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ABSTRACT. In this paper, some fundamental results concerning the strict and nonstrict integro-

differential inequalities, existence and existence of the maximal and minimal solutions and compar-

ison theorems are proved for a first order hybrid intero-differential equation with a linear perturba-

tions of second type under some natural conditions. Our results include the well-known results of

Lakshmikantham and Rama Mohana Rao (1995) on integro-differential equations as spacial cases.

The realization of our main existence result is also illustrated with a couple of numerical examples.
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1. INTRODUCTION

Given a bounded interval J = [t0, t0 + a) in R, R the real line, for some fixed

t0, a ∈ R with a > 0, consider the initial value problems of hybrid integro-differential

equation (in short HIDE),

d

dt

[

x(t) − f(t, x(t))
]

= g

(

t, x(t),

∫

t

t0

k(t, s, x(s))ds

)

, t ∈ J,

x(t0) = x0 ∈ R,











(1.1)

where, the functions f : J × R → R, k : J × J × R → R and g : J × R × R → R are

continuous.

By a solution of the HIDE (1.1) we mean a function x ∈ C(J,R) such that

(i) the function t 7→ x− f(t, x) is continuous for each x ∈ R, and

(ii) x satisfies the equations in (1.1),

where C(J,R) is the space of continuous real-valued functios defined on J .

The integro-differential equations have been discussed in the literature since long

time back in the works of Volterra and Fredholm (cf. Lakshmikantham and Rama Mo-

hana rao [14]) and they find some nice applications to natural and physical problems
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of the universe. Some of the interesting applications of integro-differential equations

to the problems of biological population, grazing system, wave propagation, nuclear

reactors and viscoelasticity appear in the monograph of Lakshmikatham and Rama

Mohana Rao [14]. The importance of the investigations of hybrid integro-differential

equations lies in the fact that they include several classes of differential and integral

equations as special cases. The study of hybrid differential and integral equations is

implicit in the works of Krasnoselskii [12] and extensively treated in the several papers

on hybrid differential equations with different perturbations. See Burton [1], Dhage

[5] and the references cited therein. The class of hybrid integro-differential equations

includes the perturbations of original integro-differential equations in different ways.

A sharp classification of different types of perturbations of integro-differential equa-

tions appears in Dhage [5] which can be treated with hybrid fixed point theory (see

Dhage [4, 5] and Dhage and Lakshmikantham [8]). In this paper, we initiate the basic

theory of hybrid integro-differential equations of mixed perturbations of second type

involving two nonlinearities and prove some basic results such as integro-differential

inequalities, existence theorem and maximal and minimal solutions etc. We claim

that the results of this chapter are basic and important contribution to the theory of

nonlinear ordinary integro-differential equations.

2. STRICT and NONSTRICT INEQUALITIES

We need frequently the following hypotheses in what follows.

(A0) The function x 7→ x− f(t, x) is increasing in R for all t ∈ J .

(B0) The function s 7→ k(t, s, x(s)) is Riemann integrable for each x ∈ C(J,R) and

t > s.

(B1) The functions k(t, s, x) and g(t, x, y) are nondecreasing in x and y for each

t, s ∈ J with t > s.

We begin by proving the basic results concerning the integro-differential inequal-

ities for the hybrid integro-differential equation (1.1).

Theorem 2.1. Assume that the hypothesis (A0)–(B0) hold. Suppose that there exist

y, z ∈ C(J,R) such that

d

dt

[

y(t) − f(t, y(t))
]

≤ g

(

t, y(t),

∫

t

t0

k(t, s, y(s))ds

)

, t ∈ J, (2.1)

and
d

dt

[

z(t) − f(t, z(t))
]

≥ g

(

t, z(t),

∫

t

t0

k(t, s, z(s))ds

)

, t ∈ J. (2.2)

If one of the inequalities (2.1) and (2.2) is strict and

y(t0) < z(t0), (2.3)
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then

y(t) < z(t) (2.4)

for all t ∈ J .

Proof. Suppose that the inequality (2.4) is false. Then the set P defined by

P = {t ∈ J | y(t) ≥ z(t)} (2.5)

is non-empty. Denote t1 = inf P . Without loss of generality, we may assume that

y(t1) = z(t1) and y(t) < z(t)

for all t < t1.

Assume that

d

dt

[

z(t) − f(t, z(t))
]

> g

(

t, z(t),

∫

t

t0

g(t, s, z(s))ds

)

for t ∈ J .

Denote

Y (t) = y(t) − f(t, y(t)) and Z(t) = z(t) − f(t, z(t))

for t ∈ J .

As hypothesis (A0) holds, it follows from (2.5) that

Y (t1) = Z(t1) and Y (t) < Z(t) (2.6)

for all t0 ≤ t < t1. The above relation (2.6) further yields

Y (t1 + h) − Y (t1)

h
>
Z(t1 + h) − Z(t1)

h

for small h < 0. Taking the limit as h→ 0, we obtain

Y ′(t1) ≥ Z ′(t1). (2.7)

Hence, from (2.6) and (2.7), we get

g

(

t1, y(t1),

∫

t1

t0

k(t1, s, y(s))ds

)

≥ Y ′(t1) ≥ Z ′(t1)

> g

(

t1, z(t1),

∫

t1

t0

k(t1, s, z(s))ds

)

.

This is a contradiction and the proof is complete.

The next result is about the nonstrict inequality for the HIDE (1.1) on J which

requires a one-sided Lipschitz condition.
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Theorem 2.2. Assume that the hypotheses of Theorem 2.1 hold. Suppose also that

there exists a real number L > 0 such that

g

(

t, y(t),

∫

t

t0

k(t, s, y(s))ds

)

− g

(

t, z(t),

∫

t

t0

k(t, s, z(s))ds

)

≤ L sup
t0≤s≤t

[

(y(s) − f(s, y(s)))− (z(s) − f(s, z(s)))
]

(2.8)

whenever y(s) ≥ z(s), t0 ≤ s ≤ t. Then,

y(t0) ≤ z(t0) (2.9)

implies

y(t) ≤ z(t) (2.10)

for all t ∈ J .

Proof. Let ǫ > 0 and let a real number L > 0 be given. Set

zǫ(t) − f(t, zǫ(t)) = z(t) − f(t, z(t)) + ǫe2L(t−t0) (2.11)

so that

zǫ(t) − f(t, zǫ(t)) > z(t) − f(t, z(t)).

Define

Zǫ(t) = zǫ(t) − f(t, zǫ(t)) and Z(t) = z(t) − f(t, z(t))

for t ∈ J .

Now using the one-sided Lipschitz condition (2.8), we obtain

g

(

t, zǫ(t),

∫

t

t0

k(t, s, zǫ(s))ds

)

− g

(

t, z(t),

∫

t

t0

g(t, s, z(s))ds

)

≤ L sup
t0≤s≤t

[Zǫ(s) − Z(s)] = Lǫe2L(t−t0).

Now,

Z ′
ǫ
(t) = Z ′(t) + 2Lǫe2L(t−t0)

≥ g

(

t, z(t),

∫

t

t0

k(t, s, z(s))ds

)

+ 2Lǫe2L(t−t0)

≥ g

(

t, zǫ(t),

∫

t

t0

k(t, s, zǫ(s))ds

)

+ 2Lǫe2L(t−t0) − Lǫe2L(t−t0)

= g

(

t, zǫ(t),

∫

t

t0

k(t, s, zǫ(s))ds

)

+ Lǫe2L(t−t0)

> g

(

t, zǫ(t),

∫

t

t0

k(t, s, zǫ(s))ds

)
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for all t ∈ J . Also, we have

Zǫ(t0) > Z(t0) ≥ Y (t0).

Now we apply Theorem 2.1 with z = zǫ to yield

Y (t) < Zǫ(t)

for all t ∈ J . On taking ǫ → 0 in the above inequality, we get

Y (t) ≤ Z(t)

which further in view of hypothesis (A0) implies that (2.10) holds on J . This com-

pletes the proof.

Remark 2.3. The conclusion of Theorems 2.1 and 2.2 also remains true if we replace

the derivative in the inequalities (2.1) and (2.2) by Dini-derivative D− of the function

x(t) − f(t, x(t)) on the bounded interval J .

3. EXISTENCE RESULTS

In this section, we prove an existence result for the HIDE (1.1) on a closed and

bounded interval J = [t0, t0 + a] under mixed Lipschitz and compactness conditions

on the nonlinearities involved in it. We place the HIDE (1.1) in the space C(J,R) of

continuous real-valued functions defined on J and use a hybrid fixed point of Dhage

[2]. Define a supremum norm ‖ · ‖ in C(J,R) defined by

‖x‖ = sup
t∈J

|x(t)|.

Clearly C(J,R) is a Banach space with respect to the above supremum norm.

We prove the existence of solution for the HDE (1.1) via the following hybrid fixed

point theorem in the Banach space due to Dhage [2]. Before stating the fixed point

theorem, we give some preliminaries and definitions that will be used in what follows.

Definition 3.1. A mapping ψ : R+ → R+ is called a dominating function or,

in short, D-function if it is an upper semi-continuous and nondecreasing function

satisfying ψ(0) = 0. A mapping Q : E → E is called nonlinear D-Lipschitz if there

is a D-function ψ : R+ → R+ satisfying

‖Qφ−Qξ‖ ≤ ψ(‖φ− ξ‖) (3.1)

for all φ, ξ ∈ E. If ψ(r) = k r, k > 0, then Q is called Lipschitz with the Lipschitz

constant k. In particular, if k < 1, then Q is called a contraction on X with the

contraction constant k. Further, if ψ(r) < r for r > 0, then Q is called nonlinear

D-contraction and the function ψ is called D-function of Q on X.
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The details of different types of contractions operators in Banach spaces appear

in the monographs of Dhage [4] and Granas and Dugundji [9] There do exist D-

functions and the commonly used D-functions are ψ(r) = k r and ψ(r) = r

1+r
, etc.

These D-functions have been widely used in the theory of nonlinear differential and

integral equations for proving the existence results via fixed point methods.

Another notion that we need in the sequel is the following definition.

Definition 3.2. An operator Q on a Banach space E into itself is called compact

if Q(E) is a relatively compact subset of E. Q is called totally bounded if for any

bounded subset S of E, Q(S) is a relatively compact subset of E. If Q is continuous

and totally bounded, then it is called completely continuous on E.

Note that every compact operator is totally bounded and every compact contin-

uous operator is completely continuous, however the converse of above statements is

not held. However both the notion coincide on a bounded subset S of the Banach

space E.

Theorem 3.3 (Dhage [2]). Suppose that S is a closed, convex and bounded subset of

the Banach space E and let A : E → E and B : S → E be two operators such that

(a) A is nonlinear D-contraction,

(b) B is compact and continuous, and

(c) x = Ax+By for all y ∈ S =⇒ x ∈ S.

Then the operator equation Ax+Bx = x has a solution in S.

We consider the following hypotheses in what follows.

(A1) There exist constants L > 0 and K > 0 such that

|f(t, x) − f(t, y)| ≤
L|x− y|

K + |x− y|

for all t ∈ J and x, y ∈ R. Moreover, L ≤ K.

(B2) There exists a continuous function h : J → R such that

|g(t, x, y)| ≤ h(t), t ∈ J

for all x, y ∈ R.

The following lemma is useful in the sequel.

Lemma 3.4. Assume that the hypothesis (A0) hold. Then for any continuous function

h : J → R, the function x ∈ C(J,R) is a solution of the HIDE

d

dt

[

x(t) − f(t, x(t))
]

= h(t), t ∈ J

x(0) = x0 ∈ R







(3.2)



HYBRID INTEGRO-DIFFERENTIAL EQUATIONS OF VOLTERRA TYPE 293

if and only if x satisfies the hybrid integral equation (HIE)

x(t) = x0 − f(t0, x0) + f(t, x(t)) +

∫

t

t0

h(s)ds, t ∈ J. (3.3)

Proof. Let h ∈ C(J,R). Assume first that x is a solution of the HIDE (3.2). By

definition, x(t) − f(t, x(t)) is continuous on J , and so, differentiable there, whence
d

dt

[

x(t)− f(t, x(t))
]

is integrable on J . Applying integration to (3.2) from t0 to t, we

obtain the HIE (3.3) on J .

Conversely, assume that x satisfies the HIE (3.3). Then by direct differentiation

we obtain the first equation in (3.2). Again, substituting t = t0 in (3.3) yields

x(t0) − f(t0, x(t0)) = x0 − f(t0, x0).

Since the mapping x 7→ x − f(t, x) is increasing in R for all t ∈ J , the mapping

x 7→ x− f(t0, x) is injective in R, whence x(t0) = x0. Hence the proof of the lemma

is complete.

Now we are in a position to prove the following existence theorem for the HIDE

(1.1) on J .

Theorem 3.5. Assume that the hypotheses (A0)–(A1), (B0) and (B2) hold. Then the

HIDE (1.1) has a solution defined on J .

Proof. Set E = C(J,R) and define a subset S of E defined by

S = {x ∈ E | ‖x‖ ≤ N} (3.4)

where,

N = |x0 − f(t0, x0)| + L+ F0 + ‖h‖ a,

and F0 = sup{|f(t, 0)| | t ∈ J}.

Clearly S is a closed, convex and bounded subset of the Banach space E. Now,

using the hypotheses (B0) and (B2) it can be shown by an application of Lemma 3.4

that the HIDE (1.1) is equivalent to the nonlinear HIE

x(t) = x0 − f(t0, x0) + f(t, x(t)) +

∫

t

t0

g

(

s, x(s),

∫

s

t0

k(s, τ, x(τ)) dτ

)

ds (3.5)

for t ∈ J .

Define two operators A : E → E and B : S → E by

Ax(t) = f(t, x(t)), t ∈ J, (3.6)

and

Bx(t) = x0 − f(t0, x0) +

∫

t

t0

g

(

s, x(s),

∫

s

t0

k(s, τ, x(τ))dτ

)

ds, t ∈ J. (3.7)
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Then, the HIE (3.6) is transformed into an operator equation as

Ax(t) +Bx(t) = x(t), t ∈ J. (3.8)

We shall show that the operators A and B satisfy all the conditions of Theo-

rem 3.3.

First, we show that A is a nonlinear D-contraction on E. Let x, y ∈ E. Then,

by hypothesis (A1),

|Ax(t) − Ay(t)| = |f(t, x(t)) − f(t, y(t))|

≤
L |x(t) − y(t)|

K + |x(t) − y(t)|

≤
L ‖x− y‖

K + ‖x− y‖

for all t ∈ J . Taking supremum over t, we obtain

‖Ax− Ay‖ ≤
L‖x− y‖

K + ‖x− y‖

for all x, y ∈ E. This shows that A is a nonlinear D-contraction on E with D-function

ψ(r) = L r

K+r
, L ≤ K.

Next, we show that B is a compact and continuous operator on S into E. First

we show that B is continuous on S. Let {xn} be a sequence in S converging to a

point x ∈ S. Then by dominated convergence theorem for integration, we obtain

lim
n→∞

Bxn(t) = lim
n→∞

x0 − f(t0, x0) +

∫

t

t0

g

(

s, xn(s),

∫

s

t0

k(s, τ, xn(τ)) dτ

)

ds

= x0 − f(t0, x0) + lim
n→∞

∫

t

t0

g

(

s, xn(s),

∫

s

t0

k(s, τ, xn(τ)) dτ

)

ds

= x0 − f(t0, x0) +

∫

t

t0

[

lim
n→∞

g

(

s, xn(s),

∫

s

t0

k(s, τ, xn(τ)) dτ

)]

ds

= x0 − f(t0, x0) +

∫

t

t0

g

(

s, x(s),

∫

s

t0

k(s, τ, x(τ)) dτ

)

ds

= Bx(t)

for all t ∈ J . Moreover, it can be shown as below that {Bxn} is an equicontinuous

sequence of functions in X. Now, following the arguments similar to that given in

Granas et al. [10], it is proved that B is a a continuous operator on S.

Next, we show that B is compact operator on S. It is enough to show that B(S)

is a uniformly bounded and equi-continuous set in E. Let x ∈ S be arbitrary. Then

by hypothesis (B2),

|Bx(t)| ≤ |x0 − f(t0, x0)| +

∫

t

t0

∣

∣

∣
g

(

s, x(s),

∫

s

t0

k(s, τ, x(τ)) dτ

)

∣

∣

∣
ds
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≤ |x0 − f(t0, x0)| +

∫

t

t0

h(s)ds

≤ |x0 − f(t0, x0)| + ‖h‖ a

for all t ∈ J . Taking supremum over t,

‖Bx‖ ≤
∣

∣x0 − f(t0, x0)
∣

∣ + ‖h‖ a

for all x ∈ S. This shows that B is uniformly bounded on S.

Again, let t1, t2 ∈ J . Then for any x ∈ S, one has

|Bx(t1) −Bx(t2)|

=

∣

∣

∣

∣

∫

t1

t0

g

(

s, x(s),

∫

s

t0

k(s, τ, x(τ)) dτ

)

ds

−

∫

t2

t0

g

(

s, x(s),

∫

s

t0

k(s, τ, x(τ)) dτ

)

ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

t1

t2

∣

∣

∣

∣

g

(

s, x(s),

∫

s

t0

k(s, τ, x(τ)) dτ

)
∣

∣

∣

∣

ds

∣

∣

∣

∣

≤ |p(t1) − p(t2)|

where, p(t) =

∫

t

t0

h(s)ds. Since the function p is continuous on compact J , it is

uniformly continuous. Hence, for ǫ > 0, there exists a δ > 0 such that

|t1 − t2| < δ =⇒ |Bx(t1) − Bx(t2)| < ǫ

for all t1, t2 ∈ J and for all x ∈ S. This shows that B(S) is an equi-continuous set

in E. Now the set B(S) is uniformly bounded and equicontinuous set in E, so it

is compact by Arzelá-Ascoli theorem. As a result, B is a continuous and compact

operator on S.

Next, we show that hypothesis (c) of Theorem 3.3 is satisfied. Let x ∈ E and

y ∈ S be arbitrary such that x = Ax+By. Then, by assumption (A1), we have

|x(t)| ≤ |Ax(t)| + |By(t)|

≤ |x0 − f(t0, x0)| + |f(t, x(t))| +

∫

t

t0

∣

∣

∣

∣

g

(

s, x(s),

∫

s

t0

k(s, τ, x(τ)) dτ

)
∣

∣

∣

∣

ds

≤ |x0 − f(t0, x0)| +
[

|f(t, x(t)) − f(t, 0)| + |f(t, 0)|
]

+

∫

t

t0

∣

∣

∣

∣

g

(

s, x(s),

∫

s

t0

k(s, τ, x(τ)) dτ

)
∣

∣

∣

∣

ds

≤ |x0 − f(t0, x0)| + L+ F0 +

∫

t

t0

h(s)ds

≤ |x0 − f(t0, x0)| + L+ F0 + ‖h‖a.
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Taking supremum over t,

‖x‖ ≤ |x0 − f(t0, x0)| + L+ F0 + ‖h‖a,

and so, we have that x ∈ S.

Thus, all the conditions of Theorem 3.3 are satisfied and hence the operator

equation Ax+Bx = x has a solution in S. As a result, the HIDE (1.1) has a solution

defined on J . This completes the proof.

4. MAXIMAL AND MINIMAL SOLUTIONS

In this section, we shall prove the existence of maximal and minimal solutions for

the HIDE (1.1) on J = [t0, t0 + a]. We need the following definition in what follows.

Definition 4.1. A solution r of the HIDE (1.1) is said to be maximal if for any other

solution x to the HIDE (1.1) one has x(t) ≤ r(t), for all t ∈ J. Again, a solution ρ

of the HIDE (1.1) is said to be minimal if ρ(t) ≤ x(t), for all t ∈ J, where x is any

solution of the HIDE (1.1) existing on J.

We discuss the case of maximal solution only, as the case of minimal solution is

similar and can be obtained with the similar arguments with appropriate modifica-

tions.

Given a arbitrary small real number ǫ > 0, consider the the following initial value

problem of HIDE,

d

dt
[x(t) − f(t, x(t))] = g

(

t, x(t),

∫

t

t0

k(t, s, x(s))ds

)

+ ǫ, t ∈ J,

x(t0) = x0 + ǫ











(4.1)

where, f ∈ C(J × R,R) and g ∈ C(J × R × R,R).

An existence theorem for the HIDE (4.1) can be stated as follows:

Theorem 4.2. Assume that the hypotheses (A0)–(A1) through (B0)–(B2) hold. Then

for every small number ǫ > 0, the HIDE (4.1) has a solution defined on J .

Proof. The proof is similar to Theorem 3.3 and we omit the details.

Our main existence theorem for maximal solution for the HIDE (1.1) is as follows.

Theorem 4.3. Assume that the hypotheses (A0)–(A1) through (B0)–(B2) hold. Fur-

ther, if L ≤M , then the HIDE (1.1) has a maximal solution defined on J .

Proof. Let
{

ǫn
}∞

0
be a decreasing sequence of positive real numbers such that

lim
n→∞

ǫn = 0. Then for any solution u of the HIDE (1.1), by Theorem 2.1, one has

u(t) < r(t, ǫn) (4.2)
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for all t ∈ J and n ∈ N ∪ {0}, where r(t, ǫn) is a solution of the HIDE,

d

dt
[x(t) − f(t, x(t))] = g

(

t, x(t),

∫

t

t0

k(t, s, x(s))ds

)

+ ǫn, t ∈ J,

x(t0) = x0 + ǫn











(4.3)

defined on J .

Since, by Theorems 3.3 and 3.5, {r(t, ǫn)} is a decreasing sequence of positive

real numbers, the limit

r(t) = lim
n→∞

r(t, ǫn) (4.4)

exists. We show that the convergence in (4.4) is uniform on J . To finish, it is enough

to prove that the sequence {r(t, ǫn)} is equi-continuous in C(J,R). Let t1, t2 ∈ J be

arbitrary. Then,

|r(t1, ǫn) − r(t2, ǫn)|

≤
∣

∣f(t1, r(t1, ǫn)) − f(t2, r(t2, ǫn))
∣

∣

+

∣

∣

∣

∣

∫

t1

t0

g

(

s, rǫn
(s),

∫

s

t0

k(s, τ, rǫn
(τ))ds

)

ds (4.5)

−

∫

t2

t0

g

(

s, rǫn
(s),

∫

s

t0

k(s, τ, rǫn
(τ))ds

)

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

t1

t0

ǫn ds−

∫

t2

t0

ǫn ds

∣

∣

∣

∣

≤
∣

∣f(t1, r(t1, ǫn)) − f(t2, r(t2, ǫn))
∣

∣

+

∣

∣

∣

∣

∫

t1

t2

g

(

s, rǫn
(s),

∫

s

t0

k(s, τ, rǫn
(τ))ds

)

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

t2

t1

ǫn ds

∣

∣

∣

∣

≤
∣

∣f(t1, r(t1, ǫn)) − f(t2, r(t2, ǫn))
∣

∣

+

∣

∣

∣

∣

∫

t2

t1

h(s)ds

∣

∣

∣

∣

+ |t1 − t2|ǫn

≤
∣

∣f(t1, r(t1, ǫn)) − f(t2, r(t2, ǫn))
∣

∣

+ ǫn|t1 − t2| + |p(t1) − p(t2)|

where, p(t) =

∫

t

t0

h(s)ds.

Since f is continuous on compact set J× [−N,N ], they are uniformly continuous

there. Hence,

∣

∣f(t1, r(t1, ǫn)) − f(t2, r(t2, ǫn))
∣

∣ → 0 as t1 → t2
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uniformly for all n ∈ N. Similarly, since the function p is continuous on compact set

J , it is uniformly continuous and hence
∣

∣p(t1) − p(t2)
∣

∣ → 0 as t1 → t2

uniformly for all t1, t2 ∈ J .

Therefore, from the above inequality (4.5), it follows that

|r(t1, ǫn) − r(t1, ǫn)| → 0 as t1 → t2

uniformly for all n ∈ N. Therefore,

r(t, ǫn) → r(t) as n→ ∞

for all t ∈ J . Next, we show that the function r(t) is a solution of the HIDE (3.2)

defined on J . Now, since r(t, ǫn) is a solution of the HIDE (4.5), we have

r(t, ǫn) = x0 + ǫn + f(t, r(t, ǫn)) +

∫

t

t0

g

(

s, rǫn
(s),

∫

s

t0

k(s, τ, rǫn
(τ))ds

)

ds (4.6)

for all t ∈ J. Taking the limit as n→ ∞ in the above equation (4.6) yields

r(t) = x0 − k(t0, x0) + f(t, r(t)) +

∫

t

t0

g

(

s, r(s),

∫

s

t0

k(s, τ, r(τ))ds

)

ds

for t ∈ J . Thus, the function r is a solution of the HIDE (1.1) on J . Finally, form

the inequality (4.4) it follows that

u(t) ≤ r(t)

for all t ∈ J . Hence the HIDE (1.1) has a maximal solution on J . This completes the

proof.

5. COMPARISON THEOREMS

The main problem of the integro-differential inequalities is to estimate a bound for

the solution set for the integro-differential inequality related to the HIDE (1.1). In this

section we prove that the maximal and minimal solutions serve as the bounds for the

solutions of the related integro-differential inequality to HIDE (1.1) on J = [t0, t0+a].

Theorem 5.1. Assume that the hypotheses (A0)–(A1) and (B0)–(B2) hold. Further,

if there exists a function u ∈ C(J,R) such that

d

dt
[u(t) − f(t, u(t))] ≤ g

(

t, u(t),

∫

t

t0

k(t, s, u(s))ds

)

, t ∈ J,

u(t0) ≤ x0.











(5.1)

Then,

u(t) ≤ r(t) (5.2)

for all t ∈ J , where r is a maximal solution of the HIDE (1.1) on J .
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Proof. Let ǫ > 0 be arbitrary small. Then, by Theorem 4.3, r(t, ǫ) is a maximal

solution of the HIDE (4.1) and that the limit

r(t) = lim
ǫ→0

r(t, ǫ) (5.3)

is uniform on J and the function r is a maximal solution of the HIDE (1.1) on J .

Hence, we obtain

d

dt
[r(t, ǫ) − f(t, r(t, ǫ))] = g

(

t, r(t, ǫ),

∫

t

t0

k(t, s, r(s, ǫ))ds

)

+ ǫ, t ∈ J,

r(t0, ǫ) = x0 + ǫ.







(5.4)

From above inequality it follows that

d

dt
[r(t, ǫ) − f(t, r(t, ǫ))] > g

(

t, r(t, ǫ),

∫

t

t0

k(t, s, r(s, ǫ))ds

)

, t ∈ J,

r(t0, ǫ) > x0.







(5.5)

Now we apply Theorem 2.1 to the inequalities (5.1) and (5.5) and conclude that

u(t) < r(t, ǫ) (5.6)

for all t ∈ J . This further in view of limit (5.3) implies that inequality (5.2) holds on

J . This completes the proof.

Theorem 5.2. Assume that the hypotheses (A0)–(A1) and (B0)–(B2) hold. Further,

if there exists a function v ∈ C(J,R) such that

d

dt
[v(t) − f(t, v(t))] ≥ g

(

t, v(t),

∫

t

t0

k(t, s, v(s))ds

)

, t ∈ J,

v(t0) ≥ x0.







(5.7)

Then,

ρ(t) ≤ v(t) (5.8)

for all t ∈ J , where ρ is a minimal solution of the HIDE (1.1) on J .

Note that Theorem 5.1 is useful to prove the boundedness and uniqueness of the

solutions for the HIDE (1.1) on J . A result in this direction is

Theorem 5.3. Assume that the hypotheses (A0)-(A1) and (B0)-(B2) hold. Suppose

that there exists a function G : J × R+ → R+ such that
∣

∣

∣

∣

g

(

s, x1(s),

∫

s

t0

k(s, τ, x1(τ))ds

)

− g

(

s, x2(s),

∫

s

t0

k(s, τ, x2(τ))ds

)
∣

∣

∣

∣

≤ G

(

t, sup
t0≤s≤t

∣

∣

∣

(

x1(s) − f(s, x1(s))
)

−
(

x2(s) − f(s, x2(s))
)

∣

∣

∣

)

(5.9)

for all t ∈ J and x1, x2 ∈ E. If identically zero function is the only solution of the

integro-differential equation

m′(t) = G(s,m(s))ds, , t ∈ J, m(t0) = 0, (5.10)
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then the HIDE (1.1) has a unique solution defined on J .

Proof. By Theorem 3.5, the HIDE (1.1) has a solution defined on J . Suppose that

there are two solutions u1 and u2 of the HIDE (1.1) existing on J . Define a function

m : J → R+ by

m(t) =
∣

∣

(

u1(t) − f(t, u1(t))
)

−
(

u2(t) − f(t, u2(t))
)
∣

∣ . (5.11)

As (|x(t)|)′ ≤ |x′(t)| for t ∈ J , we have that

m′(t) ≤

∣

∣

∣

∣

d

dt
[u1(t) − f(t, u1(t))] −

d

dt
[u2(t) − f(t, u2(t))]

∣

∣

∣

∣

≤

∣

∣

∣

∣

g

(

t, u1(t),

∫

t

t0

k(t, s, u1(s))ds

)

− g

(

t, u2(t),

∫

t

t0

k(t, s, u2(s))ds

)
∣

∣

∣

∣

≤ G
(

t, sup
t0≤s≤t

∣

∣

∣

(

u1(t) − f(t, u1(t))
)

−
(

u2(t) − f(t, u2(t))
)

∣

∣

∣

)

= G(t,m(t))

for all t ∈ J ; and that m(t0) = 0.

Now, we apply Theorem 5.1 with f ≡ 0 to get that m(t) = 0 for all t ∈ J . This

gives

u1(t) − f(t, u1(t)) = u2(t) − f(t, u2(t))

for all t ∈ J . Finally, in view of hypothesis (A0) we conclude that u1(t) = u2(t) on J .

This completes the proof.

6. EXTREMAL SOLUTIONS IN VECTOR SEGMENTS

Sometimes it is desirable to have knowledge of existence of extremal solutions

for the HIDE (1.1) in a vector segment defined on J . Therefore, in this section we

shall prove the existence of maximal and minimal solutions for HIDE (1.1) between

the given upper and lower solutions on J = [t0, t0 + a]. We use a hybrid fixed point

theorem of Dhage [4] in ordered Banach space for establishing our results. We need

the following preliminaries in the sequel.

A non-empty closed set K in a Banach space E is called a cone with vertex 0,

if (i) K + K ⊆ K, (ii) λK ⊆ K for λ ∈ R, λ ≥ 0 and (iii) {−K} ∩ K = 0, where

0 is the zero element of E. We introduce an order relation ≤ in E as follows. Let

x, y ∈ E. Then x ≤ y if and only if y − x ∈ K. A cone K is called to be normal if

the norm ‖ · ‖ is semi-monotone increasing on K, that is, there is a constant N > 0

such that ‖x‖ ≤ N‖y‖ for all x, y ∈ K with x ≤ y. It is known that if the cone K

is normal in E, then every order-bounded set in E is norm-bounded. The details of

cones and their properties appear in Heikkilä and Lakshmikantham [11].
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For any a, b ∈ E, a ≤ b, the order interval or the vector segment [a, b] is a

set in E given by

[a, b] = {x ∈ E : a ≤ x ≤ b}.

Definition 6.1. A mapping T : [a, b] → E is said to be nondecreasing or mono-

tone increasing if x ≤ y implies Tx ≤ Ty for all x, y ∈ [a, b].

We use the following fixed point theorems of Dhage [4] in ordered Banach spaces

for proving the existence of extremal solutions for the BVP (1.1) under certain mono-

tonicity conditions.

Theorem 6.2 (Dhage [4]). Let K be a cone in a Banach space E and let a, b ∈ E.

be such that a ≤ b. Suppose that A,B : [a, b] → E are two nondecreasing operators

such that

(a) A is nonlinear D-contraction,

(b) B is completely continuous, and

(c) Ax+Bx ∈ [a, b] for each x ∈ [a, b].

Further, if the cone K is normal, then the operator equation Ax+Bx = x has a least

and a greatest solution in [a, b].

We equip the space C(J,R) with the order relation ≤ with the help of the cone

K in it defined by

K =
{

x ∈ C(J,R) : x(t) ≥ 0 for all t ∈ J
}

. (6.1)

It is well known that the cone K is a normal in C(J,R). We need the following

definitions in the sequel.

Definition 6.3. A function a ∈ C(J,R) is called a lower solution of the HIDE (1.1)

defined on J if the map t 7→ x− f(t, x) is continuous for each x ∈ R and satisfies

d

dt
[a(t) − f(t, a(t))] ≤ g

(

t, a(t),

∫

t

t0

k(t, s, a(s))ds

)

, t ∈ J,

a(t0) ≤ x0.







Similarly, a function b ∈ C(J,R) is called an upper solution of the HIDE (1.1) defined

on J if the map t 7→ x− f(t, x) is continuous for each x ∈ R and satisfies

d

dt
[b(t) − f(t, b(t))] ≥ g

(

t, b(t),

∫

t

t0

k(t, s, b(s))ds

)

, t ∈ J,

b(t0) ≥ x0.







A solution to the HIDE (1.1) is a lower as well as an upper solution for the HIDE

(1.1) defined on J and vice versa.

We consider the following set of assumptions in what follows.
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(B2) The HIDE (1.1) has a lower solution a and an upper solution b defined on J

with a ≤ b.

(B3) The function x 7→ x − f(t, x) is increasing in the interval
[

min
t∈J

a(t),max
t∈J

b(t)
]

for t ∈ J .

(B4) The functions f(t, x) and g(t, x) are nondecreasing in x for all t ∈ J.

(B5) There exists a continuous function h : J → R such that

g

(

t, b(t),

∫

t

t0

k(t, s, b(s))ds

)

≤ h(t).

for all t ∈ J .

Theorem 6.4. Suppose that the assumptions (A0)–(A1), (B0) and (B2)-(B5 ) hold.

Then the HIDE (1.1) has a minimal and a maximal solution in the vector segment

[a, b] defined on J .

Proof. Now, the HIDE (1.1) is equivalent to the hybrid integral equation (3.5) de-

fined on J . Let E = C(J,R). Define two operators A and B on [a, b] by (3.6) and

(3.7)respectively. Then the integral equation (3.5) is transformed into an operator

equation as Ax(t) + Bx(t) = x(t) in the ordered Banach space E. Notice that hy-

pothesis (B0) implies A,B : [a, b] → E. Since the cone K in E is normal, [a, b] is a

norm-bounded set in E. Now it is shown, as in the proof of Theorem 3.5, that the op-

erators A is nonlinear D-contraction. Similarly, B is completely continuous operator

on [a, b] into E. Again, the hypothesis (B4) implies that A and B are nondecreasing

on [a, b]. To see this, let x, y ∈ [a, b] be such that x ≤ y. Then, by hypothesis (B4),

Ax(t) = f(t, x(t)) ≤ f(t, y(t)) = Ay(t)

for all t ∈ J. Similarly, we have

Bx(t) = x0 − f(t0, x0) +

∫

t

t0

g

(

s, x(s),

∫

s

t0

k(s, τ, x(τ)) dτ

)

ds

≤ x0 − f(t0, x0) +

∫

t

t0

g

(

s, y(t),

∫

s

t0

k(s, τ, y(τ)) dτ

)

ds

= By(t)

for all t ∈ J . So A and B are nondecreasing operators on [a, b]. Hence, we obtain

a(t) ≤ x0 − f(t0, x0) + f(t, a(t)) +

∫

t

t0

g

(

s, a(s),

∫

s

t0

k(s, τ, a(τ)) dτ

)

ds

≤ x0 − f(t0, x0) + f(t, x(t)) +

∫

t

t0

g

(

s, x(s),

∫

s

t0

k(s, τ, x(τ)) dτ

)

ds

≤ x0 − f(t0, x0) + f(t, b(t)) +

∫

t

t0

g

(

s, b(s),

∫

s

t0

k(s, τ, b(τ)) dτ

)

ds

≤ b(t),
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for all t ∈ J and x ∈ [a, b]. As a result we have that

a(t) ≤ Aa(t) +Ba(t) ≤ Ax(t) +Bx(t) ≤ Ab(t) +Bb(t) ≤ b(t)

for all t ∈ J and x ∈ [a, b]. Hence, Ax+Bx ∈ [a, b] for all x ∈ [a, b].

Now, we apply Theorem 6.2 to the operator equation Ax+Bx = x to yield that

the HIDE (1.1) has a minimal and a maximal solution in [a, b] defined on J . This

completes the proof.

7. SPECIAL CASES AND EXAMPLES

As mentioned earlier, the HIDE (1.1) includes several well-known and some new

nonlinear Volterra type integro-differential equations in the literature. For example,

if we take f(t, x) = 0 and g(t, x, y) = F (t, x) + y in the HIDE (1.1), we obtain

the following integro-differential equation considered in Lakshmikantham and Rama

Mohana Rao [14],

x′(t) = F (t, x(t)) +

∫

t

t0

k(t, s, x(s))ds, t ∈ J,

x(t0) = x0 ∈ R.











(7.1)

Again, when f(t, x) = 0 in HIDE (1.1), we obtain the following Volterra integro-

differential equation studied in the same monograph of Lakshmikantham and Rama

Mohana Rao [14],

x′(t) = g

(

t, x(t),

∫

t

t0

k(t, s, x(s))ds

)

, t ∈ J,

x(t0) = x0 ∈ R.











(7.2)

Similarly, if g(t, x, y) = G(t, x) in HIDE (1.1), we obtain the following Volterra

integro-differential equation already discussed in Dhage Jadhav [7],

d

dt

[

x(t) − f(t, x(t))
]

= G(t, x(t)), t ∈ J,

x(t0) = x0 ∈ R.







(7.3)

Furthermore, if g(t, x, y) = y in HIDE (1.1), we obtain an initial value problems

of HIDE discussed in Dhage and Jadhav [6],

d

dt

[

x(t) − f(t, x(t))
]

=

∫

t

t0

k(s, x(s))ds, t ∈ J,

x(t0) = x0 ∈ R.











(7.4)

It is obvious that the HIDEs (7.1), (7.2) and (7.3) contain several nonlinear

differential and Volterra integral equations. Therefore, the HIDE (1.1) is more general

and the results of this paper include the basic results such as existence, differential and
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integral inequalities, extremal solutions comparison principles etc. of these equations

in the literature as special cases.

Example 7.1. Given a closed and bounded interval J = [0, 1] ⊂ R, consider the

HIDE,

d

dt

[

x(t) − tan−1 x(t)
]

= t sin x(t) +

∫

t

t0

log(1 + |x(t)|)

1 + |x(t)|
ds, t ∈ J,

x(0) = 0.











(7.5)

Let

f(t, x) = tan−1 x, k(t, s, x) =
log(1 + |x|)

1 + |x|
and g(t, x, y) = t sin x+ y.

Clearly, the functions f , k and g are well defined and are continuous on the domains

of their definition. We show that they satisfy all the hypotheses of Theorem 3.3.

Now, by Lagrange’s mean value theorem we obtain

|f(t, x) − f(t, y)| ≤
1

1 + ξ2
|x− y| = ψ(|x− y|)

for some x ≤ ξ ≤ y. Here ψ is continuous nondecreasing function on R+ into itself

such that ψ(r) < r for r > 0. Hence, corresponding operator A defined in the proof

of Theorem 3.3 becomes a nonlinear D-contraction, that is,

‖Ax−Ay‖ ≤ ψ(‖x− y‖)

for all x, y ∈ X.

Again, k(t, s, x)| =
∣

∣

∣

log(1+|x|)
1+|x|

∣

∣

∣
≤ 1 and therefore, the map s 7→ k(t, s, x) is

Reimann integrable for all t ∈ J and x ∈ R with t > s. Moreover,

|g(t, x, y)| = t| sin x| + |y| ≤ 2 = h(t)

for t, s ∈ J and x ∈ R. Thus the nonlinearities f , k and g satisfy all the conditions of

Theorem 3.3 and so the HIDE (7.4) has a solution in the subset

S =
{

x ∈ C(J,R)
∣

∣ ‖x‖ ≤
π

2
+ 2

}

of C(J,R) defined on J .

Example 7.2. Given a closed and bounded interval J = [0, 1] ⊂ R, consider the

HIDE,

d

dt

[

x(t) −
|x(t)|

1 + |x(t)|

]

=
[

t sin x(t)
]

(
∫

t

t0

log(1 + |x(t)|)

1 + |x(t)|
ds

)

, t ∈ J,

x(0) = 1.











(7.6)

Let

f(t, x) =
|x|

1 + |x|
, k(t, s, x) =

log(1 + |x|)

1 + |x|
and g(t, x, y) = t sin x y.
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Now,

|f(t, x) − f(t, y)| ≤

∣

∣

∣

∣

|x|

1 + |x|
−

|x|

1 + |x|

∣

∣

∣

∣

≤

∣

∣ |x| − |y|
∣

∣

1 + |x| + |y| + |x||y|

≤
|x− y|

1 + |x| + |y|
≤

|x− y|

1 + |x− y|

for all t ∈ J and x, y ∈ R. Thus the function f satisfies the hypothesis (A2) of

Theorem 3.3 with L = 1 = K. Again, we have

|g(t, x, y)| ≤ |t sin x y| ≤ | sin x| |y| ≤ 1.

for all t ∈ J and x, y ∈ R. Thus, g satisfies hypothesis (B1) of Theorem 3.3 with

h ≡ 1. Hence, the HIDE (7.5) has a solution in the subset

S =

{

x ∈ C(J,R)
∣

∣

∣
‖x‖ ≤

5

2

}

of C(J,R) defined on J .

8. CONCLUSION

The hybrid integro-differential equations is a rich area for variety of nonlinear

ordinary as well as partial integro-differential equations. Here, in this paper, we have

considered a very simple hybrid integro-differential equation involving two nonlineari-

ties, however, a more complex hybrid integro-differential equation can also be studied

on similar lines with appropriate modifications. Again, the results proved in this

chapter are very fundamental in nature and therefore, all other problems for the hy-

brid integro-differential equation in question are still open. In a forthcoming paper we

plan to prove some theoretical approximation results for the hybrid integro-differential

equation considered in this paper.
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