose h, g ∈ K with ‖h−g‖ < δ, so that |h(i−1)−g(i−1)|∞ < δ, i = 1, . . . , n.

Similar arguments to those in Claim 1 show that, for x1 ≤ x ≤ x2 and i = 1, . . . , n,

|(Th)(i−1)(x) − (Tg)(i−1)(x)| ≤ ǫγi(x2 − x1)
n−i+1,

and so

‖Th− Tg‖ ≤ ǫ ·

[

n
∑

i=1

γi(x2 − x1)
n−i+1

]

.
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Therefore, T is continuous K.

Next, we choose a sequence {hℓ}
∞
ℓ=1 ⊂ K, and we consider the sequence {(Thℓ)}

∞
ℓ=1

⊂ K. First, for each ℓ ∈ N, (Thℓ)
(n)(x) = −f(x, hℓ(x), . . . , h

(n−1)
ℓ (x)), which implies

|(Thℓ)
(n)(x)| ≤ Q, x1 ≤ x ≤ x2. Consequently, for ρ, σ ∈ [x1, x2], |(Thℓ)

(n−1)(ρ) −

(Thℓ)
(n−1)(σ)| ≤ Q|ρ − σ|, for all ℓ ∈ N, and so {(Thℓ)

(n−1)}∞ℓ=1 is a uniformly

equicontinuous family of functions. Since |(Thℓ)
(n−1)|∞ ≤ 2Nn, for all ℓ ∈ N, it

follows from the Arzelà-Ascoli Theorem that there exists a subsequence {(Thℓp
)(n−1)}

which converges uniformly on [x1, x2]. Similarly, |(Thℓp
)(n−1)|∞ ≤ 2Nn, for all p ∈ N,

implies that {(Thℓp
)(n−2)} is a uniformly equicontinuous family of functions, and

this, coupled with |(Thℓp
)(n−2)|∞ ≤ 2Nn−1 and the Arzelà-Ascoli Theorem, implies

there exists a further subsequence {(Thℓpq
)(n−2)} which is uniformly convergent on

[x1, x2]. Repeating this argument leads eventually to a subsequence, labeled for con-

venience {ℓν} ⊆ {ℓ}, such that {(Thℓν
)(i−1)}∞ν=1 converges uniformly on [x1, x2], for

each i = 1, . . . , n.

Consequently, {(Thℓν
)} converges in the the norm of M. It follows from the

Schauder-Tychonoff Fixed Point Theorem that T has a fixed point y ∈ K, and as

such y is a desired solution of the boundary value problem (4.1), (4.2). �

Corollary 4.1. Let f(x, r1, . . . , rn) : [a, b] × R
n be continuous and bounded. Then,

for any Ai ∈ R, i = 1, . . . , n, the boundary value problem (1.1), (1.2) has a solution.

Proof. Let Q := sup{|f(x, r1, . . . , rn)| | a ≤ x ≤ b, |ri| < ∞, i = 1, . . . , n}. Let Ai ∈

R, i = 1, . . . , n be given, and let w(x) be defined by (2.4). Choose Ni > 0, i = 1, . . . , n,

such that maxa≤x≤b

∣

∣w(i−1)(x)
∣

∣ ≤ Ni, i = 1, . . . , n, and min1≤i≤n

{

n−i+1

√

Ni

γiQ

}

≥ b−a.

The conclusion follows since b− a ≤ δ(N1, . . . , Nn) of Theorem 4.1. �

5. LOCAL SOLUTIONS BY LERAY-SCHAUDER NONLINEAR

ALTERNATIVE

In this section, we make application of the Leray-Schauder Nonlinear Alternative

in obtaining solutions of the differential equation,

y(n) + f(x, y) = 0, 0 ≤ x ≤ L, (5.1)

satisfying the boundary conditions,

y(i−1)(0) = 0, i = 1, . . . , n− 1,

∫ L

0

y(x)dx = 0, (5.2)

where f(x, r) : [0, L] × R → R is continuous. In making application of the nonlinear

alternative, we again impose growth conditions on f as well as on the interval length

L.

Theorem 5.1. Assume



BOUNDARY VALUE PROBLEMS WITH INTEGRAL CONDTIONS 109

(A) There exist σ ∈ C([0, L],R+) and a nondecreasing function ψ : R
+ → R

+ such

that

|f(x, r)| ≤ σ(x)ψ(|r|), (x, r) ∈ [0, L] × R,

and

(B) There exists M > 0 such that

M

γ1ψ(M)Ln‖σ‖
> 1.

Then (5.1), (5.2) has a solution on [0, L].

Proof. Let E = C[0, L] with norm, ‖ · ‖ = max0≤x≤L | · |. We seek fixed points of the

mapping T : E → E defined by

(Th)(x) =

∫ L

0

G(x, s)f(s, h(s))ds, h ∈ E,

were G is the Green’s function of (2.3) relative to the endpoints 0 and L.

We first show that T maps bounded sets into bounded sets. For r > 0, let

Br := {h ∈ E | ‖h‖ ≤ r} be a bounded subset of E. Then, for 0 ≤ x ≤ L and h ∈ Br,

|(Th)(x)| ≤

∫ L

0

|G(x, s)||f(x, h(s))|ds

≤

∫ L

0

|G(x, s)|σ(s)ψ(|h(s)|)ds

≤

∫ L

0

|G(x, s)|σ(s)ψ(‖h‖)ds

≤

∫ L

0

|G(x, s)|‖σ‖ψ(r)ds

≤ γ1L
nψ(r)‖σ‖.

Hence,

‖Th‖ ≤ γ1L
nψ(r)‖σ‖,

and so T maps Br into a bounded set.

Next, we show T maps bounded sets into equicontinuous sets. In that direction,

let 0 ≤ p < q ≤ L and let h ∈ Br, with Br above. Then,

|(Th)(p) − (Th)(q)| ≤

∫ L

0

|G(p, s) −G(q, s)||f(s, h(s))|ds

≤ ‖σ‖ψ(r)

∫ L

0

|G(p, s) −G(q, s)|ds.

The right hand side of the inequality tends to zero, as |p − q| → 0, independent of

h ∈ Br. So T maps Br into an equicontinuous set. It follows by the Arzelà-Ascoli

Theorem that T is completely continuous.
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Now, suppose for some h ∈ E and some 0 < µ < 1, we have h = µTh. Then, for

0 ≤ x ≤ L,

|h(x)| = |µ(Th)(x)|

≤

∫ L

0

|G(x, s)||f(x, h(s))|ds

≤ γ1L
nψ(‖h‖)‖σ‖,

which yields
‖h‖

γ1ψ(‖h‖)Ln‖σ‖
≤ 1.

By (B), ‖h‖ 6= M . If we set

V := {h ∈ E | ‖h‖ < M},

then the operator T : V → E is completely continuous (i.e., continuous and compact).

From the choice of V , there is no h ∈ ∂V such that h = µTh, for some 0 < µ < 1. By

the Leray-Schauder Nonlinear Alternative, it follows that T has a fixed point y ∈ V

which is a solution of (5.1), (5.2). �
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