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ABSTRACT. We use Two fixed point theorems to prove the existence of Bounded solution, peri-

odic solution and stability of solutions of the functional neutral differential equation

d

dt
[x(t) − cx(t − τ)] = −a(t)x(t − r1) + b(t)f(x(t − r2(t)).

Then we apply our results to the neutral Bernoulli differential equation

d

dt
[x(t) − cx(t − τ)] = −a(t)x(t − r1) + b(t)x

1

3 (t − r2(t)).
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1. INTRODUCTION

Motivated by the papers [2], [23], [24], [25] and the references therein, we consider

the functional neutral differential equation

d

dt
[x(t) − cx(t− τ)] = −a(t)x(t − r1) + b(t)f(x(t− r2(t))). (1.1)

where a : [0,∞) → (0,∞), f : R → R and b : [0,∞) → R are continuous, τ, r1 ≥ 0

and, r2 : [0,∞) → [0, γ] for γ > 0 and constant c. In addition, we apply our obtained

results to the neutral multiple delays Bernoulli differential equation

d

dt
[x(t) − cx(t− τ)] = −a(t)x(t − r1) + b(t)x

1

3 (t− r2(t)). (1.2)

In the case c = 0 equation (1.2) reduces to the one’s in [2]. In [25], the author

proved the existence of positive periodic solutions in neutral nonlinear equation with

functional delay of the form

x′(t) = −a(t)x(t) + c(t)x′(t− g(t)) + q(t, x(t− g(t))
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which arises in a food-limited population models (see [4], [5]–[8], [10], [11], [12]),

[18] and blood cell models, (see [1] and [22]). In addition, the author in [26]) used

Krasnosel’skĭı’s fixed point theorem and proved the existence of positive periodic

solution of the neutral delay differentia equation

d

dt
[x(t) − ax(t− τ)] = r(t)x(t) − f(t, x(t− τ)).

For system (1.1), there may be a stable equilibrium point of the population. In the

case the equilibrium point becomes unstable, there may exist a nontrivial periodic

solution. Then the oscillation of solutions occurs. The existence of such stable pe-

riodic solution is of quite fundamental importance biologically since it concerns the

long time survival of species. The study of such phenomena has become an essential

part of qualitative theory of differential equations. For historical background, basic

theory of periodicity, and discussions of applications of (1.1) to a variety of dynamical

models we refer the interested reader to [14], [15], [16], [17], [19], [21], [27] and [30].

2. BOUNDEDNESS

In order to transfer our original problem into an integral equation problem, we

put (1.1) into the form

d

dt
[x(t) − cx(t− τ)] = −a(t+ r1)[x(t) − cx(t− τ)] − ca(t+ r1)x(t− τ)

+b(t)f(x(t− r2(t)) +
d

dt

∫ t

t−r1

a(s+ r1)x(s)ds. (2.1)

Let r ≥ max{τ, r1, γ} and assume the existence of an initial continuous function

ψ : [−r, 0] → R such that x(t) = x(t, 0, ψ) for t ≥ 0 and x(t) = ψ(t) on [−r, 0]. A

multiplication of both sides of (2.1) with the integrating factor e
R

t

0
a(s+r1)ds followed

by integration from 0 to t yields

x(t) − cx(t− τ) = [x(0) − cx(−τ)]e−
R

t

0
a(u+r1)du

− c

∫ t

0

a(s+ r1)x(s− τ)e−
R

t

s
a(u+r1)duds+

∫ t

0

b(s)f(x(s− r2(s))e
−

R

t

s
a(u+r1)duds

+

∫ t

0

e−
R

t

s
a(u+r1)du[

d

ds

∫ s

s−r1

a(u+ r1)x(u)du]ds.

Finally an integration by parts in the last term of the above expression gives

x(t) = cx(t− τ) + [ψ(0) − cψ(−τ)]e−
R

t

0
a(u+r1)du

− c

∫ t

0

a(s+ r1)x(s− τ)e−
R

t

s
a(u+r1)duds

+

∫ t

0

b(s)f(x(s− r2(s))e
−

R

t

s
a(u+r1)duds
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+

∫ t

t−r1

a(u+ r1)x(u)du− e−
R

t

0
a(u+r1)du

∫ 0

−r1

a(u+ r1)ψ(u)du

−

∫ t

0

a(s+ r1)e
−

R

t

s
a(u+r1)du

∫ s

s−r1

a(u+ r1)x(u)duds. (2.2)

Krasnosel’skĭı fixed point theorem has been extensively used in differential and

functional differential equations, by Burton in proving the existence of periodic so-

lutions. Also, Burton was the first to use the theorem to obtain stability results

regarding solutions of integral equations and functional differential equations. For

a collection of different type of results we refer the reader to [3] and the references

therein. The author is unaware of any results regarding the use of Krasnosel’skĭı to

prove the existence of a positive periodic solution.

Theorem 2.1 (Krasnosel’skĭı). Let M be a closed convex nonempty subset of a Ba-

nach space
(

S, ‖ · ‖
)

. Suppose that A and B map M into S such that

(i) A is compact and continuous,

(ii) B is a contraction mapping.

(iii) x, y ∈ M, implies Ax+By ∈ M,

Then there exists z ∈ M with z = Az +Bz.

We are ready to use the above mentioned fixed point theorem to prove that

all solutions of (1.1) are bounded. We are emphasizing boundedness over stability

because the simple nonlinear Bernoulli equation

x′ = −2x+ x1/3,

is unstable but all its solutions are bounded. In preparation for our main theorem,

we let h : [−r,∞) → [1,∞) be any strictly increasing and continuous function such

that h(−r) = 1 and h(s) → ∞ as t → ∞. For any continuous function Let S be the

space of all continuous functions φ : [−r,∞) → R. Then (S, | · |h) is a Banach space

where for φ ∈ S,

|φ|h = sup
t≥−r

∣

∣

φ(t)

h(t)

∣

∣ <∞.

The next proposition is useful in proving compactness. For more on compactness

we refer the reader to p. 169 of [2].

Proposition 2.2. For positive constants M and K the set

L = {f ∈ S : |f(t)| ≤M, on [−r,∞), and |f(u) − f(v)| ≤ K|u− v|}

is compact.

Let L be a positive constant to be determined later and define

M = {φ ∈ S : |φ(t)| ≤ L, for − r ≤ t <∞, and φ(t) = ψ(t), on [−r, 0]}.
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In preparation for our main results we define our mappings. Let φ ∈ M and define

the mappings Γ,Υ : M → M by

(Γφ)(t) =

∫ t

0

b(s)f(φ(s− r2(s))e
−

R

t

s
a(u+r1)duds (2.3)

and

(Υφ)(t) = − cφ(t− τ) + [ψ(0) − cψ(−τ)]e−
R

t

0
a(u+r1)du

− c

∫ t

0

a(s+ r1)φ(s− τ)e−
R

t

s
a(u+r1)duds

+

∫ t

t−r1

a(u+ r1)φ(u)du− e−
R

t

0
a(u+r1)du

∫ 0

−r1

a(u+ r1)ψ(u)du

−

∫ t

0

a(s+ r1)e
−

R

t

s
a(u+r1)du

∫ s

s−r1

a(u+ r1)φ(u)duds. (2.4)

Since h is strictly increasing and h : [−r,∞) → [1,∞) we have for 0 ≤ s ≤ t,

1 ≤ h(s) ≤ h(t) ⇒ 1
h(t)

≤ h(s)
h(t)

≤ 1. We begin with the following lemma.

Lemma 2.3. Suppose there positive constants constant β, λ and µ such that

sup
t≥0

|b(t)|

a(t+ r1)
≤ β (2.5)

and for n = 1, 3, 5, ·, ·

|f(x)| ≤ λ‖x‖
1

n , for |x| ≤ µ. (2.6)

In addition, if

βλL
1

n + 2|c|L+ ‖ψ‖e−
R

t

0
a(u+r1)du

(

1 + |c| +

∫ 0

−r1

a(u+ r1)du

)

+ 2L sup
t≥0

∫ t

t−r1

a(u+ r1)du < L, (2.7)

for a sufficiently small continuous initial function ψ. Then for φ, η ∈ M, we have

Γφ+ Υη ∈ M.

Proof. Let ‖.‖ be the supremum norm on [−r,∞) of φ ∈ M, if φ is bounded. Thus,

by (2.5) we have that φ ∈ M,

∣

∣

∫ t

0

b(s)f(φ(s− r2(s))e
−

R

t

s
a(u+r1)duds

∣

∣

h

≤

∫ t

0

|b(s)||f(φ(s− r2(s))|e
−

R

t

s
a(u+r1)du/h(t)ds

≤

∫ t

0

|b(s)||f(φ(s− r2(s))|e
−

R

t

s
a(u+r1)duh(s)/h(t)ds

≤

∫ t

0

|b(s)||f(φ(s− r2(s))|e
−

R

t

s
a(u+r1)duh(t)/h(t)ds
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≤ βλL
1

n

∫ t

0

a(s+ r1)e
−

R

t

s
a(u+r1)duds

≤ βλL
1

n

∫ t

0

d

ds

(

e−
R

t

s
a(u+r1)du

)

ds

= βλL
1

n

(

1 − e−
R

t

0
a(u+r1)du

)

≤ βλL
1

n . (2.8)

Similarly, for η ∈ M,

∣

∣

∫ t

0

a(s + r1)e
−

R

t

s
a(u+r1)du

∫ s

s−r1

a(u+ r1)φ(u)duds
∣

∣

h

≤ ‖η‖

∫ t

0

d

ds

(

e−
R

t

s
a(u+r1)du

)

ds sup
t≥0

∫ t

t−r1

a(u+ r1)du

≤ L sup
t≥0

∫ t

t−r1

a(u+ r1)du. (2.9)

Thus, for φ, η ∈ M, we have by (2.8) and (2.9)

∣

∣Γφ+ Υη
∣

∣

h
≤ βλL

1

n + |c|L+ ‖ψ‖e−
R

t

0
a(u+r1)du

(

1 + |c|
)

+ |c|L

+ L sup
t≥0

∫ t

t−r1

a(u+ r1)du+ ‖ψ‖e−
R

t

0
a(u+r1)du

∫ 0

−r1

a(u+ r1)du

+ L sup
t≥0

∫ t

t−r1

a(u+ r1)du

= βλL
1

n + 2|c|L+ ‖ψ‖e−
R

t

0
a(u+r1)du

(

1 + |c| +

∫ 0

−r1

a(u+ r1)du
)

+ 2L sup
t≥0

∫ t

t−r1

a(u+ r1)du

≤ L.

Theorem 2.4. Suppose there is a positive constant K such that if

|t2 − t1| ≤ 1, then
∣

∣

∫ t2

t1

a(u+ r1)du
∣

∣ ≤ K|t2 − t1|. (2.10)

Also assume (2.5), (2.6) and (2.7) hold. Then ΓM resides is a compact set in the

space (S, | · |h).

Proof. Let φ ∈ M. If 0 ≤ t1 < t2 < t1 + 1, then

|(Γφ)(t2) − (Γφ)(t1)|

≤
∣

∣

∣

∫ t2

0

b(s)f(φ(s− r2(s))e
−

R

t

s
a(u+r1)duds
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−

∫ t1

0

b(s)f(φ(s− r2(s))e
−

R

t

s
a(u+r1)duds

∣

∣

∣

=
∣

∣

∣

∫ t2

t1

b(s)f(φ(s− r2(s))e
−

R

t

s
a(u+r1)duds

+
∣

∣

∣

∫ t1

0

b(s)
[

e−
R

t2

s
a(u+r1)du − e−

R

t1

s
a(u+r1)du

]

f(φ(s− r2(s))ds
∣

∣

∣

≤ β

∫ t2

t1

a(s+ r1)ds

+ λL
1

n

∫ t1

0

|b(s)|
∣

∣e−
R t2

0
a(u+r1)du − e−

R t1

0
a(u+r1)du

∣

∣e
R

s

0
a(u+r1)duds.

This shows that by the Proposition, ΓM resides in a compact set.

Then there is a solution x(t, 0, ψ) of (1.1) on [0,∞) with |x(t, 0, ψ) < L.

3. EXISTENCE OF PERIODIC SOLUTIONS

Next we consider a perturbed version of equation (1.1) of the form

d

dt
[x(t) − cx(t− τ)] = −a(t)x(t − r1) + b(t)f(x(t− r2(t)) + p(t), (3.1)

where p : R → R is continous and there exist a T > 0 such that

r2(t+ T ) = r2(t), a(t+ T ) = a(t), b(t+ T ) = b(t), and p(t+ T ) = p(t). (3.2)

We note that due to the presence of the term cx(t− τ), once the equation is inverted

then once will face with the term cx(t−τ) which may not define a compact mapping.

Thus, Krasnosel’skĭı fixed point theorem becomes ideal to prove the existence of peri-

odic solution. In [2] the authors considered a simpler form of (3.1) and used Schaefer

fixed point theorem to prove the existence of periodic solution. Again Schaefer fixed

point theorem will not work for our equation.

Define PT = {φ : C(R,R), φ(t + T ) = φ(t)} where C(R,R) is the space of all

real valued continuous functions. Then PT is a Banach space when it is endowed with

the supremum norm

‖x(t)‖ = max
t∈[0,T ]

|x(t)| = max
t∈R

|x(t)|.

Let
∫ T

0

a(s)ds 6= 0. (3.3)

Lemma 3.1. Suppose (3.2) and (3.3) hold. If x(t) ∈ PT , then x(t) is a solution of

(3.1) if and only if

x(t) = cx(t− τ) +
(

1 − e−
R

t

t−T
a(s+r1)ds

)−1{

− c

∫ t

t−T

a(s+ r1)x(s− τ)e−
R

t

s
a(u+r1)duds
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+

∫ t

t−T

b(s)f(x(s− r2(s))e
−

R

t

s
a(u+r1)duds

−

∫ t

t−T

a(s + r1)e
−

R

t

s
a(u+r1)du

∫ s

s−r1

a(u+ r1)x(u)duds

+

∫ t

t−T

e−
R

t

s
a(u+r1)dup(s)ds.

}

+

∫ t

t−r1

a(u+ r1)x(u)du (3.4)

Proof. Let x(t) ∈ PT be a solution of A multiplication of both sides of (2.1) with the

integrating factor e
R

t

0
a(s+r1)ds followed by integration from t− T to t yields

x(t)
(

1 − e−
R

t

t−T
a(s+r1)ds

)

e
R

t

0
a(u+r1)du = c

(

1 − e−
R

t

t−T
a(s+r1)ds

)

e
R

t

0
a(u+r1)dux(t− τ)

− c

∫ t

t−T

a(s+ r1)x(s− τ)e
R

s

0
a(u+r1)duds

+

∫ t

t−T

b(s)f(x(s− r2(s))e
R

s

0
a(u+r1)duds

+

∫ t

t−T

e
R

s

0
a(u+r1)du[

d

ds

∫ s

s−r1

a(u+ r1)x(u)du]ds

+

∫ t

t−T

e
R

s

0
a(u+r1)dup(s)ds. (3.5)

Let

U = e
R

s

0
a(u+r1)du

and

dV =
d

ds

∫ s

s−r1

a(u+ r1)x(u)du

we obtain
∫ t

t−T

e
R

s

0
a(u+r1)du[

d

ds

∫ s

s−r1

a(u+ r1)x(u)du]ds

= e
R

t

0
a(u+r1)du

∫ t

t−r1

a(u+ r1)x(u)du

− e
R

t−T

0
a(u+r1)du

∫ t−T

t−T−r1

a(u+ r1)x(u)du

−

∫ t

t−T

a(s+ r1)e
R

s

0
a(u+r1)du

∫ s

s−r1

a(u+ r1)x(u)duds

= e
R

t

0
a(u+r1)du

(

1 − e
R

t

t−T
a(s+r1)ds

)

∫ t

t−r1

a(u+ r1)x(u)du

−

∫ t

t−T

a(s+ r1)e
R

s

0
a(u+r1)du

∫ s

s−r1

a(u+ r1)x(u)duds (3.6)
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Substituting (3.6) into (3.5) and then dividing by e
R

t

0
a(u+r1)du

(

1−e
R

t

t−T
a(s+r1)ds

)

gives

(3.4). This completes the proof.

Let L be a positive constant and define the set

M = {φ ∈ PT : ‖φ‖ ≤ L}.

Then the set M is a closed convex and bounded subset of the Banach space PT . Let

γ = sup
t≥0

(

1 − e−
R

t

t−T
a(s+r1)ds

)−1
∣

∣

∫ t

t−T

e−
R

t

s
a(u+r1)dup(s)ds

∣

∣.

Theorem 3.2. Suppose (2.5), (2.6), (2.10), and (3.2) hold. In addition, if

2|c|L+ βλL
1

n + 2L sup
t≥0

∫ t

t−r1

a(u+ r1)du+ γ < L, (3.7)

then x(t) is a solution of (3.1) in M.

Proof. It is clear from (3.7) that

2|c| + 2 sup
t≥0

∫ t

t−r1

a(u+ r1)du < 1.

Let φ ∈ M and define the mappings Γ,Υ : M → M by

(Γφ)(t) =
(

1 − e−
R

t

t−T
a(s+r1)ds

)−1
∫ t

t−T

b(s)f(x(s− r2(s))e
−

R

t

s
a(u+r1)duds

and

(Υφ)(t) = cx(t− τ) +
(

1 − e−
R

t

t−T
a(s+r1)ds

)−1{

− c

∫ t

t−T

a(s + r1)x(s− τ)e−
R

t

s
a(u+r1)duds

−

∫ t

t−T

a(s+ r1)e
−

R

t

s
a(u+r1)du

∫ s

s−r1

a(u+ r1)x(u)duds

+

∫ t

t−T

e−
R

t

s
a(u+r1)dup(s)ds.

}

+

∫ t

t−r1

a(u+ r1)x(u)du.

Then, we note that
∣

∣

∣

(

1 − e−
R

t

t−T
a(s+r1)ds

)−1
∫ t

t−T

b(s)f(x(s− r2(s))e
−

R

t

s
a(u+r1)duds

∣

∣

∣

≤ βλL
1

n (1 − e−
R

t

t−T
a(s+r1)ds

)−1
∫ t

t−T

[
d

ds
e−

R

t

s
a(u+r1)du]ds

= βλL
1

n (1 − e−
R

t

t−T
a(s+r1)ds

)−1

(1 − e−
R

t

t−T
a(s+r1)ds

)

= βλL
1

n .

The rest of the proof of the theorem follows along the lines of the proofs of Lemma 2.1

and Theorem 2.2.
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4. POSITIVE PERIODIC SOLUTIONS

In this section we obtain necessary conditions for the the existence of a positive

periodic solution of (3.1). As a consequence of conditions (3.2) and (4.2) there are

positive constants m∗
1, m

∗
2, p1, and p2 so that

m∗
1 = inf

t≥0

∫ t

t−r1

a(u+ r1)du and m∗
2 = sup

t≥0

∫ t

t−r1

a(u+ r1)du,

and

p∗1 ≤
(

1 − e−
R

t

t−T
a(s+r1)ds

)−1
∫ t

t−T

e−
R

t

s
a(u+r1)dup(s)ds ≤ p∗2. (4.1)

We modify condition (2.5) by assuming the existence of positive constants α and β

so that

0 ≤ α a(t+ r1) ≤ b(t) ≤ β a(t+ r1). (4.2)

In order to show one of the mapping is a contraction, we must require that

|c| < 1. (4.3)

As a consequence, we are led to consider to consider the two case; 0 ≤ c < 1, and

−1 < c ≤ 0. For some nonnegative constant L and a positive constant K we define

the set

M = {φ ∈ PT : L ≤ ‖φ‖ ≤ K},

which is a closed convex and bounded subset of the Banach space PT . Assume

0 ≤ c < 1. Then there are nonnegative constants m1, m2 such that

0 ≤ m1 ≤ c ≤ m2 < 1. (4.4)

In addition, we assume that for all u ∈ R and 0 ≤ L ≤ ρ ≤ K

0 ≤
L(1 −m1 −m∗

1) +K(m2 +m∗
2) − p∗1

α

≤ f(u, ρ) ≤
K(1 −m2 −m∗

2) + L(m1 +m∗
1) − p∗2

β
. (4.5)

To apply Theorem 2.1, we will need to construct two mappings; one is contraction

and the other is compact. Thus, we set the map A : M → PT

(Aφ)(t) =
(

1 − e−
R

t

t−T
a(s+r1)ds

)−1{

− c

∫ t

t−T

a(s + r1)φ(s− τ)e−
R

t

s
a(u+r1)duds

+

∫ t

t−T

b(s)f(φ(s− r2(s))e
−

R

t

s
a(u+r1)duds

−

∫ t

t−T

a(s+ r1)e
−

R

t

s
a(u+r1)du

∫ s

s−r1

a(u+ r1)φ(u)duds

+

∫ t

t−T

e−
R

t

s
a(u+r1)dup(s)ds.

}
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+

∫ t

t−r1

a(u+ r1)φ(u)du

In a similar way we set the map B : M → PT

(Bϕ)(t) = cϕ(t− τ), t ∈ R.

Theorem 4.1. Assume (2.10), (3.2), (4.2), (4.3) and (4.5) with 0 ≤ c < 1 hold. If

∫ t

t−T

a(s+ r1)ds > 0 (4.6)

then (3.1) has a positive periodic solution z satisfying 0 ≤ L ≤ z ≤ K.

Proof. Let ϕ ∈ M. Then by (4.3), B defines a contraction mapping under the supre-

mum norm. Moreover, for ϕ, φ ∈ PT , the mappings B and A are periodic. Showing

A is compact is similar to the previous proof and hence we omit it. Left to show that

for ϕ, φ ∈ M implies Bϕ+ Bφ ∈ M. Let ϕ, φ ∈ M, then

(Bϕ)(t) + (Aψ)(t) = cϕ(t− τ)

+
(

1 − e−
R

t

t−T
a(s+r1)ds

)−1{

− c

∫ t

t−T

a(s + r1)φ(s− τ)e−
R

t

s
a(u+r1)duds

+

∫ t

t−T

b(s)f(φ(s− r2(s))e
−

R

t

s
a(u+r1)duds

+

∫ t

t−r1

a(u+ r1)φ(u)du

≤ m2K −m1L+ β
K(1 −m2 −m∗

2) + L(m1 +m∗
1) − p∗2

β

−m∗
1L+ p∗2 +m∗

2K

≤ K.

This implies that

‖Bϕ) + (Aψ)‖ ≤ K.

On the other hand,

(Bϕ)(t) + (Aψ)(t) ≥ m1L−m∗
2K + α

L(1 −m1 −m∗
1) +K(m2 +m∗

2) − p∗1
α

−m2K + p∗1 +m∗
1L

≥ L.

This implies that

‖Bϕ) + (Aψ)‖ ≥ L.

This shows that Bϕ+ Aψ ∈ M. All the hypothesis of Theorem 2.1 are satisfied

and therefore equation (3.1) has a periodic solution, say z residing in M.
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For the next theorem we assume −1 < c ≤ 0. Then there are non positive

constants m1, m2 such that

−1 < m1 ≤ c ≤ m2 ≤ 0.

In addition, we assume that for all u ∈ R and 0 ≤ L ≤ ρ ≤ K

0 ≤
L(1 −m1 −m∗

1 +m2) +m∗
2K − p∗2

β

≤ f(u, ρ) ≤
K(1 −m2 −m∗

2 +m1) +m∗
1L− p∗1

α
. (4.7)

Theorem 4.2. Assume (2.10), (3.2), (4.2), (4.3) and (4.7) with −1 < c ≤ 0.

Then (3.1) has a positive periodic solution z satisfying 0 ≤ L ≤ z ≤ K.

Proof. The proof follows along the lines of the proof of Theorem 4.1 and hence we

omit.

Next we display an example in which we show the existence of positive periodic

solution.

5. EXAMPLE

The neutral differential equation

x′(t) = −
1

2
sin2(t)x(t− π) +

1

2
x′(t− π) +

sin2(t)/2

x2(t− π) + 1
+

1

25
(5.1)

has a positive π-periodic solution x satisfying

0.64 ≤ x ≤ 1.

Here we have c = 1
2

and hence we use Theorem 4.1. By looking at the equation we

can see that

a(t) = b(t) =
1

2
sin2(t), f(t, x(t− π)) =

1

x2(t− π) + 1
, T = π, and p(t) =

1

25
.

Then,

m1 = m2 =
1

2
, and α = β = 1.

Since,

e
R

t

t−π
a(s+r1)ds = e

R

t

t−π

1

2
sin2(s−π)ds = π/4,

we have

m∗
1 = m∗

2 = π/4.

Moreover, after some calculation we arrive at

(

1 − e−
R

t

t−T
a(s+r1)ds

)−1
∫ t

t−T

e−
R

t

s
a(u+r1)dup(s)ds =

1

25(1 − e−π/4)
e

(

−π2/8+(π/8) sin(2t)
)

.
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As a consequence, we have

p∗1 =
1

25(1 − e−π/4)
e−π2/8 = .02141,

and

p∗2 =
1

25(1 − e−π/4)
e−π2/8+π/8 = .031708.

By letting K = 1, and L = 0.64 we see that all the conditions of Theorem 4.1

are satisfied and hence Equation (5.1) has a positive π-periodic solution x satisfying

0.64 ≤ x ≤ 1.
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