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ABSTRACT. An approach to the analysis of a control problem of a model quantum mechanical

system under the influence of an electric field is studied via asymptotic method. The quantum

mechanical system presented deals with a linear tri-atomic molecule. The purpose of this effort is to

gain insight into the problem of designing an appropriate pulse to break a specific bond while leaving

the other minimally disturbed. The asymptotic analysis of the model provides an opportunity to

analyze and gain some insight into the interplay between the constituent parameters of the field

and duration of the pulse as well the energy required to achieve the desired objective, and the

mathematical difficulty inherent in the problem. The asymptotic method is used in constructing

an appropriate multiobjective control problem to stretch/break the stronger bond while minimally

disturbing the weaker bond with minimum energy.
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1. Introduction

The practical problem motivating this effort is the study of the design of a realistic

laser pulse in the infrared region to break a specific bond inside a molecule, leaving

all the other bonds as undisturbed as possible. In practice “realistic” means that the

duration of the pulse be in the range of hundreds of femtoseconds, and the energy of

the pulse does not exceed 1011Watt/cm2 and that the spectrum remains localized.

In other words that the pulse characteristics be in the range of the present time

technology. Our effort here is to understand the physics and mathematics that one

needs to deal with in designing appropriate pulse to achieve such a goal, and the

study of optimal control problems governed by quantum dynamics.

Quantum calculations made on the linear molecule H − C ≡ N [3] have shown

that a good approximation can be achieved in describing this system classically. For

that reason, we have used Pontryagin maximum principle. To get a more detailed

insight we have opted to use classical asymptotic method. The asymptotic method

was pursued due to the fact it gives a very good insight when applied to a quantum
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mechanical problem modeling a diatomic molecule. In fact one can explicitly see

the relationship between the separation between the atoms and the control, which

is the applied electric field. At the end of the paper we have added a brief section

relating to this model problem. If we know how to design the control to break the

bond in the model problem, then the next step is to design the control in such a way

to break a specific bond while minimally affecting other bonds in a molecule with

more than two atoms. Of course, the next simple case is a tri-atomic linear molecule.

Thus, we consider the tri-atomic linear molecule HCN. We follow [3] for the potential

approximation of HCN. We have changed the potential slightly by adding a cross

term. This is done not to simplify but rather to see the effect of the cross term.

Of course, there is no claim that the cross term here represents the real situation

perfectly.

Optical pulse design is achieved by minimization of a cost functional which de-

pends on the control (electric field) used to break a specific bond. The cost functional

should include physical constraints and governing equations of motion that must be

satisfied. Among the physical constraints we shall consider as most important, we

have: reduction of unwanted molecular motion for the bonds not to be broken, peak

intensity of the laser pulse, maximum energy of the electric field and broadness of the

pulse. To accomplish these conflicting goals one could consider multibjective control

problem.

The asymptotic method we follow employs global Fourier integral operators fol-

lowing Laptev and Sigal [5]. Finally, we set up an extremum problem on the basis

of the asymptotic result. We are led to a multiobjective control problem. We have

used classical Pontryagin maximum principle and the steepest descent method to

numerically solve the control problem. [3].

To be specific, we shall consider the dissociation of the linear moleculeH−C ≡ N .

The easy case corresponds to

hν +H − C ≡ N −→ H + C ≡ N

while

hν +H − C ≡ N −→ N +H − C

This is best understood by noting that the energy of −C ≡ N bond is very near

11eV while the energy of the H − C ≡ bond is very near to 5.7eV . It is clear that

in the uncontrolled molecular dissociation the weaker bond will be broken. So, what

we wish to do is, study the problem of stretching/breaking the stronger bond while

minimally affecting the weaker bond.
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2. The Hamiltonian for H − C ≡ N molecule

The Hamiltonian for this molecule, a linear rotation-less molecule, is the sum of

its kinetic energy

T =
p2

1

2m1
+

p2
2

2m2
+

p2
3

2m3
(2.1)

where p3 = C and m3 = MC are the momentum and mass of the Carbon atom,

p1 = pN and m1 = MN are the momentum and mass of the Nitrogen atom and

p2 = H and m2 = MH are the momentum and mass of the Hydrogen atom. The

Carbon atom is singled out by the fact that the potential energy of the Nitrogen

bond is supposed to to depend only on the distance r1 − r3 of the Nitrogen atom to

the Carbon atom and the potential energy of the Hydrogen bond is also supposed to

depend only the distance r2−r3 of the Hydrogen atom to the Carbon atom. Therefore

we can write

H =
p2

1

2m1
+

p2
2

2m2
+

p2
3

2m3
+ V1(r1 − r3) + V2(r2 − r3) + U(r1 − r3, r2 − r3) (2.2)

where the potential energy U(r1 − r3, r2 − r3) is a small residual mixed interaction at

least one order of magnitude smaller than the smaller of the two interactions.

The equations of motion are given by the Hamilton’s canonical equations

d

dt
ri =

∂

∂pi
H(ri, pi)

d

dt
pi = − ∂

∂ri
H(ri, pi) (2.3)

We look for a transformation such that the center of mass motion is uncoupled

and each term of the potential depends only on one of the new variables.

Let M = m1 +m2 +m3 be the total mass of the system, the transformation for

the spatial variables is

R1 = r1 − r3

R2 = r2 − r3

R3 = R =
m1r1 +m2r2 +m3r3

M
(2.4)

The matrix corresponding to this transformation is






1 0 −1

0 1 −1
m1

M
m2

M
m3

M







We write

R = Lr (2.5)

In the same way, we seek a matrix Λ such that

P = Λp (2.6)
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We shall require that this transformation (L,Λ) be canonical. This means that the

transformed Hamiltonian, H(Ri, Pi) is that

d

dt
Ri =

∂

∂Pi
H(Ri, Pi)

d

dt
Pi = − ∂

∂Ri
H(Ri, Pi) (2.7)

We can immediatley check that for the transformation to be canonical the matrix

Λ for the momenta transformation must be such that ΛLT = I. Thus, we have

Λ =







m2+m3

M
−m1

M
−m1

M
m2

M
m1+m3

M
−m2

M

1 1 1







Thus, we get

P1 = p1 −
m1

M
(p1 + p2 + p3)

P2 = p2 −
m2

M
(p1 + p2 + p3)

P3 = P = p1 + p2 + p3 (2.8)

The inverse transform is given by

Λ−1 =







1 0 m1

M

0 1 m2

M

−1 −1 m3

M







Thus,

p1 = P1 −
m1

M
(p1 + p2 + p3)

p2 = P2 −
m2

M
(p1 + p2 + p3)

p3 =
m3

M
p1 − P1 − P2 (2.9)

The kinetic energy is therefore

T =
p2

1

2m1
+

p2
2

2m2
+

p2
3

2m3

=
P 2

2M
+
P 2

1

2µ1

+
P 2

2

2µ2

− P1P2

m3

µi =
mim3

mi +m3
(2.10)

Working in the center of mass frame the Hamiltonian is given by

Hmol =
P 2

1

2µ1
+
P 2

2

2µ2
− P1P2

MC
+ U1(R1) + U2(R2) + U(R1, R2)

where

1

µ1
=

1

MC
+

1

MN
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1

µ2
=

1

MC
+

1

MH
(2.11)

2.1. The Hamiltonian of Interaction. The interaction between the H − C ≡ N

molecule and the laser field is described by the dipole moment function. Previous

work [3] showed that in sufficiently intense laser fields the linear molecule tends to

align in the direction of the field. Therefore we shall write the interaction as

Hint = −µ(R)ǫ(t) (2.12)

where ǫ(t) is the electric field amplitude of the laser pulse as a function of time t, and

µ(R) is the molecule electric dipole that depends on the position of each bond. In

this specific example, we shall choose it following Rabitz ([3]).

µ(R) = µe[µ(R1) − µ(R2)] (2.13)

Then,

Hint = −µe[µ(R1) − µ(R2)]ǫ(t) (2.14)

2.2. The Total Hamiltonian. The total Hamiltonian of the system now reads

H = Hmol +Hint =
P 2

1

2µ1
+
P 2

2

2µ2
− P1P2

MC
+ U1(R1) + U2(R2)

+U(R1, R2) − µe[µ(R1) − µ(R2)]ǫ(t) (2.15)

3. Statement of The Model Quantum Mechanical Problem

Following the discussion above we consider the quantum mechanical problem

given by the equation

i~
∂ψ

∂t
= −~

2(
1

2µ1

∂2

∂x2
1

+
1

2µ2

∂2

∂x2
2

+
1

µc

∂

∂x1

∂

∂x2

)ψ

+(V1(x1) + V2(x2) +W (x1, x2) − µe[µ(x1) − µ(x2)]E(t))ψ

Let

α = ~,

h(t, x, ξ) =
1

2µ1
ξ2
1 +

1

2µ2
ξ2
2 +

1

µc
ξ1ξ2

+V1(x1) + V2(x2) +W (x1, x2) − µe[µ(x1) − µ(x2)]E(t). (3.1)

Later, when we present an extremum problem connected with our problem, we will

specify V1, V2,W in (3.1).
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4. Analysis of The Problem

Thus, we set

Hα(t)f (t, x) = h(t, x, αDx)f (t, x)

= (2πα)−2

∫ ∫

h(t, x, ξ)e
i(x−y).ξ

α f(y)dydξ

Now consider the equation

αi
∂

∂t
U(t, s) = Hα(t)U(t, s)

U(s, s) = I. (4.1)

Let

dx

dt
=

∂h

∂ξ

dξ

dt
= −∂h

∂x
x(0) = y

ξ(0) = η (4.2)

Set

S(t, y, η) =

∫ t

0

(

ξT
dh

dξ
− h(s, x(s), ξ(s))

)

ds (4.3)

Next, let

φ(t, x, y, η) = S(t, y, η) + (x− x(t))T ξ(t) +
i

2
(x− x(t))TB(x− x(t)) (4.4)

where B is a function of t, y, and η.

Then,

φx = ξ(t) + iB(x− x(t))

φxη = ξη − iBxη + i(Bη1(x− x(t)), Bη2(x− x(t))) (4.5)

Z(t, y, η) = ξη − iBxη

Z(0, y, η) = ξη(0) − iBxη(0) = I (4.6)

In (4.6) we are defining Z(t, y, η) by the right hand side of the equation. We will see

later the role it plays in dealing with the Fourier integral (4.7). Now we proceed to

look for an α-Fourier integral operator given by

UN(t) = (2πα)−2

∫

e
iφ

α uN(t, y, η, α)dη (4.7)

(αi∂t −Hα(t))UN(t) = (2πα)−2

∫

e
iφ

α (∂tφuN + αi∂tuN)

−h(t, x, φx(t, x, y, η))uN
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−α
2

(µ−1
1 b11 + µ−1

2 b22 + 2µ−1
c b12)uN)dη (4.8)

We have

h(t, x(t), φx) = h(t, x(t)ξ(t)) + iB(x− x(t))

= h(t, x(t)ξ(t))) + hTx (x, x(t), ξ(t))(x− x(t))

+ihξ(t, x(t), ξ(t))
TB(x− x(t))

+
1

2
(x− x(t))Thxx(x− x(t))

+
1

2
iB(x− x(t))TG2iB(x− x(t)),

where

G2 =

(

1
µ1

1
µc

1
µc

1
µ2

)

.

(αi∂t −Hα(t))UN (t) = (2πα)−2

∫

e
iφ

α

{

− i

2
(x− x(t))T Ḃ(x− x(t))

−1

2
(x− x(t))TG1(x− x(t))

−1

2
[i(B(x− x(t)))TG2i(B(x− x(t)))]uN

αi∂tuN − α

2
(µ−1

1 b11 + µ−1
2 b22 + 2µ−1

c b12)uN

}

dη

= (2πα)−2

∫

e
iφ

α

{

−1

2
(x− x(t))T [iḂ +G1 − BTG2B](x− x(t))uN

αi∂tuN − α

2
(µ−1

1 b11 + µ−1
2 b22 + 2µ−1

c b12)uN

}

dη (4.9)

Since
∂

∂η
ei

φ

α =
i

α
ei

φ

αZ(x− x(t))

we have

−iαZ−1 ∂

∂η
ei

φ

α = ei
φ

α (x− x(t))

Now, setting

G = iḂ +G1 − BTG2B

we have, using (4.8)

(2πα)−2

∫

e
iφ

α

{

−1

2
(x− x(t))TG(x− x(t))uN

}

dη

= (2πα)−2

∫

iα

2
(x− x(t))TGZ−1 ∂

∂η
e

iφ

α uNdη (4.10)

We have

tr (i
α

2
xTηGZ

−1ei
φ

2 ) = −tr iα
2

[Ż + iZBhξξ]Z
−1ei

φ

α

= −tr iα
2
Z−1[Ż + iZBhξξ]e

i φ

α
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= −tr iα
2

[Z−1Ż + iBhξξ]e
i φ

α

Thus we have, using (4.10)

(αi∂t −Hα(t))UN (t) = (2πα)−1

∫

e
iφ

α

{

i
∂

∂t
uN − i

2
(tr Z−1Ż)uN +

α

2
Γ

}

dη (4.11)

where

Γ =
∑

ijk

{∂2
ηkηi

Rij(Z
−1)jk + (∂ηiRij)∂ηk(Z

−1)jk}, (4.12)

and

R = [iḂ +G1 − BTG2B]Z−1

Setting

uN = u0
N + αu1

N + α2u2
N + α3u3

N + α4u4
N + α5u5

N + · · · (4.13)

we use (4.11) to determine ukN , k = 0, 1, . . . from the following recursive system of

equations

i
∂

∂t
u0
N − i

2
(tr Z−1Ż)u0

N = 0, u0
N = 1

i
∂

∂t
ukN − i

2
(tr Z−1Ż)ukN = Γuk−1

N , k = 1, 2, 3, · · ·

We note that

u0
N =

√
detZ (4.14)

Taking

f(y) = ρ(y)e
iyT η0

α (4.15)

Setting

I = (2πα)−2

∫

eiψ(t,x,y,η)/αuN(t, y, η)ρ(y)dηdy, (4.16)

where

ψ(t, x, y, η)/α = φ(t, x, y, η) + y.η0

We use stationary phase method to obtain

I = ρ(ȳ(t, x, η0)e
iȳ(t,x,η0)T η0eiS(t,ȳ,η0))/η0 ·

· eiπ
2
m(t,ȳ,η0) |det xy(t, ȳ, η0)|

−1
2 +O(α) (4.17)

where m(t, ȳ, η) is the Morse index of the trajectory x(s; y, η), 0 ≤ s ≤ t and ȳ =

ȳ(t, x, η0) is the unique solution of the equation

xt(y, η0) = x (4.18)

Note that

ẋη = hξξ · ξη
ξ̇η = −hT xx · xη (4.19)
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hξξ =

(

1
µ1

1
µc

1
µc

1
µ2

)

(4.20)

hxx =

(

V ′′

1 − µeµ
′′(x1)E +W11 W12

W21 V ′′

2 − µeµ
′′(x2)E +W22

)

(4.21)

5. Extremum Problem

In what follows we take specific potentials V1 and V2. In particular, we take

V1(x1) = V1(1 − eα1x1)2 (5.1)

V2(x2) = V2(1 − eα2x2)2 (5.2)

We have

V ′

1(x1) ≈ 2α2
1V1x1 (5.3)

V ′

2(x2) ≈ 2α2
2V2x2 (5.4)

Next,

µeµ(x1) = µe(x1 + x0)e
−α̃x1E(t) (5.5)

Thus,

µeµ′(x1) ≈ µeE(t)(1 − α̃x0) − µeα̃(2 − α̃x0)E(t)x1 (5.6)

µeµ′(x2) ≈ µeE(t)(1 − α̃x0) − µeα̃(2 − α̃x0)E(t)x2 (5.7)

Wx1 ≈ ǫx1, Wx2 ≈ ǫx2 (5.8)

Let

Λ1 = 2α2
1V1 − µeα̃(2 − α̃x0)E (5.9)

Λ2 = 2α2
2V1 − µeα̃(2 − α̃x0)E (5.10)

µ̃e = µe(1 − α̃x0) (5.11)

Now we have the system

dx1

dt
=

1

µ1
ξ1 +

1

µc
ξ2

dx2

dt
=

1

µ2
ξ2 +

1

µc
ξ1

dξ1
dt

= µ̃e − Λ1(t)x1 − ǫx2

dξ2
dt

= −µ̃e − Λ2(t)x2 − ǫx1 (5.12)

Corresponding to (5.12) we have the second order system

d2x1

dt2
=

1

µ1

(µ̃eE − Λ1(t)x1 − ǫx2) −
1

µc
(µ̃eE − Λ2(t)x2 − ǫx1)

d2x2

dt2
=

1

µ2
(µ̃eE − Λ2(t)x2 − ǫx1) +

1

µc
(µ̃eE − Λ1(t)x1 − ǫx2) (5.13)
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Let

L(t) =













0 0 1 0

0 0 0 1

−(Λ1

µ1
+ ǫ

µc
) −(Λ2

µc
+ ǫ

µ1
) 0 0

−(Λ1

µc
+ ǫ

µ2
) −(Λ2

µ2
+ Λ2

µc
) 0 0













(5.14)

Next, let

θ(t) =













0

0
µc−µ1

µ1µc
µ̃eE(t)

µ2−µc

µcµ2
µ̃eE(t)













,

θ̃(t) =

(

µc−µ1

µ1µc
µ̃eE(t)

µ2−µc

µcµ2
µ̃eE(t)

)

(5.15)

and

z1 = x1

z2 = x2

z3 =
dx1

dt

z4 =
dx2

dt
(5.16)

and

z =













z1

z2

z3

z4













(5.17)

Then,
dz

dt
= L(t)Z + θ(t) (5.18)

Let Φ(t, s) be the solution of the equation

d

dt
Φ(t, s) = L(t)Φ(t, s)

Φ(s, s) = I (5.19)

Then,

z(t) = Φ(t, 0)

(

y

η

)

+

∫ t

0

Φ(t, s)θ(s)ds (5.20)

Then,
(

x1

x2

)

=

(

z1

z2

)

= Φ11(t, 0)y + Φ12(t, 0)η +

∫ t

0

Φ(t, s)θ̃(s)ds (5.21)
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Let

M−1 =

(

1
µ1

1
µ2

1
µc

1
µ2

)

(5.22)

Then
(

dx1

dt
dx2

dt

)

= Φ21(t, 0)y + Φ22(t, 0)M−1η +

∫ t

0

Φ22(t, s)θ̃(s)ds (5.23)

We note that
(

ξ1

ξ2

)

= M
(

dx1

dt
dx2

dt

)

(5.24)

Thus,
(

ξ1

ξ2

)

= MΦ21(t, 0)y + MΦ22(t, 0)M−1η +

∫ t

0

MΦ22(t, s)θ̃(s)ds (5.25)

We note from (5.21) that

|det xy| = |detΦ11(t, 0)|−1/2 (5.26)

Let

ζ(x) = Φ−1
11 (t, 0)[x− Φ12(t, 0)η −

∫ t

0

Φ12(t, s)θ̃(s)ds] (5.27)

Next, let

ψ(t, x) = ρ(ζ(x))eiζ(x)
T η0eiS(t,ζ(x),η0)/αu0

N(t, ζ(x), η0)

· eiπ
2
m(t,ζ(x),η0) |det xy(t, ȳ, η0)|−1/2

We recall from (4.6) and (4.14) that

Z(t, y, η) = ξη − iBxη ,

u0
N =

√
detZ.

and

|ψ(t, x)| = |ρ(ζ(x))| |det xy(t, ȳ, η)|−1/2 (5.28)

Below, we take specific values for our parameters in (5.1)-(5.8) as follows

µ1 = 11860, µ2 = 282, µc = −524.5764, µe = .3924

V1 = .1976, V2 = .137, α1 = .9217, α2 = .137, x0 = 2, α̃ = 1, ǫ = .01

In our optimal control computation we use atomic mass units (au) [3]. The hydrogen

mass is 1836me, where me is electron mass. The carbon mass is 12 ∗ 1836me =

22032me, and the nitrogen mass is 14 ∗me. We just write 1836 au for the hydrogen

mass, and 22032 au for the carbon mass. For example, the reduced mass of −C ≡ N

bond is 11860 au. The energy of −C ≡ N bond is very near 11ev, and that of the
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H−C ≡ bond is very near 5.7 ev. We can now approximately calculate the −C ≡ N

bond length to be about 2.18 au, and that of the H−C ≡ bond to be about 2.008 au.

Magnitude of the momentum for the nitrogen bond −C ≡ N can be approximated

by 98.2 au, and for hydrogen bond H − C ≡ by 10.2 au. We use the bond lengths

and the momenta in y and η (see (4.2)) in the second objective functional of the

control problem below. In the same objective functional x∗ = (x∗1, x
∗

2) is what we

would like (x1(T ), x2(T )) to be close too. We choose (x∗1, x
∗

2) so that the stronger

bond length x1 gets stretched and the weaker bond length remains close to what it

was before applying the electric field. In this way we get the numerical inputs we

need to proceed with our numerical computation.

Below we compute the control (electric field E(t)) and corresponding states using

the maximum principle. The results are plotted below. We note that the strong bond

has actually been stretched in each case while the weaker bond shrunk. In Figure 2

we see that stronger bond is stretched and the weaker bond is minimally affected.

6. Use of Pontryagin’s Maximum Principle

In this section we show how we use the Pontryagin’s maximum principle. If the

actual initial wave function is χ(y, η) we use(see 4.16 )

I = (2πα)−2

∫

eiφ(t,x,y,η)/αuN(t, y, η)χ(y, η)dηdy

where uN comes from the asymptotic expansion (4.13), (4.14) and (4.14). Also see

(4.14). Of course, to first order in α, which is really Planck’s constant, we only need

(4.14), which is known explicitly (see (4.14)). In employing the maximum princi-

ple we use as initial wave function, ρ(y)e
iyT η0

α introduced in (4.15). A rational for

doing so is that we could approximate the actual initial wave function χ(y, η) by
∑

m,n ρm(y)ei ǫn y
T η/α. Thus, if we carry out the control problem for initial wave func-

tions of the form ρm(y)ei ǫny
T η/α we can approximate the result for the actual wave

function by adding the results we get using initial wave function of these simpler

forms. With ρ(y)eiy
T η0/α we use stationary phase formula to get (4.17). Thus, we

consider the following three objective functionals at the same time.

min

∫ T

0

E2(t)dt,

min

{

|x∗ − [Φ11(T, 0)y + Φ12(T, 0)η +

∫ T

0

Φ12(T, s)θ̃(s)ds]|
}

,

and

max |I| = |ρ(ȳ(T, x, η0))| |det xy(T, ȳ, η0)|−1/2 ,
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where |I| comes from (4.16) subject to (5.12). To include the contribution of |det xy(t, ȳ, η0)|
we supplement (5.12) by

dx11

dt
=

1

µ1
ξ11 +

1

µc
ξ21

dx12

dt
=

1

µ1
ξ12 +

1

µc
ξ22

dx21

dt
=

1

µ2
ξ21 +

1

µc
ξ11

dx22

dt
=

1

µ2
ξ22 +

1

µc
ξ12

dξ11
dt

= −Λ1(t)x11 − ǫx21

dξ12
dt

= −Λ2(t)x12 − ǫx22

dξ21
dt

= −Λ1(t)x21 − ǫx11

dξ22
dt

= −Λ2(t)x22 − ǫx12

xij(0) = δij

ξij(0) = 0 (6.1)

Thus, we have to solve a multiobjective control problem. The control is the elec-

tric field E(t), and E2(t) is the energy contained in the electric field. We note that

three objective functionals constitute the multiobjective control problem. The first

objective functional (COST1) is designed to minimize the energy needed. The goal

to be accomplished is to stretch the stronger bond length, i.e., break it, while af-

fecting the weaker bond minimally. The second objective functional (COST2) is

designed for this purpose. The third objective functional (COST3) localizes the

wave function, which is needed to increase the probability our goal of affecting the

bonds is realized sharply. Our objective functional that we want to minimize is now

α1 · COST1 + α2 · COST2 + α3 · (−COST3) subject to the dynamics (5.12) and

(6.1). The constants α1, α2, α3 are positive constants that we can choose. In our case

we chose them to be .5, 25, 25. We tried various choices without much difference.

Introducing scalarization parameters is normal in dealing with multiobjective control

problems. In multiobjective problems one might choose the scalarizing parameters

emphasizing which of the various competing objective functions is important. We

remind the reader that x1 is the bond length for the −C ≡ N bond, and x2 is the

bond length for the H − C ≡ bond. The stronger bond is the −C ≡ N bond, and

that is what we would like stretched. That is, we would like x1 increased from its

original value, while x2 is kept the same, or affected minimally. We use Pontrya-

gin’s maximum principle and the method of steepest descent [4] to look for the best
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control. The method of steepest descent is a numerical procedure to look for the

best control using the hamiltonian in Pontryagin’s maximum principle. The resulting

control (E(t)), corresponding Hamiltonian J , and states are shown below for three

different maximum levels of the control. Figure 1 and Figure 2 correspond to case

(a): |E| ≤ 200. Figure 3 and Figure 4 correspond to case (b): |E| ≤ 25. Figure 5

and Figure 6 correspond to case (c): |E| ≤ 3. We note that among the results shown

below, in the plots for the states, Figure 2 perfectly fits our goal. That is, x1 increased

from its original value, while x2 is affected minimally. In Figure 4 and Figure 6 the

stronger bond is also stretched as we wanted. However, the weaker bond did not

quite stay near where it initially was. It was shortened. That is, in both cases x1

increased, while x2 decreased. In Figure 1, Figure 3, and Figure 5 the Hamiltonian

J of the control problem decreases. The Hamiltonian J includes the square of the

electric field.
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Figure 1. Control and Hamiltonian J : case(a).

7. Asymptotic Expansion On a Model Problem

In this section we will briefly present a problem that would give some insight and

motivation for the asymptotic approach that was done above. We consider a quantum

mechanical model of a diatomic molecule. Using classical asymptotic method one

can see how to design an appropriate pulse/electric field to achieve a dissociation of

desired amount in the molecule. The analysis of the model provides an insight into

the interplay between the constituent parameters of the field and duration of the

electric pulse required to achieve a desired amount of dissociation in a molecule, and

the mathematical difficulty inherent in the problem. The insight gained in dealing

with this problem is useful in dealing with molecules containing more than two atoms.

In the figure below (Figure 7) we see the original wave function shifted, verifying a

separation between the atoms has been achieved. The relationship of the separation
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Figure 2. State1 and State 2 corresponding to Control and Hamil-

tonian J: case (a).
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Figure 3. Control and Hamiltonian J: case(b).

amount to the applied control can be gotten from the asymptotic formula. The model

equation is

i
∂ψ

∂t
+
∂2ψ

∂x2
− V (x, t)ψ = 0, (7.1)

where

V (x, t) = − |λ| δ(x) + xE(t) (7.2)

The following gives the solution to (7.1)

ψ(x, t) =
1

2π
ei[−2W (t,0)+

R t

0 E(u)du(t
R t

0 E(u)du+2V (t,0)−x)] ·

·
∫

∞

−∞

ei[tζ
2
−2(t

R t

0 E(u)du−V (t,0))ζ]eiζ·xψ̂(ζ, 0)dζ
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Figure 4. State 1 and State 2 corresponding to Control and Hamil-

tonian J: case(b).

+
i |λ|√
4πi

∫ t

0

e
i

4(t−s)
·x2

−iV (t,s)
t−s

·x+iV 2(t,s)
t−s

−2iW (t,s)ψ(0, s)ds (7.3)

where

W (t, 0) =

∫ t

0

E(r)V (r, 0)dr

Using asymptotic method one can see that the initial wave function will be dis-

placed by 2V (t, 0) in time t and V (t, 0) =
∫ t

0
uE(u)du where E(t) is the control.

This model problem of a diatomic molecule shows, using asymptotic method, how

much the original wave function is shifted and the exact relationship with the shift,
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Figure 5. Control and Hamiltonian J: case(c).
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Figure 6. State1 and State 2 corresponding to Control and Hamil-

tonian J : case(c).

control electric field and the energy. Thus, one would conclude it may be beneficial

to consider asymptotic methods to deal with problems where we have more than two

atoms and we want to break a specific bond while minimally affecting other bonds.

This is precisely the motivation for what was done above.

8. Conclusion

We have demonstrated how we can use classical asymptotic procedure to gain

insight into the relationship between the applied control (electric field) and its effect

on the original wave function. We have demonstrated how one would set up a classical

control problem where it is required to break the stronger bond while affecting the

weaker less. We note from the above computations that the stronger bond is in fact

stretched, while the weaker is not, and the energy is minimized. In Figure 2 the

state corresponding to the stronger bond is stretched while the state corresponding
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Figure 7. Shifting The Original Wave (diatomic model.)

to the weaker bond is not disturbed much. In Figure 4 and Figure 6 the stronger

bond is stretched while the weaker bond is actually shortened. We can say that we

have managed to construct a model in a mathematically satisfactory way where the

stronger bond is stretched while the weaker bond is minimally disturbed or shrunk.

The control problems were numerically solved using the steepest descent method. The

result of the asymptotic method on the model problem suggests that the asymptotic

method is in fact a good approach. It sheds light on what is really involved in optimal

control problems governed by quantum dynamics.

REFERENCES

[1] C. Bardeen et al., Feedback quantum control of molecular electronic population transfer, Chem.

Phys. Lett. 280(1997), pp. 151–158.

[2] E. Brown and H. Rabitz, Some mathematical and algorithmic challenges in the control of

quantum dynamics phenomena, J. of Mathematical Chem., Vol. 31, No. 1, pp. 17(2002).

[3] Jair Botina, Herschel Rabitz, Naseem Rahman Asimplified approach to optimally controlled

quantum dynamics, J. Chem. Phys. 104(11) pp. 4031–4040.

[4] Donald Kirk Optimal Control Theory, PRENTICE-HALL, INC., Englwood Cliffs, New Jersey,

1970.

[5] A. Laptev, I. M. Segal, A. Laptev and I. M. Sigal, Global Fourier Integral Operators and

Semiclassical Asymptotics, Rev. Math. Phys. 12(2000) pp. 749–766.

[6] R.J. Levis, G.M. Menkir and H. Rabitz, Selective bond dissociation and rearrangement with

optimally tailored, strong-field laser pulses, Science 292(2001) pp. 709–713.

[7] W. S. Warren, H. Rabitz, and M. Dahleh, Coherent Control of Quantum Dynamics: The

Dream is alive, Science 259(1993), pp. 1581–1589.


