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ABSTRACT. Here we give the approximation properties with rates of generalized discrete versions
of Picard, Gauss-Weierstrass, and Poisson-Cauchy singular operators. We treat both the unitary and
non-unitary cases of the operators above. We derive quantitatively L, convergence of these operators

to the unit operator by involving the L, higher modulus of smoothness of an L,(R) function.
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1. Introduction

This article is motivated mainly by [3, Chapter 15|, and [6], where J. Favard in

1944 introduced the discrete version of Gauss-Weierstrass operator

(Ff) (7)== V:i:mf (&) e (-n (£ -2)"). (1)

n € N, which has the property that (F, f) (z) converges to f(x) pointwise for each
x € R, and uniformly on any compact subinterval of R, for each continuous function
f (f € C(R)) that fulfills |f(t)| < AeP”, t € R, where A, B are positive constants.

The well-known Gauss-Weierstrass singular convolution integral operators are
n [e.e]
(Wof) (z) = \/;/ f(u)exp (—n (u — :)3)2) du. (1.2)

We are also motivated by [1], [2], and [3] where the authors studied extensively the
approximation properties of particular generalized singular integral operators such as
Picard, Gauss-Weierstrass, and Poisson-Cauchy as well as the general cases of singular

integral operators. These operators are not necessarily positive linear operators.

In this article, we study quantitatively L, approximation properties of Picard,
Gauss-Weierstrass, and Poisson-Cauchy generalized singular discrete operators re-
garding convergence to the unit. We examine thoroughly the unitary and non-unitary

cases and their interconnections.
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2. Background

In [3, p. 289-296], the authors studided the smooth general singular integral
operators O,.¢(f;x) defined as follows. For r € N and n € Z,, they defined
D L OF ST (2.1)
L= S (-1 ()i, =0
that is Z;:o a;j = 1. Let £ > 0 and let p¢ be Borel probability measure on R. For
f e CMR), f™ ¢ L,(R) where 1 < p < oo, and = € R, they defined the integral

O,¢(f.2) == / ) (Z ajf(xﬂt)) dp (). (2.2)

They observed that the operators O, ¢( f, x) are not positive operators and ©,.¢(c, x) =
¢, ¢ constant. Additionally, they saw that

Orc(f, ) Z% | e fanden. @3
In [3, p. 290], the rth L, modulus of smoothness finite given as
wr(f™, )y = sup 1AT F™ (@) lp < 00, B >0, (2.4)
where | - ||, is the L, norm with respect to x and
2450w = (1) 10 + o), 29
=0

see also [5, p. 44]. Here we have that w,(f™ h), < oo, h > 0.

The authors introduced also

0p=> a;*, k=1,...neN, (2.6)
and the integrals
Che i= / tFdue(t), k=1,...,n. (2.7)

They supposed that cy¢ € R, k = 1,...,n. Then, by using the terminology above,
they derived

A(2) = Oyl f ) Z Lo 5 e (2.8)
In [3, p. 291], they proved

Theorem 2.1. Let p,q > 1 such that 1—1) +% = 1, n € N and the rest as above.

Furthermore suppose that

M /(( |t|)m+1-1> 477 dpe (£) < 0. (2.9)
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Then
1

((n = 1))(g(n — 1) + 1) (rp + 1)

.([::(<1+J§)mﬁl_1>|ﬂmF4dugo>p§5wAfW%§»-

If Me < X\, V€ >0,A>0, and as § — 0 we obtain that ||A(x)||, — 0.

1A@)], <

(2.10)

B =

=

Moreover, they showed [3, p. 293].

Theorem 2.2. Let f € C"(R) and f™ € L;(R),n € N. Suppose that

P08 e
Then

@l £ e ( A ((1 L) 1) Itl"‘ldug(t)> £ (£, )1
(2.12)

Additionally assume that
> |t‘ rH n—1
1+ T — 1) [t]" due(t) < A A >0, (2.13)
V¢ > 0. Hence as & — 0 we get ||A(z)||y — 0.

They also demonstrated the case of n =0 [3, p. 295].

Proposition 2.3. Let p,q > 1 such that 1—1) + % = 1 and the rest as above. Suppose

that . p
;%:/w0+%)d%@<m. (2.14)
Then . L
j0re(9) = Al < wr(£. 0 ([~ (1+18) auett)” (2.15)

Additionally assume that pe < A\, A > 0, V& > 0, then as § — 0 we get ©, ¢ — unit

operator I in the L, norm, p > 1.

Finally, they gave also [3, p. 296].

Proposition 2.4. Suppose
[e.e] t T
/ (1 + %) dpe(t) < oo. (2.16)
Then

j6reh) ~ 1l <t ([ (1+8) duet)). (217)
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Additionally assuming that

[+ ) ar < a0 019

[e.e]

V€ > 0, we obtain as & — 0 that ©,¢ — I in the Ly norm.

On the other hand, in [4], the authors defined important special cases of O,

operators for discrete probability measures pi¢ as follows:
Let feCM"R),neZ" 0<&<1, xeR
i) When

pe(v) = ————r, (2.19)
ZSO:_OO € ¢

they defined the generalized discrete Picard operators as

* 52 o (Tt i) e €
Pre(fia) = — : (2.20)

1) When

pe(v) = ————, (2.21)
DM
they defined the generalized discrete Gauss-Weierstrass operators as

2

5 (St in) e 2.22)

W:,g (f;z) =

—v

2o €

i7i) Let « € N, and (§ > é When

(Vza + £2a>—ﬁ

pe(v) = — . (2.23)
¢ S (v 4 g2a) B
they defined the generalized discrete Poisson-Cauchy operators as
* S (S i e+ gv)) (2 g2)
re (fia) = BT . (2.24)
D oe (VP £ £29)
They observed that for ¢ constant they have
Ple(cx) =W (cz) = 05 (c;z) = c. (2.25)

They assumed that the operators PY; (f;x), W (f;2), and ©;, (f;7) € R, forz € R.

This is the case when || f||, g < oo
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iv) Let f € Cy(R) (uniformly continuous functions) or f € C,(R) (continuous
and bounded functions). When

—lv]

e
pe(v) i= pe,p(v) = ———, (2.26)
14 28e ¢
they defined the generalized discrete non-unitary Picard operators as
~lv|
S (Ceaif @t gv)) e
Poe(fiz) = — : (2.27)
14+ 28e ¢
Here pe p(v) has mass
—lv|
-~ e ¢
mep = === (2.28)
14+ 28e ¢
They observed that
—lv|
pe,p(v) e
£ - —, (2.29)
e, P ZOO__OO e ¢
which is the probability measure (2.19) defining the operators .
v) Let f € Cu(R) or f € Cy(R). When
_2
e ¢
pe(Wv) == pew(v) = : (2.30)

ﬂ(l—erf(%)) +1

with erf(x) = % IS e~dt, erf(co) = 1, they defined the generalized discrete non-
unitary Gauss-Weierstrass operators as

2

—v

S (S fla+iv)) e
\/w_g<1 —erf(ﬁ)) 1

Wr,ﬁ (f7 .CL’) =

(2.31)

Here ji¢ v (v) has mass

Mew = = . (2.32)

They observed that

0
pewl) et (2.33)

mE,W Zoo e ¢

V=—00

which is the probability measure (2.21) defining the operators W,.
The authors observed that P.¢ (f;2), W,¢ (f;2) € R, for z € R.
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In [4], for k =1,...,n, the authors defined the sums

—lv

00 k
e D Ve S
Cre = ol
PO
V=—00
o k =2
LT ke
Dre -= 2
Do €€
V=—00

and for o € N, 8 > 2+ they introduced

Z,C/XJ:_OO l/k (V2a + 52&)_5

Zsoz—oo (v2e _|_€2a)_6 '

Furthermore, they proved that these sums ¢ ¢, pj ¢, and g, are finite.

* Pyp—

Qre =

In [4], the authors also proved

. _l
3

__ €

1 —|—2§e_%

and

2

D e
T e (1- et (%))
Additionally, in [4], the authors defined the following error quantities:

Eop(f.2) = Pog(fix) — f(x)
Y (Tt in) e _ f(a)
14 2¢e €
Eow(f,x) = Wee(fiz) — f(2)
T (St an) e
JTE (1 —erf(%)) +1

Furthermore, they introduced the errors (n € N):

—lasé&— 0T,

n (k) o0 vke €
Bopl(fo) = Poclfia) — fa) — 3 L) Do VT

and

En,W(fu $) = Wr,ﬁ(f;x> - f(SL’) -

Next, they obtained the inequalities

|Bo.p(f,2)] < mep |Ple(fix) = f(@)] + | (@)] [me,p — 1],

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)
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o (. 2)] < m [WielF:) = S|+ @) e — 1. (240
and
|En,p(f,2)] (2.45)
<mep |Pretfia) 5@ - S LDy | 1@ Imee 11
with .
| Enw (f; )| (2.46)
< mew Wil i) = f(a) - L) s e 1@ I =11

3. Main Results

Let here f € C*(R), f® € L,(R) where 1 <p<oo,n€Z*, 0<¢(<1, 2z €R.

First, we present our results for generalized discrete Picard operators.

Proposition 3.1. Let 0 < £ < 1,1 < p < oo, n € N such that np # 1. Then, there
exists K1 > 0 such that

rp+1 —lv
i ((1+%’) - 1) Pl E

My, = = (3.1)
< K <
for all € € (0,1].
Proof. We observe that
. -l
Z e s >1,
then
1
—r <1
D€ €

Therefore, we obtain

s rp+l —|v]
My, < Z ||t ((1 + %') — 1) e ¢ (3.2)

V=—00
o] |V| rp+1 v

< oy <1+—) e ¢
V=—00 5

= Rl.
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We notice that

§

=23 (k) (10 ) ).
v=1

> 1forv>1, we get

rp+1 rp+1,,rp+1 rp+1 rp+1

v -y 2"PTTP 2MPT TP

1+~ e% < — = . (3.4)
§ grrtleat ez

00 U rp+1 —y
Ry = 2) v (1 + —) e (3.3)
v=1

v

Since we have c

where z := % Additionally, since

L 0B o
2 = > .
T 2 T (I 3

where [-] is the ceiling of the number, we obtain

Z]'rp]—l—l
— < 2P (Trp] + 1)1 (3.6)
e2

Hence, by (3.3), (3.4), and (3.6), we have

Ry < 227188 ([rp] 4 1)1 wmrle= (3.7)

v=1

< 2213 (Trp] 4 1) Z VP e

v=1
Now, we define the function f(v) = v"~'e2 for v > 1. Then, we have f (v) =
e (np —-1- %) Thus, f(v) is positive, continuous, and decreasing for v >
2(np—1). Let A:= [2(np—1)]. Hence, by shifted triple inequality similar to [7],

we get

Z VP le s (3.8)
v=1

A 00
_ —_v _ —_v
:EI/””162+ E P e
v=1

v=A+1

A 00
< Z VP le s +/ VP e dy + f(A41)
p— A+1

e

Vnp—le%” +/ l/[np_ﬂ€%ydl/+(A—|—1)np_16_%
1 0

=M+ (A+ 1)"1’_16_% + / vt qy,
0

N
Il
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where

A
Ap 1= Zl/"p_le%y < 0 (3.9)

v=1

for all £ € (0, 1]. Furthermore, by the integral calculation in [3, p. 86], we obtain
/ v Ues" dy = ([np — 17])12mP— 11+ (3.10)
0
Thus, by (3.7), (3.8), and (3.10), we get

Ry < 221713 (Trp] 4 1)! (3.11)
x [An (A1) e ([np — 11)!2f"p-11+1]

=K <o

for all £ € (0,1]. Then, by (3.2) and (3.11), the proof is done. O

We have the following quantitative result.

Theorem 3.2. Let p,q > 1 such that % + % =1, n € N, and the rest as above in this

section. Then

) — fW(x)
Ple(fiw) = f(2) = Y 3 Onche (3.12)
k=1 »
< ! (M )7 Erw, (£, €)
— 1 1 53 PWr ' 5/pe
(n =D (an = 1)+ D)1 (rp+1)7 7
Additionally, as & — 07 we obtain that R.H.S. of (3.12) goes to zero.
Proof. By Theorem 2.1 and Proposition 3.1. O
We present the related result for the case of p = 1.
Theorem 3.3. Let f € C*(R), f™ € L;(R), andn € N — {1}. Then
) — W),
Pre (i)~ @) -3 TP (3.13)
k=1 ’ 1
< M (), 6),
T (n—1D!(r+1)" BT
holds. Hence, as & — 0T, we obtain that R.H.S. of (3.13) goes to zero.
Proof. By Theorem 2.2 and Proposition 3.1. O

Next, we demonstrate the following result.
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Proposition 3.4. Let 0 < £ <1, and 1 < p < oco. Then there exists Ko > Osuch

that H

Z;O:_oo (1 + %)Tpe}

Mp,& =

< Ky < 00 (3.14)

for all € € (0,1].

Proof. For n > 2, we observe that

Mo < Y <1+|€—|) e e (3.15)

V=—00

2p—1 ||Terl =1
< Z|V|p (1—1—5) e ¢

V=—00

< R;.
Therefore, by Proposition 3.1, we get the desired result. 0
We give the special case of n = 0.

Proposition 3.5. Let p,q > 1 such that % + % = 1 and the rest as above in this

section. Then
1Pre (i) = F@)]|, < (M) wol(£,€), (3.16)

holds. Hence, as & — 0%, we obtain that P, ~e — unit operator I in the L, norm for
p>1.

Proof. By Proposition 2.3 and Proposition 3.4. O
Next result is for the special case of n =0 and p = 1.

Proposition 3.6. The inequality
[Pre (f:2) = F(@)]], < Migw, (£, (3.17)

holds. Furthermore, we get P’c — I in the Ly norm as § — 0r.
Proof. By Proposition 2.4 and Proposition 3.4. O
Next, we present our results for generalized discrete Gauss-Weierstrass operators.

Proposition 3.7. Let 0 < £ < 1,1 < p < oo, n € N such that np # 1. Then, there

exists K3 > 0 such that
rp+1 _2
> <(1 + ) - 1) WPt

3 (3.18)

Npe =

—v

2o € F

< K3 <o

for all £ € (0,1].
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Proof. For all v € Z, we have

A%

(3.19)

Therefore,

for all v € Z. Thus

= 4 s 1 =2
Nie < ) <1+?) — 1) |y e (3.20)

VAN
VR
[u—
+
=
N———

3

_l’_

+
=
3
N

)

mld

V=—00

V| rp+1 np1 =l
< Z 1—1—? 4 e s

V=—00

= Ry
Hence, by Proposition 3.1, we get the desired result. O
We have the following quantitative result.

Theorem 3.8. Let p,q > 1 such that % —I—% =1, n € N, and the rest as above in this

section. Then

k)
W (fia) - f) — 30 T P (3.21)
k=1 ’

p

1 L
: T - (N2Q) 7 Evw (f™,6),.
(n—1N(gn—1)+1)a (rp+1)» (Nye)

Additionally, as &€ — 07 we obtain that R.H.S. of (3.21) goes to zero.

Proof. By Theorem 2.1 and Proposition 3.7. O

We have the following result for the special case of p = 1.
Theorem 3.9. Let f € C(R), f™ € L;(R), andn € N— {1}. Then

k)
et — g - 3 Do

k=1

Nigfwr(f(”), &

(3.22)

1
1

<
“(n—=D!(r+1)
holds. Hence, as & — 0T, we obtain that R.H.S. of (3.22) goes to zero.

Proof. By Theorem 2.2 and Proposition 3.7. O

Next, we demonstrate
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Proposition 3.10. Let 0 < £ <1, and 1 < p < oco. Then, there exists K, > 0 such
that

rp  _,2
X (i)
Np7§ = —2

Dm0 ©

< K, < 0 (3.23)

for all £ € (0,1].
Proof. By Proposition 3.1 and Proposition 3.7, for n > 2, we have

Voe < i (1+%)Tpe%2 (3.24)
v
3

V=—00

| rp+1 2
< > (M) e

V=—00

< R <o
for all £ € (0,1]. O
We give the next result for the special case of n = 0.

Proposition 3.11. Let p,q > 1 such that % + % = 1 and the rest as above in this

section. Then
W (F52) = F@)], < (W) P wr(£.9) (3.25)

holds. Hence, as & — 0%, we obtain that W e — unit operator I in the L, norm for

p>1.
Proof. By Proposition 2.3 and Proposition 3.10. O
Next result is for the special case of n =0 and p = 1.

Proposition 3.12. The inequality

Wy (fi2) — f(2)]], < Nyewr (£, )1 (3.26)
holds. Furthermore, we get W, — I in the Ly norm as §& — 0.
Proof. By Proposition 2.4 and Proposition 3.10. O
Next, we give our results for generalized discrete Poisson-Cauchy operators.

Proposition 3.13. Let 0 < £ < 1,1 < p < oo, n € N such that np # 1, and
8> 7%. Then, there exists K5 > 0 such that

Z,Cjoz_oo ((1 + |§i|)7“p+1 _ 1) |V‘np—l (V2o¢ + £2a>—ﬁ
pe ~ = (3.27)
| S (vt g

for all £ € (0,1].
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Proof. For v > 1, we notice that

(v + 52‘1)_5 < y20h, (3.28)
Then, we observe that
g8 < N (g (3.29)
_ §—2a6 +2 Z (V2a + 620{)_6
v=1
< 42y v <o,
v=1
Therefore, we get
1
< £208, (3.30)

S (vt €2a)—5
Thus, by (3.30), we have

[ oo rp+1
Sre <&y ((1 + %') — 1) " (2 + 52“)‘6] (3.31)

Ly=—00

o)

203 M o np—1 2a 20\~
<¢ Z 1+5 V] (V** + &)

Ly=—00

= Rg.

Moreover, by (3.28), we obtain

0 o o rp+1 _
D D (5 ) B U S I G o)

V=—00

2 Z (1 + V)Tp-l-l Vnp—l—2o¢ﬁ

v=1

IA

Vrp-‘,—l

[e'e)
2rp+2 2
V2a,8—np+1

v=1

) e 1 2aB—p(r+n)
= 9orpt Z
%)

< o0

IA

for all £ € (0, 1] since 2a8 —p (r +n) > 1. O

We have the following quantitative result

Theorem 3.14. Let p,q > 1 such that % + % =1,neN, 3> p(T;Z)H, and the rest
as above in this section. Then

" fk)
) — g - 3 Pag (3:33)
k=1 ’

P
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1 L
= 1 1 S;’ P §Eu},,(f(n)7 ),.
(= D)= )+ D o 1

Additionally, as & — 07, we obtain that R.H.S. of (3.33) goes to zero.

Proof. By Theorem 2.1 and Proposition 3.13. O
We have the following result for the special case of p = 1.

Theorem 3.15. Let f € C"(R), f™ € Li(R), > “* andn € N— {1}. Then

. O
MU RO grasrvS (3.34)
k=1 ’ 1
< * (n)
= (n _ 1)| (T ‘l— 1) l,ﬁng(.f ?6)1
holds. Hence, as & — 0T, we obtain that R.H.S. of (3.34) goes to zero.
Proof. By Theorem 2.2 and Proposition 3.13. O

Next, we demonstrate

Proposition 3.16. Let 0 < £ <1, § > %, and 1 < p < co. Then there exist
K¢ > 0 such that
[e.e] v P 6% o\
S0 (14 )T e g2y

Sz@ = Zoo__ (lj2a —I— 6205)_6 S Kﬁ < o0 (335)

for all £ € (0,1].

Proof. We observe that
Q* o v @ (AN
s |3 (1) e

rp+1
< &y <1+|€l|) ke (y2a+§2a)‘5]

< Ry < o0,

(3.36)

for all n > 2. Therefore, by Proposition 3.13, we get the desired result. O

We give the next result for the special case of n = 0.

p(r+2)+1
20

Proposition 3.17. Let p,q > 1 such that % + % =1, 0> , and the rest as

above in this section. Then

105 (i) = F@), < (Spe) " (£, (3.37)

holds. Hence, as & — 0T, we obtain that O ¢ — unit operator I in the L, norm for
p>1.
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Proof. By Proposition 2.3 and Proposition 3.16. O
Next result is for the special case of n =0 and p = 1.

Proposition 3.18. Let 3 > % and the rest as above in this section. The inequality

105 (f;2) = f(2)]|, < Stewn(f. ) (3.3%)

holds. Furthermore, we get ©; . — I in the Ly norm as § — 0F.
Proof. By Proposition 2.4 and Proposition 3.16. O

Next, we give our results for the error quantities Ey p(f,z), Eow(f,z) and the
€ITors En,P(.fa Zlﬁ'), En,W(f7 l')

Theorem 3.19. Let p,q > 1 such that %+% =1,n € N such thatnp # 1, f € L,(R),
and the rest as above in this section. Then

1 Enp(f2)l, (3.39)
& (£,) (X2 e ¢’
S 1 1
(n=DN(gn—1)+ )7 (rp+1)»

rp+1 —lv %
<Zﬁ;m<(b+%>p —1)Wwwies)

1+ 2¢e¢

X

+IF @), me.p = 1]

holds. Additionally, as & — 07, we obtain that R.H.S. of (3.39) goes to zero.
Proof. By (2.37), (2.45), (3.2),(3.11), and Theorem 3.2. O

For the special case of p = 1, we have the following result

Theorem 3.20. Let f € C"(R), f € Li(R), f™ € L;(R), andn € N — {1}. Then

ng(f(n)v 5)1
(n— 1) (r+1)

0o lv| i n—1 =l
Dot oo (14 E —1)|p|" eE
1+ 2¢e ¢

1 En,p(f, )], < (3.40)

+ £ @)y [me,p = 1]

holds. Additionally, as & — 07, we obtain that R.H.S. of (3.40) goes to zero.

Proof. By (2.37), (2.45), (3.2),(3.11), and Theorem 3.3. O
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For the special case of n = 0, we have the following result

Proposition 3.21. Let p,q > 1 such that % —i—% =1, f € L,(R), and the rest as

above in this section. Then

| Bop(£.2)ll, < w(ﬂé);:(Z ) (3.41)
o JN\TP =l 1P
JICENERES
1426 e

+ £ @), Ime.p =1
holds. Hence, as & — 0T, we obtain that R.H.S. of (3.41) goes to zero.

Proof. By (2.37), (2.43), (3.15), and Proposition 3.5. O
Next, we demonstrate the special case of n =0 and p =1

Proposition 3.22. The inequality

—lv

> <1 + ‘%‘)Te €
1+ 267 ¢
+1f @)y [me.p — 1]
holds. Hence, as & — 0T, we obtain that R.H.S. of (3.42) goes to zero.

[Eo.p(f,2)ll, < wr(f,Eh (3.42)

Proof. By (2.37), (2.43), (3.15), and Proposition 3.6. O
Next, we have the following quantitative result for E, w(f,x)

Theorem 3.23. Let p,q > 1 such that %+% =1,n € N such thatnp # 1, f € L,(R),

and the rest as above in this section. Then

—V

(. 6), (Zzi_ooe 52)q

1 Enw (f, )], < 5 . (3.43)
((n=D(a(n —1) + 1)« (rp+ 1)
rp+1 2 %
(23":_00 ((1 + )T - 1) ]! eT)
X
1
V€ (1 — erf(%)) +1
+ 1f @), [mew —1
holds. Additionally, as & — 07, we obtain that R.H.S. of (3.43) goes to zero.
Proof. By (2.38), (2.46), (3.20), and Theorem 3.8. O

For the special case of p = 1, we have the following result
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Theorem 3.24. Let f € C"(R), f € Li(R), f™ € L1(R), andn € N — {1}. Then

ng<f(n)7 5)1
= 1)1 (r+ 1) (344)

S () e
Vg (1-erf(J)) +1

HF @)y fmew =1

[ Enw (f,2)]l; <

holds. Additionally, as & — 07, we obtain that R.H.S. of (3.44) goes to zero.
Proof. By (2.38), (2.46), (3.20), and Theorem 3.9. O

For the special case of n = 0, we have the following result

Proposition 3.25. Let p,q > 1 such that % —I—% =1, f € L,(R), and the rest as

above in this section. Then

[ Eow (f;2)ll, < wr(f,é)p(z 652>q (3.45)

HIF @), [mew =1

holds. Hence, as & — 0T, we obtain that R.H.S. of (3.45) goes to zero.
Proof. By (2.38), (2.44), (3.24), and Proposition 3.11. O

Next, we demonstrate the special case of n =0 and p = 1.

Proposition 3.26. The inequality
00 vl\" =
D oo (1 + ?) e
1
V€ (1 — erf<%)> +1
+ £ @)y mew — 1

wr(fu 5)1 (346>

[Eow (f,2)ll, <

holds. Hence, as & — 0%, we obtain that R.H.S. of (3.46) goes to zero.

Proof. By (2.38), (2.44), (3.24), and Proposition 3.12. 0O
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