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ABSTRACT. In this paper we study the stability of a stochastic neural networks with parameter

uncertainties and multiple time delays
de = [—(A+ AA®)z(t) + (B4 AB®)) f(t,x(t),z(t — 11(2)),. .., x(t — Tm (1))

+ St (Wy + AW (1)) [, ) gp(@(s))ds]dt + 375, hy(t,x(t), 2(t — 0 (£)))du(t).

Using fixed point theory and a linear matrix inequality(LMI), we obtain new criteria for exponential
stability in mean square of the considered uncertain stochastic neural networks with multiple mixed

time-delays.

AMS (MOS)Subject Classification. 34K50, 60H10, 93Dxx.

1. Introduction

Neural networks are important applications in various areas such as combinatorial
optimization, signal processing, pattern recognition and solving nonlinear algebraic
equations [6, 18, 19, 31]. Stability is one of the main properties of neural networks. It
is a crucial feature in the design of neural networks and has received a lot of attention
recently; see [1, 7, 11, 17, 22-24, 27, 30].
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Neural network can be stabilized or destabilized by certain stochastic inputs
(see [5, 12, 13, 14, 26]). Stability for stochastic neural networks with parameter
uncertainties and multiple time delays were discussed in [2, 15, 16, 21, 28, 32].

Let (Q,F, P) be a complete probability space with a filtration {F;}:>o satisfying
the usual conditions, i.e. it is right continuous and Fy contains all P-null sets. Let
C% ([-,0); R") be the family of all bounded, Fy-measurable functions. Let x(t) =
(z1(t), 22(t), . .., 2, ()T and B = [b;;(t)]nxn with

2 () =) |z(0)]
i=1
and
1Bl = [bis(1)]-
ij=1
We denote by C([—7*,0]; R™) the family of continuous functions ¢ : [-7%,0] — R"
with

lella = sup_|e(0)]s,
—7+<6<0

where 7% is a positive constant.

In this paper, using fixed point theory and a linear matrix inequality(LMI) [4, 8],
we discuss the stability of a stochastic neural network with parameter uncertainties

and multiple time-varying delays
dr = [—(A+ AA(t))z(t) + (B+ AB(t)) f(t,z(t),x(t — 71(t)), ..., x(t — Tn(t)))

k

t !
+ > (W, + AW, (1)) / Y gp(a(s))dsldt + > hy(t, x(t), x(t — 0;(t)))dw(t)
p=1 t—rp(t j=1

(DW)

with the initial condition
x(s) = ¢(s) € O([-7", 0 R"), —7"<s<0, (1.1)
where 7 > max{7;(t),0;(t),r,(t),s = 1,2,....m,5 = 1,2,...,l,p = 1,2,...,k}
is a positive constant, z(t) = (xy(t),22(t),...,2,(t))T is the state vector, A =
diag(ay,as, ..., a,) > 0, B and W, are the connection weight constant matrices with

appropriate dimensions, AA(t), AB(t) and AW,(t) represent the time-varying pa-
rameter uncertainties and bounded, p = 1,2..., k. Here w(t) = (wy(t), wa(t), ..., wpy,
(t))T € R™ is a m-dimensional Brownian motion defined on a complete probability
space (2, F, P) and

flt,ug,ug,y ... uy,) € C(RX R X R" X -+ X R") 11
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is the neuron activation function and we assume f(¢,0,0,...,0) = 0. The stochas-
tic disturbance term, h;(t,uq,uz) € C(R x R™ x R™), can be viewed as stochastic
perturbations on the neuron states and delayed neuron states.

Usually in literature the neuron activation function is assumed to be continuous,
differentiable, monotonically increasing and bounded. However, in many real systems,
such as electronic circuits, it may not be monotonically increasing or continuously

differentiable. This paper was motivated by some ideas in [10, 20].

2. Preliminaries

For the sake of completeness, some definitions and lemmas will be stated here
and they will be used in the proof of our main results.
Definition 2.1. The system (DW) with the initial condition is said to be exponen-
tially stable in mean square for all admissible uncertainties if there exists a solution

x of (DW) and there exists a pair of positive constants § and p with
Elz(t)]} < pB|¢l3e, t>0. (2.1)

Definition 2.2. The system (DW) with the initial condition is said to be globally
exponentially stable in mean square for all admissible uncertainties if there exists a
scalar ¢ > 0, such that

1
lim sup — log(EHx( V)|3) < —. (2.2)

Let C*1(R* x R"; R") denote the family of all nonnegative functions V (¢, ) on
R* x R™ which are continuously twice differentiable in x and once differentiable in ¢.
For each V € C%!([-7*,00) x R*; RT), define an operator LV, associated with the

uncertain stochastic neural networks with multiple mixed time-delays (DW), from
(Rt x C[—7*,00); R™) to R by

Vi(t,2) + Vo(t, 2)[(B + AB®) f(t, 2(t), 2(t — 71 (2), . . ., 2(t — T(D)))

l l

i=1

+ trace

A A + W+ ) [ (s

i=1
where oV (t.2)
Vit,x
Vi) = (250,
_ [OV(t,x) OV(t x) oV (t, )
Vx(t7x) - ( 01’1 ) 81'2 ’“.’Tl'n ’

OV (t,x
Vlton) = (i)
? J nxn
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Lemma 2.1 ([29]). Let A, B, C and D be real matrices of appropriate dimension
with D satisfying D = D?. Then

ABC +CT"BTAT + D <0, forall B'B<I
if and only if these exists a scale v > 0 such that
7y AAT +4CTC + D <.

Lemma 2.2 ([25]). Let A, D, E, F and P be real matrices of appropriate dimension
with P > 0 and F satisfying F'F < I. Then for any scalar ¢ > 0 satisfying
Pt — &7 'DDT > 0, we have

(A+DFE)Y'P(A+ DFE) < AY(P™' — e 'DD")'A + cE"E.

%;1 §}ElZ < O,
o —Nao

with Ry, = R, Ryy = NL,, is equivalent to

Lemma 2.3 ([3]). The LMI

9%22 > O, §R11 + %12%2_219%?2 < 0.

Lemma 2.4 ([9]). For any positive definite matrix M > 0, scalar k > 0, vector
function w : [0,x] — R" such that the integrations concerned are well defined, the

following inequality holds:

([ ) ([ w0) 5 ([ mton)

3. Exponential stability (I)

In this section we prove that system (DW) is exponentially stable in mean square
under the following conditions:
(Hy) |gp(x) = gp(y)| < |Gp(x —y)| and g,(0) = O, where G, € R™", p=1,2,... k;

(Ha)
|f(tz(t),z(t —7i(t), - 2(t — (1)) — f(&y(0), y(t — 1a(2)), ..., y(t — Tn(2)))]
< Z |fix(t —7(t))) — fily(t — ()| + | folx(t) — foly(D))l;

(H3) |fi(x)—fi(y)] < |Ki(x—y)| and f;(0) = 0, where K; € R™*™, i=0,1,2,...,m;
(H4) There exist positive definite matrices Hy, H;(j = 1,2,...,1) such that

{Z[hj(t, 2(t), 2(t = 0;(t))) = hy(t,y(t), y(t — Uj(t)))]}
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x {Z[hj(t, w(t), 2t — o5(t))) = hy(t,y(t), y(t — Uj(t)))]}

i=1

< [x(t = 0;(t)) — y(t — o5 (0)] " Hylz(t — 0;(t)) — y(t — 0;(t))]

+[a(t) — y()]" Holz(t) — y(t)]

and h;(¢,0,0) =0, j=1,2,...,;
(Hs)

m k
(m+ b+ 1+ D(IAAR+ I IBE+ 3 107, + AW,)G,

=0 p=0

l
+ [ Holls + Y 1) < 1.

=1

where By = (B + AB(t))fo, Bi = (B+ AB{t))fi,i=1,2,...,m;
(Hg) There exists a a > 0 such that

min{ay, as, ...,a,} > 2a.

Theorem 3.1. Suppose that conditions (H;)—(Hg) are satisfied. Then the system
(DW) is exponentially stable in mean square for all admissible uncertainties, that is,
e Elz(t)|? — 0 as t — oo.

Proof of Theorem 3.1. From (DW), we have

oft) = exp(=a0 {u(0) + [ exp( AW, + aW(s) [ gyfatean

p:l _TP(S)

+ (B4 AB(s))f(s,z(s),z(s — 11(5)), ..., x(s — T (5))) — AA(s)z(s)]ds

! t
+ Z/ h;(s,z(s),z(s — a;(s))) exp(As)dw(s)}. (3.1)
j=170
Let (B, || - ||5) be the Banach space of all bounded and continuous in mean square
Fo-adapted processes ¢(t,w) : [-7%,00) X Q@ — R"™ with the supremum norm

1¢lls == supysg El¢(t)]F  for ¢ € B.

Denote by S the complete metric space with the supremum metric consisting of
functions ¢ € B such that ¢(s) = ¥(s) on s € [—7*,0] and e E|o(t,w)|? — 0 as

t — o0.
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Define an operator ® on S by ®(z)(t) = ¢ (t) for t € [—7*,0] and for ¢t > 0,

= Zui(t), (3.2)

where
vi(t) = exp(—At)y(0) (3.3)
vo(t) = Z/O exp A(s — t)h; (s, z(s), x(s — 0;(s)))dw(s) (3.4)

and
v3(t) . = exp A(s — (W, + AW, (s ) p(z(v))dv
0= [ ewais-n[-a +; £ [ gle)

+ (B+ AB(s))f(s,z(s),z(s = 11(8)), ..., x(s — Tm(s)))} ds. (3.5)

We first verify the mean square continuity of ®.

Let x € S, t; > 0, and |r| be sufficiently small. Then

E®(x)(t +1) — () (02 <33 Elvits + 1) — vi(t)]3. (3.6)

i=1

It is easy to see that
Elvi(ty +7) —v(t)]f -0, i=1 or i=3 (3.7)
as r — 0. Further, by using the Burkhélder-Davis-Gundy inequality [20], we get

E|l/2(t1 + ’f’) — Vg(t1)|2

_ Bl Z/ exp A(s — t1 — r)hy(s, 2(s), 2(s — o3(s)))du(s)
—Z/ exp A(s — t1)h;(s, 2(s), 2(s — 0(s)))dw(s)[>

= E| Z/O 1 exp A(s —t1 —1)h;(s,x(s), (s — g(s)))dw(s)
l t1+r
+ Z/ exp A(s —t1 —r)h;(s,x(s),z(s — gj(s)))dw(s)

j=1"1

—Z/ exp A(s — t1)hy(s, 2(s), (s — 0(s)))dw(s)[>

= E| Z/o 1 exp A(s — t1)[exp A(—r) — I1hj(s,z(s),x(s — 0;(s)))dw(s)
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+ Z/t o exp A(s —t1 —r)h;(s, x(s), z(s — Uj(s)))dw(s)ﬁ
J= , l
<28 [ exp2(s = t)exp A(=r) — IF(30 K (s, 5). s = ()

<[> hy(s, (s), x(s — Jj(s)))]ds+2E/l Texp 2A(s —t; — 1)

t1

j=1
l !
x (D 1T (s, x(s), (s — o)) % [D hy(s,a(s), a(s — oj(s))]ds. (3.8)
j=1 j=1
Note,
em=h 0 0 0
0 enl g
exp A(s —t) = .
0 0 0 --- eon(s—t)
and

lexp A(s = t)[|s = Y _ e ¢,
i=1

From (H,), (Hs) and (3.8), we have

E|l/2(t1 + ’f’) — l/g(tl)ﬁ
l
<2 <||Ho||3 +3 ||er|3>
7=1

t1
+F < sup |x(s)|%> / || exp A(s — t1)||§|| exp A(—r) — [||§ds] —0 asr—0.
0

t14+7r
B( swp o) [ lewAls—t )l

t1—7*<s<t1+r t1

—T*<s<ty
(3.9)
Thus, ® is mean square continuous.
Next, we show that ®(S) C S. It is easy to see e E|v(t)|? — 0 as t — oo. It
remains to prove e* E|vy(t)|7 — 0 and e E|v3(t)]3 — 0 as t — oo. Note,

S

Bl = Bl [ e Als =00+ AW) [ gyfalo)an

o1 s—rp(s)

+ (B+ AB(8)f(s,2(s), 2(s — 71(5)), ..., 2(5 — Tn(5))) — AA(s)z(s)]ds|3

< eatE/o lexp A(s — t)[[5][— & A(s))z(s)

+ (B+ AB(s))f(s,z(s),z(s = 11(8)), ..., x(s — Ti($)))

+ 3 (W, + AW, (1)) / C g (e(o))dv]2ds. (3.10)

p:l —Tp (S)
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For any ¢ > 0, there exists t* > 0 such that s > t* — 7* implies e** E|z(s)|* < e.
Hence, we have from (Hg) and (3.10)

t* k s
e Elus f_eo‘tE exp A(s —t) (W, + AW, (s p(z(v))dv
(O < B [ e O[30, + ) [ sl
+ (B4 AB(s))f(s,z(s), (s — 11(s)), ..., x(s — Ti($))) — AA(s)z(s)] 2ds

K .
/ Jexp Als ~ DIRI[>2, + W )/s gp((0))d

—7p(s)
+ (B4 AB(s))f(s,z(s),z(s — 11(5)), ..., x(s — Tn(8))) — AA(s)m(s)] 2ds

t*
Se(a_zAmi“(A))tCikE< sup |x(s)|?)/ ePmin(A)s g
0

— e <s<t*

*

t
+e°‘thE/ e ez T (5)x(s)ePmn =0 g
t

t*
S e(a_2>\min(A))tCi‘E ( sup |.]}'(S) %) / 62 min ( sds —|— — (311)
0

—7T*<s<t*

where Ay, (A) represents the minimal eigenvalue of A, CF = n(||AA||3+r* Zp W+
Thus, we have e*® E|vy(t)|? — 0 as t — oc.

From (H,) and (Hj), we have
l ¢
e Elvy ()] < e E| Z/O exp A(s — t)h;(s, z(s), 2(s — 0;(s)))dw(s)|?
l
<(+1) atE/ Il exp A(s — 0)|I2 Z (s — o5(5))

X [Z hi(s, z(s), z(s — aj(s)))] ds

l

=+ 1)6“tE/0 lexp A(s — )51 _ b (s, 2(s), (s — 05(5)))]

j=1

Zh (s,2(s),z(s — oj(s )))]ds

+(+1) atE/ | exp A(s —t)| [Z hl(s,2(s), x(s — 0;(s)))

X

S hy(s, a(s), a(s - oj<s>>>] ds

j=1
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! t
n(l+ 1) (|| Holls + Z ||Hj||3)[€atE/ 2T (8)a(s)ePmin(D6=0) g
"

=1

t*
+ @ Pt g ( sup |z(s) %) / ePmin()sggl (3.12)
0

—rr<s<t*

as t — oo. As aresult ¢(5) C S.

For z,y € S, we have

E sup |®(z)(s) — ®(y)(s)[3

s€[0,t]

s

k n
< E sup | exp A(n Z W, + AW,(s )/ ( )gp(at(v))dv
=1 n—rp(n

s€l0,t] Jo

+(B+ABM)f(n,x(n),2(n=71(0), ., x(n = 7w () = LA))x(n)]dn

l S
+2;[:%PAW—SMAmeLﬂn—wWDMwW)

= [ e A== A A + 00+ A0 [T gtaein
(B4 ABO) 1 00), 501~ 1 (0) -yl — o))y
—}j[fapAm—sﬁﬂmymen—wm»Mwmm

< C3E sup |z(s) = y(s)f3, (3.13)

s€[0,t]
* m D) k
where CF = (m+k+1+2)(|AA[F+ 322, [ Bill3+ 21 (W + AW,) Gyl + [ Holl +
Z;Zl |H;||3). Thus ® is a contraction since 0 < C5 < 1.

Hence the Banach contraction principle guarantees that ® has a fixed point x in
S and note z(s) = ¥(s) on [—7*,0] and e**E||z(t)||? — 0 as t — oco. This completes
the proof.

4. Exponential stability (II)

The proof in this section is based on the linear matrix inequality(LM1).

We now assume that following hypothesis is satisfied:

(V1) The parameter uncertainties are of the AA, AB and AW;(i = 1,2,..., k) form:

(DAY, AWL(), AWy(o), -+, AWR(), AB() fo(), AB() fi(-), -+ s AB() fn(+))
= MF(Na, Nw,, Ny - - N, Noy N1, ..., Ny
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in which M, Na, Nw,, Nw,, ..., Nw,, No, N1, ..., Np,, are known constant matrices

with appropriate dimensions. The uncertain matrix F'(t) satisfies
FT()F(t)<I, VYteR.
(V2) The time-varying delays 7;(t), o(t), r,(t) satisty
) <T<lLot)<o<lr(t)<ri=12...mj=12..1p=12...k

where t € R, 7, 0 and r* are constants.

For convenience, let m > |.

Theorem 4.1. Suppose (H;)—(Hs) and (V;)—(V2) hold and assume that there exist
matrices P >0, Dy > 0 and D; > 0(j = 1,2,...,1) such that

trace Z h (t,x(t),z(t —oj(t)))Phi(t, z(t), z(t — 0;(t)))

(t)Dox(t +Zx (t —oj(t))Djz(t — oj(t)). (4.1)

Then the system (DW) is globally exponentially stable in mean square for all admis-
sible uncertainties, if there exist positive scalar o > 0, ¢, > 0 (p = 1,2,..., k) and
positive definite matrices @; > 0 (i = 1,2,...,m), R, > 0(p = 1,2,..., k) such that
the LM holds:

= P(Bofo) P(Bifi) -+ P(Bufwm) vm+2PM
(Bofo)"P —oNg Ny 0 .- 0 0
(B1f1)TP 0 S T 0 0
(B fm)T P 0 0 T, 0
Vvm+2MTP 0 0 0 —ol
(4.2)

where

k
E=(-PA—-A"P)+ Do+ W+ P(W,W) + N Ni. )P+ oN{Na, (4.3)
=1

m l k
—~ 1 1 .
i=1 7j=1 p=1
and
Yi=—oN'N;, i=1,2,....,m. (4.5)

Proof of Theorem 4.1. Let

Z

$)Qix( ds+21_0_ o@ x(s)ds

1_7' tn(t
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/ / n)dnds + z* Px. (4.6)
—r* Jit+s

From Itd’s differential formula (see, e.g.,[12]) we have along (DW)

Z WLt (), o(t — 0,(0) Phy (1, (), 2(t — (1)) + 2" [~ PA()

— AT(#)Plz + 22T P[B(t) f(t, a(t), 2t — 1i(2)), ..., 2(t — (1)) (4.1)

+ Z W, (t / gp(x(s))ds] + ) - i Ta:T(t)Q,.x(t)

t—rp (1) i=1

l

+ Zl — O_xT(t)Dja:(t) +3 il () Ry (t)

m 12 k .
- [Z %nf(t)ﬂ(t — () Qi(t — () + ) /t_ 2" (s)Ryr(s)ds
t2 %Ujo—a)ﬂ(t — 0, (D) Dya(t = o,(1))]. (4.7)

j=1
where A(t) = A+AA(t), B(t) = B+AB(t) and W,(t) = W,+AW,(t),p=1,2,..., k.
From (V3) and (4.7), we have

Z 2(t — 0;(0)) Phy(t, x(t), x(t — 05(t)))

+227P [i W, (t) /tt gp(z(s))ds

p(t)

+ B(t)f(t,z(t), x(t — 7 (1)), ..., z(t — Tm(t)))]

m l

1 ! T (OQul) + 3 5 ! () Dya(t) + 307w (1) Ryt

m

— [Z 't — (1) Qix(t — (1) + Z 2 (t — o () Djx(t — 04(t))

k

n Z / yo(s)ds| + a7 [~ PA(t) — AT(t)Plz. (4.8)

For the positive scalars ¢, >0 (p=1,2,..., k), by using the relation (H;), it follows

from Lemma 2.4 that

2P WL [ gl

p=1
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t

fa(s) ([ gyla(s))as)

p(t)

hE

e " PW, ()W, (t) Pz + €, ( /

t—rp ()

3
Il
—

[y PW, ()W, ()P + €, 1y (t) /t_ 9p (2(3))gp((s) ) ds]

Tp(t)

E

3
Il
—

]~

t
e PW, ()W (1) P + ¢V, (1) / RACCACET
t—rp(t

S
Il
—

[ep:BTPWp(t)Wg(t)P:)s + (1 —mn) / 2" (s) R, (s)ds]ds

t—rp(t)

WE

S
Il
—

[e,2” P(W, + AW,(1)) (W, + AW, (t))* Pz

|
E

3
Il
—

_|_

(1-— np)/t z”(s)Ryx(s)ds]ds

—7p(t)

< e PW, W)+ W (AW, ()T + AW,()W, + AW, ()(AW,(1))") Pz

¢
+(1—=mny,) / 2" (s)Ryx(s)ds]ds, (4.9)
—rp(t)
where
er,)GEG, < (1 —n)R,, 1,>0, p=1,2... k.

For any scalar € > 0, it is easy to get that
1
Wy (AW,(0)" + AW, ()W, < eW, W] + EAWp(t)(AWp(t))T.
From Lemma 2.2, there exists a scalar € > 0 that we have

AW,(E)(AW, ()T = (MF(t)Nw,)(MF(t)Nw,)" < e Nw,Nii, , p=1,2,... k.
(4.10)
From (4.8)—(4.10), we have

k t
LV(t (1) < €706~ 3, / T(s)Ryx(s)ds < €7O¢,  (4.11)

—7p(t)

where

E= T @), L at—T(t), ..zt —Tm(1))), (4.12)
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= PBy, PB, --- PB,
BP0 0
BP0 0
oo | i ooro S
BoP 0 0 - 0 0 - 0
0 0 0 - 0 -Q
0 0 0 .- 0 0 - —Qn

203

(4.13)

where = = (—=PA(t)— AT(t)P)+ Do+ W + Yk _, &,P(W,WT + N§, Nf, )P+ oNF Ny

From Lemma 2.3, we have that © < 0 is equivalent to A< 0, where

= PB, PB, --- PB,

Bip 0 0 0

A=| BlP 0o o0 0
: : : 0
BP0 0 0

From (V;) and (4.14), the matrix A can be rewritten as

A=()+XF)Y +YTFT (1) X7,

where
(Bon)TP QNOTNQ 0 s 0
GO = (B, f)TP 0 0 0
: : : 0
(B fm)" P 0 0 0

PM PM --- PM
X = : S ,
0 o - 0 (m+2)x (m+2)
Y = diag{—NA, No, Nl, cey Nm}m+2
and

F = diag{F(t), F(t), ..., F(t)}mi2.
From Lemma 2.1, there exists a positive scalar ¢ > 0, we have

A< O +0'XXT 4 pYTY.

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

From (4.2), (4.13)—(4.15) and (4.20) with manipulations one can show that the LM

(4.2) is equivalent to A < 0 (and so © < 0).
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Let V(t,2(t)) = ¥V (t, z(t)), where k is to be determined. It is easy to check
that

V(twf( )) > max |=T |1+T Z/t . dS

m

+Zl—r tT(t $)Qix( ds+zl_ /o(t z(s)ds.
(4.21)
Thus
LV (t,2(t)) = e [kV (t,2(t)) + LV (¢, x(t)]
< FHETOE + k[ Amax(P)|x(t) 2 4 7 Z/ s)Ryx(s)ds
+21_T - $)Qia( d5+21_0 w(s)ds]}.
(4.22)
Choose k sufficiently small so that
6T96+k|: max |fE |1+T Z/ dS
g 1—7 [ T,L(t) Qz dS + Z R oj(t (S)dS] < 0.
(4.23)
From (4.22) and (4.23), we have
LV (t,z(t)) <0, (4.24)
which implies that
EV(t,z(t)) < EV(0,2(0)). (4.25)

Therefore, we have

MEV(t,x(t) < EV(0,2(0))

< B PO +7° 3 / T (3) Ry(s)ds
+Zl—7- T(t $)Q;x( ds+zl_ / x(s)ds}

TTlT)\maX(Q) N la)\maX(D)

1—7 1—o0 —7*<s<0

< Pmax(P) + k() Amax(R) +
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where Apax (R) = max{ Anax(R1), Amax(R2), - - - Amax(Rr) }, Amax (@) = max{Anax(Q1),

)\max(Q2)a IO )\max(Qm)}> )\max(D) = max{)\max(Dl)a )\max(D2)a IO )\maX(Dl)}' AISO>
it is easy to see that

EV(t,x(t) > Amin(P)](t)[7. (4.27)
From (4.26) and (4.27), it follows that

min(P) A (P) + 5 (") * Anax(R)

m’T)\max(Q) la)\max(D) —kt 2
+ 1—7 + 1—0 e 19220 Elx(s)[i- (4.28)

Elz(t)[f <A

Thus the system (DW) is globally exponentially stable in mean square.
Remark 4.1. Note the results in [14] and [27] are special cases of (DW).

5. Some examples

Now we provide some examples.
Example 5.1.

dr = [=(A+ AAQ))z(t) + (B + AB(1))(2(t) + x(t — 7))

t
+ (W + AW(1)) / x(s)ds|dt + [ho(t)z(t) + hy(t)z(t — 7)]dw(t) (5.1)
t—7
and
z(t) = p(t), Vte[-7,0].
It is easy to see that fo = fi1 = g1 = [ and (H;)—(Hg) are satisfied when (|| A
Alls + |Bolls + |Bills + [|W + AW |5 + ||hollz + ||h1]|3) are sufficiently small and
A = diag(ay,as, ..., a,) > 2diag(a, a, ..., «a). Theorem 3.1 guarantees that system

(5.1) is exponentially stable in mean square for all admissible uncertainties.
Example 5.2.

dr = [—(A+ AA(t)z(t) + (B+ AB(t))x(t — 1) + (W + AW (t)) /t x(s)ds]dt

+ [ho(t)x(t) + hy(t)x(t — 7)]dw(t) (5.2)
and
z(t) = ¢(t), Vte|-71,0].

a2 0 ) g 08 oos
0 -03 0.11 0.36 0.1 0.1
0.1 0 025 0 05 0
h'O - 7h'l = aDO - )
0 02 0 02 0 04 0 04

MoP—F— 10 N, = —-0.04 0.01 N, = —0.03 —0.02
01 0.03 —0.008 0.04 —0.06
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and
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—-0.06 0
N p—
v 0.04 0.05
Solving the LMI in Theorem 4.1, we get o = 8.3864, ¢ = 8.8398,
0.1124 —0.0100 0.4497 —0,0396
Q= R = ’

—0.0100 0.2631 —0.0396  1.0523

Theorem 4.1 guarantees that system (5.2) is globally exponentially stable in mean

square for all admissible uncertainties.
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