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ABSTRACT. We consider the following class of nonlinear three point singular boundary value

problems (SBVPs)

−y′′(x) − 2

x
y′(x) = f(x, y), 0 < x < 1,

y′(0) = 0, y(1) = δy(η),

where δ > 0 and 0 < η < 1. We establish some new maximum principles. Further using these

maximum principles and monotone iterative technique in the presence of upper and lower solution

we prove existence of solutions for the above class of nonlinear three point SBVPs. Here the nonlinear

term is one sided Lipschitz continuous in its domain, also x = 0 is regular singular point of the above

differential equation.
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1. INTRODUCTION

Singular differential equations are of great importance, and the behavior of a

physical system modeled by differential equation frequently is most interesting in the

neighborhood of a singular point [1]. Many problems in applied mathematics and

engineering lead to singular boundary value problems of the form

−y′′ − α

x
y′ = f(x, y), 0 < x < 1, (1.1)

y′(0) = 0, y(1) = A, (1.2)

where A is a finite constant and α ≥ 1. Existence and uniqueness of solutions of

(1.1)–(1.2) has been studied by several researchers, e.g., [2]–[8].

Recently lot of activity is noted on the upper and lower solution techniques.

Zhang [9] in his work justified that this technique is most promising specially for

singular boundary value problems.
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Three point variation of the two point SBVPs (1.1)–(1.2) in spherical symmetry

can be written as

−y′′(x) − 2

x
y′(x) = f(x, y), 0 < x < 1, (1.3)

y′(0) = 0, y(1) = δy(η). (1.4)

where f(I × R, R), I = [0, 1], 0 < η < 1, δ > 0. The singular three point BVPs

(1.3)–(1.4) are motivated by the mathematical model of heat generated in a chem-

ical reaction [2] and equilibrium of charged gas in a spherical shaped container [3].

Equations (1.3)–(1.4) model the thermal balance [2] between the heat generated by

the chemical reaction and that conducted away in spherical vessel. The boundary

condition y(1) = δy(η) represents the relation between temperature on the outer sur-

face and a surface lies on a sphere concentric with the vessel and radius less that

container. Similarly equilibrium of a charged gas in a spherical container [3] can be

extended for three point boundary value problems of the type (1.3)–(1.4).

Lots of results are available based on different analytical techniques for three point

nonlinear BVPs [10]–[19]. But when existing theory is applied to three point nonlinear

SBVPs lot of complications arise and in the current work we have made an honest

effort to address some of these issues. In this work we consider three point nonlinear

SBVP (1.3)–(1.4) which represents some physical phenomenon occurring in spherical

geometry. We use monotone iterative technique which is analytical but computational

in nature. It is not easy to establish Maximum principle for the corresponding linear

case for three point BVPs. As to achieve that we need to validate some inequalities

which are nonlinear in nature.

Iterative technique goes way back to the time of Picard [20]. In this work we

propose the following iterative scheme which is similar to the one considered in [4]

and [5]

−y′′
n+1 −

2

x
y′

n+1 − λyn+1 = f(x, yn) − λyn, y′
n+1(0) = 0, (1.5)

yn+1(1) = δyn+1(η).

We allow sup
(

∂f

∂y

)
to take both negative and positive values.

Under quite general conditions we show that a range for values of λ on both side

of real line can be found so that the above iterative scheme produces convergent mono-

tonic sequences which are solutions of the iterative scheme. These sequences converge

uniformly to the solution of the nonlinear three point boundary value problem (1.3)–

(1.4). To start the iteration and to produce monotonic sequences we need some initial

guess in terms of differential inequalities. These inequalities provide initial guess as

well as upper and lower bound for above discussed sequences of solutions.
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This paper is organized in following sections. Section 2 we use Lommel’s trans-

formation to find out two linearly independent solutions in terms of Spherical Bessel

Functions. Using these two linearly independent solutions Green’s function is con-

structed in section 3 and Section 4 states Maximum principle. Finally all these results

are used to establish existence theorems. The sufficient conditions derived in this pa-

per are verified for 4 examples.

LOMMEL’S TRANSFORMATION. This section is devoted to the correspond-

ing linear model of the nonlinear three point SBVPs (1.3)–(1.4). We consider the

following class of three point linear BVPs,

−(x2y′(x))′ − λx2y(x) = x2h(x), 0 < x < 1, (1.6)

y′(0) = 0, y(1) = δy(η) + b, (1.7)

where h ∈ C(I) and b is any constant.

The corresponding homogeneous system is given by

−(x2y′(x))′ − λx2y(x) = 0, 0 < x < 1, (1.8)

y′(0) = 0, y(1) = δy(η). (1.9)

Consider the differential equation (1.8) written in the form

x2y′′(x) + 2xy′(x) + λx2y(x) = 0. (1.10)

Using Lommel’s transformation (§cf [5, 21])

z = x
√

λ, w = x
1

2 y(x), (1.11)

the standard Bessel’s equation

z2 d2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0, (1.12)

is transformed into (1.10). Now, if w1(z) and w2(z) are two linearly independent

solutions of Bessel’s equation (1.12), then the two linearly independent solution of

(1.10) are given by

y1(x) = x− 1

2 w1

(
x
√

λ
)

, y2(x) = x− 1

2 w2

(
x
√

λ
)

. (1.13)

Hence the two linearly independent solutions of (1.10) can be obtained in terms of

w1(z) and w2(z). A solution of (1.12) which leads to say y1 bounded in the neighbor-

hood of the origin is w1 = J 1

2

(z). Hence a solution of (1.10) which remains bounded

in the neighborhood of the origin (except for a multiplicative constant) denoted as

y1(x, λ) is given by

y1(x, λ) =





x− 1

2 J 1

2

(
x
√

λ
)

, if λ > 0;

(ix)−
1

2 J 1

2

(
ix

√
|λ|

)
, if λ < 0.

(1.14)



178 A. K. VERMA AND M. SINGH

2. GREEN’S FUNCTION

In this section we construct Green’s function. We divide it into two cases.

Case I: λ > 0. Let us assume

(H0) : 0 < λ ≤ j2
− 1

2
,1
, 0 < δ < 1, η cos

√
λ − δ cos η

√
λ ≤ 0, η sin

√
λ − δ sin η

√
λ > 0

where j− 1

2
,1 is the first positive zero of J− 1

2

(x).

It is easy to see that (H0) can be satisfied.

Lemma 2.1. The Green’s function for the following linear three point SBVPs

(x2y′(x))′ + λx2y(x) = 0, 0 < x < 1, (2.1)

y′(0) = 0, y(1) = δy(η), (2.2)

is given by

G(x, t) =






sin(x
√

λ)(η sin(
√

λ(t−1))−δ sin(
√

λ(t−η)))
x t

√
λ (η sin(

√
λ)−δ sin(η

√
λ))

, 0 ≤ x ≤ t ≤ η;

sin(t
√

λ)(η sin(
√

λ(x−1))−δ sin(
√

λ(x−η)))
x t

√
λ (η sin(

√
λ)−δ sin(η

√
λ))

, t ≤ x, t ≤ η;

η sin(
√

λ(t−1)) sin(x
√

λ)
x t

√
λ(η sin(

√
λ)−δ sin(η

√
λ))

, x ≤ t, η ≤ t;

(δ sin(η
√

λ) sin(
√

λ(t−x))+η sin(t
√

λ) sin(
√

λ(x−1)))
x t

√
λ (η sin(

√
λ)−δ sin(η

√
λ))

, η ≤ t ≤ x ≤ 1,

and if (H0) holds then G(x, t) ≤ 0.

Proof. Define the Green’s function by the following equations

G(x, t) =





a1
1√
x
J 1

2

(
x
√

λ
)

+ a2
1√
x
J− 1

2

(
x
√

λ
)

, 0 ≤ x ≤ t ≤ η;

a3
1√
x
J 1

2

(
x
√

λ
)

+ a4
1√
x
J− 1

2

(
x
√

λ
)

, t ≤ x, t ≤ η;

a5
1√
x
J 1

2

(
x
√

λ
)

+ a6
1√
x
J− 1

2

(
x
√

λ
)

, x ≤ t, η ≤ t;

a7
1√
x
J 1

2

(
x
√

λ
)

+ a8
1√
x
J− 1

2

(
x
√

λ
)

, η ≤ t ≤ x ≤ 1.

According to the definition and properties of the Green’s function, for any t ∈ [0, η],

we have

a1
1√
t
J 1

2

(
t
√

λ
)

+ a2
1√
t
J− 1

2

(
t
√

λ
)

= a3
1√
t
J 1

2

(
t
√

λ
)

+ a4
1√
t
J− 1

2

(
t
√

λ
)

,

(
−a1

√
λ

1√
t
J 3

2

(
t
√

λ
)

+ a2

√
λ

1√
t
J− 3

2

(
t
√

λ
))

−
(
−a3

√
λ

1√
t
J 3

2

(
t
√

λ
)

+ a4

√
λ

1√
t
J− 3

2

(
t
√

λ
))

= − 1

t2
,
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and thus

a1 − a3 = −
πJ− 1

2

(
t
√

λ
)

2
√

t
,

a2 − a4 =
πJ 1

2

(
t
√

λ
)

2
√

t
.

Using the boundary conditions, we have

a2 = 0,

a3J 1

2

(√
λ
)

+ a4J− 1

2

(√
λ
)

= δ

(
a3

1√
η
J 1

2

(
η
√

λ
)

+ a4
1√
η
J− 1

2

(
η
√

λ
))

.

Therefore

a1 =

√
π
2

(
η sin

(
(t − 1)

√
λ
)
− δ sin

(√
λ(t − η)

))

t
4
√

λ
(
η sin

(√
λ
)
− δ sin

(
η
√

λ
)) ,

a2 = 0,

a3 =

√
π
2

sin
(
t
√

λ
)(

η cos
(√

λ
)
− δ cos

(
η
√

λ
))

t
4
√

λ
(
η sin

(√
λ
)
− δ sin

(
η
√

λ
)) ,

a4 = −
√

π
2

sin
(
t
√

λ
)

t
4
√

λ
.

For any t ∈ [η, 1], we have

a5
1√
t
J 1

2

(
t
√

λ
)

+ a6
1√
t
J− 1

2

(
t
√

λ
)

= a7
1√
t
J 1

2

(
t
√

λ
)

+ a8
1√
t
J− 1

2

(
t
√

λ
)

,

(
−a5

√
λ

1√
t
J 3

2

(
t
√

λ
)

+ a6

√
λ

1√
t
J− 3

2

(
t
√

λ
))

−
(
−a7

√
λ

1√
t
J 3

2

(
t
√

λ
)

+ a8

√
λ

1√
t
J− 3

2

(
t
√

λ
))

= − 1

t2
,

and hence

a5 − a7 = −
πJ− 1

2

(
t
√

λ
)

2
√

t
,

a6 − a8 =
πJ 1

2

(
t
√

λ
)

2
√

t
.

By using the boundary conditions, we have

a6 = 0,

a7J 1

2

(√
λ
)

+ a8J− 1

2

(√
λ
)

= δ

(
a5

1√
η
J 1

2

(
η
√

λ
)

+ a6
1√
η
J− 1

2

(
η
√

λ
))

.
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Thus

a5 =

√
π
2

η sin
(√

λ(t − 1)
)

t
4
√

λ
(
η sin

(√
λ
)
− δ sin

(
η
√

λ
)) ,

a6 = 0,

a7 =

√
π
2

(
η cos

(√
λ
)

sin
(√

λt
)
− δ sin

(
η
√

λ
)

cos
(√

λt
))

t
4
√

λ
(
η sin

(√
λ
)
− δ sin

(
η
√

λ
)) ,

a8 = −
√

π
2

sin
(√

λt
)

t
4
√

λ
,

which completes the construction of Green’s function. Using (H0) we can easily verify

that G(x, t) ≤ 0.

Lemma 2.2. Let y ∈ C2(I) be a solution of nonhomogeneous linear three point

SBVPs (1.6)–(1.7) then

y(x) =
b η sin

(
x
√

λ
)

x
(
η sin

(√
λ
)
− δ sin

(
η
√

λ
)) −

∫

0

1

t2G(x, t)h(t)dt. (2.3)

Proof. Suppose G(x, t) is the Green’s function of

(x2y′(x))′ + λx2y(x) = 0, 0 < x < 1,

y′(0) = 0, y(1) = δy(η),

and ȳ is solution of

(x2y′(x))′ + λx2y(x) = 0, 0 < x < 1,

y′(0) = 0, y(1) = δ(η) + b,

then the boundary value problem (1.6)–(1.7) is equivalent to

y(t) = ȳ −
∫ 1

0

t2G(x, t)h(t)dt.

Suppose

ȳ = c1
1√
x
J 1

2

(
x
√

λ
)

+ c2
1√
x
J− 1

2

(
x
√

λ
)

.

Since

ȳ′(0) = (0), and ȳ(1) = δȳ(η) + b,

we get

c1 =
b

J 1

2

(√
λ
)
− δ√

η
J 1

2

(
η
√

λ
) ,

c2 = 0.
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Hence the three point linear SBVP (1.6)–(1.7) is equivalent to

y(x) =
b η sin

(
x
√

λ
)

x
(
η sin

(√
λ
)
− δ sin

(
η
√

λ
)) −

∫

0

1

t2G(x, t)h(t)dt.

Namely y ∈ C2(I) is a solution of the boundary value problem (1.6)–(1.7) if and only

if y ∈ C(I) is a solution of the integral equation

y(x) =
b η sin

(
x
√

λ
)

x
(
η sin

(√
λ
)
− δ sin

(
η
√

λ
)) −

∫

0

1

t2G(x, t)h(t)dt.

Case II: λ < 0. Assume that

(H ′
0) λ < 0, δ > 0, η cosh

(√
|λ|

)
− δ cosh

(
η
√
|λ|

)
≥ 0,

η sinh
(√

|λ|
)
− δ sinh

(
η
√
|λ|

)
> 0.

It is easy to see that (H ′
0) can be satisfied.

Lemma 2.3. The Green’s function for the following linear three point SBVPs

(x2y′(x))′ + λx2y(x) = 0, 0 < x < 1,

y′(0) = 0, y(1) = δy(η)

for λ < 0 is given by

G(x, t) =





sinh
“√

|λ|x
”“

η sinh
“√

|λ|(t−1)
”

−δ sinh
“√

|λ|(t−η)
””

x t
√

|λ|
“

η sinh
“√

|λ|
”

−δ sinh
“

η
√

|λ|
”” , 0 ≤ x ≤ t ≤ η;

sinh
“√

|λ| t
”“

η sinh
“√

|λ|(x−1)
”

−δ sinh
“√

|λ|(x−η)
””

x t
√

|λ|
“

η sinh
“√

|λ|
”

−δ sinh
“

η
√

|λ|
”” , t ≤ x, t ≤ η;

η sinh
“√

|λ|(t−1)
”

sinh
“√

|λ|x
”

x t
√

|λ|
“

η sinh
“√

|λ|
”

−δ sinh
“

η
√

|λ|
”” , x ≤ t, η ≤ t;

“

δ sinh
“

η
√

|λ|
”

sinh
“√

|λ|(t−x)
”

+η sinh
“

t
√

|λ|
”

sinh
“

(x−1)
√

|λ|
””

x t
√

|λ|
“

η sinh
“√

|λ|
”

−δ sinh
“

η
√

|λ|
”” , η ≤ t ≤ x ≤ 1.

and if (H ′
0) holds then G(x, t) ≤ 0.

Proof. Proof is same as given in Lemma 2.1.

Lemma 2.4. Let y ∈ C2(I) be a solution of nonhomogeneous linear three point

SBVPs (1.6)–(1.7) then

y(t) =
b η sinh

(
x
√

|λ|
)

x
(
η sinh

(√
|λ|

)
− δ sinh

(
η
√
|λ|

)) −
∫ 1

0

t2G(x, t)h(t)dt. (2.4)

Proof. Proof is same as given in Lemma 2.2.
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3. MAXIMUM PRINCIPLE

We require two results. They are as follows.

Proposition 3.1. Let (H0) holds, b ≥ 0 and h(x) ∈ C[0, 1] is such that h(x) ≥ 0,

then y(x) is non-negative for all x ∈ [0, 1].

Proposition 3.2. Let (H ′
0) holds, b ≥ 0 and h(x) ∈ C[0, 1] is such that h(x) ≥ 0,

then y(x) is non-negative for all x ∈ [0, 1].

4. THE NONLINEAR THREE POINT SINGULAR BVP

In this section, we develop the theory of monotone iterative method for nonlinear

three point SBVPs. We divide it into the following two subsections.

Case I: When λ > 0.

Theorem 4.1. Let there exist α0, β0 in C2[0, 1] such that β0 ≥ α0 and satisfy

−(x2β ′
0(x))′ ≥ x2f(x, β0), 0 < x < 1; β ′

0(0) = 0, β0(1) ≥ δβ0(η), (4.1)

and

−(x2α′
0(x))′ ≤ x2f(x, α0), 0 < x < 1; α′

0(0) = 0, α0(1) ≤ δα0(η). (4.2)

If f : D0 → R is continuous on D0 := {(x, y) ∈ [0, 1] × R : α0 ≤ y ≤ β0} and there

exist M ≥ 0 such that for all (x, y), (x, w) ∈ D0

y ≤ w =⇒ f(x, w) − f(x, y) ≥ M(w − y),

then the three point nonlinear SBVP (1.3)–(1.4) has at least one solution in the region

D0. If ∃ a constant λ such that M − λ ≥ 0 and (H0) is satisfied then the sequences

{βn} generated by

−(x2β ′
n+1)

′ − λx2βn+1 = x2F (x, βn), β ′
n+1(0) = 0, βn+1(1) = δβn+1(η), (4.3)

−(x2α′
n+1)

′ − λx2αn+1 = x2F (x, αn), α′
n+1(0) = 0, αn+1(1) = δαn+1(η), (4.4)

where F (x, y) = f(x, y) − λy, with initial iterate β0 converges monotonically (non-

increasing) and uniformly towards a solution β̃(x) of (1.3)–(1.4). Similarly using α0

as an initial iterate leads to a non-decreasing sequences {αn} converging to a solution

α̃(x). Any solution z(x) in D0 must satisfy

α̃(x) ≤ z(x) ≤ β̃(x).

Proof. From equation (4.1) and equation (4.3) (for n = 0)

−(x2(β0 − β1)
′(x))′ − λx2(β0 − β1) ≥ 0,

(β0 − β1)
′(0) = 0, (β0 − β1)(1) ≥ (β0 − β1)(η).

Since h(x) ≥ 0 and b ≥ 0, by using Proposition 3.1 we have β0 ≥ β1.
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In view of M − λ ≥ 0, from equation (4.3) we get

−(x2β ′
n+1(x))′ ≥ x2 ((M − λ)(βn − βn+1) + f(x, βn+1))

and if (βn ≥ βn+1), then

−(x2β ′
n+1(x))′ ≥ x2f(x, βn+1). (4.5)

Since β0 ≥ β1, then from equation (4.5) (for n = 0) and (4.3) (for n = 1) we get

−(x2(β1 − β2)
′(x))′ − λx2(β1 − β2) ≥ 0,

(β1 − β2)
′(0) = 0, (β1 − β2)(1) ≥ (β1 − β2)(η).

From Proposition 3.1 we have β1 ≥ β2.

Now from equations (4.2) and (4.3) (for n = 0)

−(x2(β1 − α0)
′(x))′ − λx2(β1 − α0) ≥ 0,

(β1 − α0)
′(0) = 0 (β1 − α0)(1) ≥ δ((β1 − α0)(η).

Thus β1 ≥ α0 follows from Proposition 3.1.

Now assuming βn ≥ βn+1, βn+1 ≥ α0, we show that βn+1 ≥ βn+2 and βn+2 ≥ α0

for all n. From equation (4.3) (for n + 1) and (4.5) we get

−(x2(βn+1 − βn+2)
′(x))′ − λx2(βn+1 − βn+2) ≥ 0,

(βn+1 − βn+2)
′(0) = 0, (βn+1 − βn+2)(1) ≥ δ(βn+1 − βn+2)(η),

and hence from Proposition 3.1 we have βn+1 ≥ βn+2.

From equation (4.3) (for n + 1) and (4.2) we get,

−(x2(βn+2 − α0)
′(x))′ − x2λ(βn+2 − α0) ≥ 0,

(βn+2 − α0)
′(0) = 0, (βn+2 − α0)(1) ≥ δ(βn+2 − α0)(η).

Then from Proposition 3.1, βn+2 ≥ α0 and hence we have

β1 ≥ β2 ≥ · · · ≥ βn ≥ βn+1 ≥ · · · ≥ α0

and starting with α0 it is easy to get

α1 ≤ α2 ≤ · · · ≤ αn ≤ αn+1 ≤ · · · ≤ β0.

Finally we show that βn ≥ αn for all n. For this by assuming βn ≥ αn, we show that

βn+1 ≥ αn+1. From equation (4.3) it is easy to get

−(x2(βn+1 − αn+1)
′(x))′ − λx2(βn+1 − αn+1) ≥ 0,

(βn+1 − αn+1)
′(0) = 0, (βn+1 − αn+1)(1) ≥ δ(βn+1 − αn+1)(η).

Hence from Proposition 3.1, βn+1 ≥ αn+1. Thus we have

α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ αn+1 ≤ · · · ≤ βn+1 ≤ βn ≤ · · · ≤ β2 ≤ β1 ≤ β0.
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So the sequences βn and αn are monotonically non-increasing and non-decreasing,

respectively and are bounded by β0 and α0. Hence by Dini’s theorem they converges

uniformly. Let β̃(x) = lim
n→∞

βn(x) and α̃(x) = lim
n→∞

αn(x).

Using Lemma 2.2, the solution βn of (4.3) is given by

βn(x) =
b η sin

(
x
√

λ
)

x
(
η sin

(√
λ
)
− δ sin

(
η
√

λ
)) −

∫

0

1

G(x, t)t2(f(t, βn) − λβn)dt.

Then by Lebesgue’s dominated convergence theorem, taking the limit as n approaches

to ∞, we get

β̃(x) =
b η sin

(
x
√

λ
)

x
(
η sin

(√
λ
)
− δ sin

(
η
√

λ
)) −

∫

0

1

G(x, t)t2(f(t, β̃) − λβ̃)dt

which is the solution of boundary value problem (1.3)–(1.4). Similar equation we can

define for the sequence of lower solution also.

Any solution z(x) in D can play the role of β0(x), hence z(x) ≥ α̃(x) and similarly

one concludes that z(x) ≤ β̃(x).

Case II: When λ < 0.

Theorem 4.2. Let there exist α0, β0 in C2[0, 1] such that β0 ≥ α0 and satisfy

−(x2β ′
0(x))′ ≥ x2f(x, β0), 0 < x < 1; β ′

0(0) = 0, β0(1) ≥ δβ0(η), (4.6)

and

−(x2α′
0(x))′ ≤ x2f(x, α0), 0 < x < 1; α′

0(0) = 0, α0(1) ≤ δα0(η). (4.7)

If f : D0 → R is continuous on D0 := {(x, y) ∈ [0, 1] × R : α0 ≤ y ≤ β0} and there

exist M ≥ 0 such that for all (x, ỹ), (x, w̃) ∈ D0

ỹ ≤ w̃ =⇒ f(x, w̃) − f(x, ỹ) ≥ −M(w̃ − ỹ)

then the three point nonlinear SBVP (1.3)–(1.4) has at least one solution in the region

D0. If ∃ a constant λ such that M + λ ≤ 0 and (H ′
0) is satisfied then the sequences

{βn} generated by

−(x2β ′
n+1)

′ − λx2βn+1 = x2F (x, βn), β ′
n+1(0) = 0, βn+1(1) = δβn+1(η), (4.8)

−(x2α′
n+1)

′ − λx2αn+1 = x2F (x, αn), α′
n+1(0) = 0, αn+1(1) = δαn+1(η), (4.9)

where F (x, y) = f(x, y) − λy, with initial iterate β0 converges monotonically (non-

increasing) and uniformly towards a solution β(x) of (1.3)–(1.4). Similarly using α0

as an initial iterate leads to a non-decreasing sequences {αn} converging to a solution

α(x). Any solution Z(x) in D0 must satisfy

α(x) ≤ Z(x) ≤ β(x).
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Proof. Proof follows from the analysis of Theorem 4.1.

5. NUMERICAL ILLUSTRATIONS

With the help of following examples, we verify our results and show that it is pos-

sible to choose a value of “λ” so that iterative scheme generates monotone sequences

which converge to solution of nonlinear singular problem. Thus these examples vali-

date sufficient conditions derived in the Theorem 4.1 and Theorem 4.2.

Example 5.1. Consider the boundary value problem

− y′′(x) − 2

x
y′(x) =

3

4
ey(x), (5.1)

y′(0) = 0, y(1) =
2

5
y

(
1

2

)
. (5.2)

Here f(x, y) = 3
4
ey, δ = 2

5
, η = 1

2
. This problem has α0 = 0 and β0 = 2−x2

3
as

lower and upper solutions, and it is well ordered case. The nonlinear term is Lipschitz

in y and continuous for all value of y, and Lipschitz constant is M ≤ 3
4
. Now we can

find out a subinterval Rλ = (ξ1, ξ2) of (0, j2
− 1

2
,1
) such that the conditions M − λ ≥ 0

and (H0) (see Figure 1) are true.

0.5 cosJ Λ N - 0.4 cosJ0.5 Λ N

0.5 sinJ Λ N - 0.4 sinJ0.5 Λ N

Λ
0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.2

-0.1

0.0

0.1

0.2

0.3

Figure 1. Plot of
(

η sin
√

λ − δ sin
√

λη
)

and
(

η cos
√

λ − δ cos
√

λη
)
.

Example 5.2. Consider the boundary value problem

− y′′(x) − 2

x
y′(x) = y(x) + 1, (5.3)

y′(0) = 0, y(1) =
1

2
y

(
3

10

)
. (5.4)

Here f(x, y) = y + 1, δ = 1
2
, η = 3

10
. This problem has α0 = 0 and β0 = 2− x2 as

lower and upper solutions, and this is a well ordered case. The source term is linear,
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Lipschitz in y and continuous for all value of y, and Lipschitz constant is M = 1.

Now we can find out a subinterval Rλ = (ξ1, ξ2) of (0, j2
− 1

2
,1
) such that the conditions

M − λ ≥ 0 and (H0) (see Figure 2) are true.

0.3 cosJ Λ N - 0.5 cosJ0.3 Λ N

0.3 sinJ Λ N - 0.5 sinJ0.3 Λ N

Λ

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.3

-0.2

-0.1

0.0

0.1

Figure 2. Plot of
(

η sin
√

λ − δ sin
√

λη
)

and
(

η cos
√

λ − δ cos
√

λη
)
.

Example 5.3. Consider the boundary value problem

−y′′(x) − 2

x
y′(x) =

1

36

[
e2

5
− 2(y(x))3

]
, (5.5)

y′(0) = 0, y(1) =
7

10
y

(
2

5

)
. (5.6)

Here f(x, y) = 1
36

[
e2

5
− 2(y(x))3

]
, δ = 7

10
, η = 2

5
. This problem has α0 = −1

and β0 = 1 as lower and upper solutions, and this is a well ordered case. The

nonlinear term is Lipschitz in y and continuous for all value of y, and Lipschitz

constant is M = 1
6
. For some λ less than

(
−1

6

)
, (H ′

0) (see Figure 3) will be true. Using

Mathematica 9.0 and iterative scheme (1.5) we compute upper and lower solutions

(see Figure 4).

Λ

0.4 coshJ  Λ¤ N - 0.7 coshJ0.4  Λ¤ N

0.4 sinhJ  Λ¤ N - 0.7 sinhJ0.4  Λ¤ N

-5 -4 -3 -2 -1

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Figure 3. Plot of
(
η sinh

√
|λ| − δ sinh η

√
|λ|

)
and

(
η cosh

√
|λ| − δ cosh η

√
|λ|

)
.
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Βn

Αn

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 4. Plot of βn, αn, n = 0(1)2 for λ = −10.

Example 5.4. Consider the boundary value problem

−y′′(x) − 2

x
y′(x) = 1 − 2y(x), (5.7)

y′(0) = 0, y(1) =
1

10
y

(
2

5

)
. (5.8)

Here f(x, y) = 1 − 2y, δ = 1
10

, η = 2
5
. This problem has α0 = −1 and β0 = 1

as lower and upper solutions, and this is a well ordered case. The nonlinear term is

Lipschitz in y and continuous for all value of y, and Lipschitz constant is M = 2. For

λ < −2 we can see that (H ′
0) (see Figure 5) will be true. Using Mathematica 9.0 and

iterative scheme (1.5) we compute upper and lower solutions (see Figure 6).

Λ

0.4 coshJ  Λ¤ N - 0.1 coshJ0.4  Λ¤ N

0.4 sinhJ  Λ¤ N - 0.1 sinhJ0.4  Λ¤ N

-14 -12 -10 -8 -6 -4 -2

-2

2

4

6

8

10

Figure 5. Plot of
(
η sinh

√
|λ| − δ sinh η

√
|λ|

)
and

(
η cosh

√
|λ| − δ cosh η

√
|λ|

)
.

Βn

Αn

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 6. Plot of βn, αn, n = 0(1)4 for λ = −24.
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6. CONCLUSION

In this work we establish existence of solutions for a class of nonlinear singular

three point boundary value problems. The BVPs of this kind can be considered as

generalizations of problems of two point singular BVPs in spherical symmetry, e.g.,

[2], [3]. We allow the Lipschitz constant to take both positive and negative values.

Due to Lack of uniform Anti Maximum principle reversed ordered upper and lower

solutions case is not observed. We have used Mathematica to plot solutions for ∂f

∂y
< 0

but the same could not be achieved for ∂f

∂y
> 0. The work in this paper can further

be generalized to a class of singular nonlinear differential equations, e.g.,

−(py′)′ = qf(x, y, py′), 0 < x < 1, p(0) = 0,

subject to different kind of multi point boundary conditions, which depend on the

nature of p, q and f .

ACKNOWLEDGEMENT

This work is partially supported by Grant provided by UGC, New Delhi, India,

File no. F.4-1/2006 (BSR)/7-203/2009(BSR).

REFERENCES

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value

Problems, Wiley, New York, 3rd ed., 1977.

[2] P. L. Chamber, On the solution of the Poisson-Boltzmann equation with the application to

the theory of thermal explosions, J. Chem. Phys., 20 (1952) 1795–1797.

[3] J. B. Keller, Electrohydrodynamics I. The equilibrium of a charged gas in a container, J.

Rational Mech. Anal., 5 (1956) 715–724.

[4] R. D. Russell and L. F. Shampine, Numerical methods for singular boundary value problems,

SlAM J. Numer. Anal., 12 (1975) 13–36.

[5] M. M. Chawla, P. N. Shivkumar, On the existence of solutions of a class of singular nonlinear

two-point boundary value problems, J. Comput. Appl. Math., 19 (1987) 379–388.

[6] A. K. Verma, Monotone iterative method and zero’s of Bessel functions for nonlinear singular

derivative dependent BVP in the presence of upper and lower solutions, Nonlinear Anal., 74

(14) (2011) 4709–4717.

[7] A. K. Verma and R. P. Agarwal, Upper and lower solutions method for regular singular dif-

ferential equations with quasi-derivative boundary conditions, Communications in Nonlinear

Science and Numerical Simulation, 17, Issue 12, 4551–4558.

[8] A. K. Verma, R. P. Agarwal and L. Verma, Bessel functions and singular BVPs arising in

physiology in the presence of upper and lower solutions in reverse order, Journal of Applied

Mathematics and Computing, 39, Numbers 1-2 (2012), 445–457.

[9] Zhang, Y., Positive solutions of singular sublinear Dirichlet boundary value problems, SIAM

J. Math. Anal., 26 (1995), 329–339.

[10] M. Gregus, F. Neumann, and F. M. Arscott, Three-point boundary value problems for differ-

ential equations, J. London Math. Soc., 3, (1971) 429–436.



THREE POINT SBVP 189

[11] A. R. Aftabizadeh, C. P. Gupta, and Jian-Ming Xu, Existence and uniqueness theorems for

three-point boundary value problem, SIAM J. Math. Anal., 20 (1989) 716–726.

[12] C. P. Gupta, S. I. Trofimchuk, Existence of a solution of a three-point boundary value problem

and spectral radius of a related linear operator, Nonlinear Anal., 34 (1998) 489–507.

[13] R. Ma, Existence of solutions of nonlinear m-point boundary-value problems, J. Math. Anal.

Appl., 256 (2001) 556–567.

[14] J. Henderson, B. Karna and C. C. Tisdell, Existence of solutions for three-point boundary

value problems for second order equations, Proc. Amer. Math. Soc., 133 (2005) 1365–1369.

[15] F. Li, M. Jia, X. Liu, C. Li, G. Li, Existence and uniqueness of solutions of second-order

three-point boundary value problems with upper and lower solutions in the reversed order,

Nonlinear Anal., 68 (2008) 2381–2388.

[16] J. Nieto, An abstract monotone iterative technique, Nonlinear Analysis, 28 (1997) 1923–1933.

[17] D. Bai, H. Feng, Eigenvalue for a singular second order three-point boundary value problem,

Journal of Applied Mathematics and Computing, 38 (2012) 443–452.

[18] M. Singh and A. K. Verma, Picard type iterative scheme with initial iterates in reverse order for

a class of nonlinear three point BVPs, International Journal of Differential Equation, Volume

2013 (2013), Article ID 728149, 6 pages.

[19] M. Singh and A. K. Verma, On a monotone iterative method for a class of three point non-

linear nonsingular BVPs with upper and lower solutions in reverse order, Journal of Applied

Mathematics and Computing, 43 (2013) 99–114.
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