ON THE MILD SOLUTIONS OF QUANTUM STOCHASTIC EVOLUTION INCLUSIONS

M. O. OGUNDIRAN

Department of Mathematics, Obafemi Awolowo University Ile- Ife, Osun State, Nigeria *E-mail:* mogundiran@oauife.edu.ng adeolu74113@yahoo.com

ABSTRACT. Under a Filippov-type assumption, a study of the Quantum stochastic evolution inclusions is done in this paper. Given a quantum stochastic evolution inclusions:

$$dx(t) \in Ax(t) + \int_0^t K(t,s)(E(s,x(s))d\Lambda_{\pi}(s) + F(s,x(s))dA_f(s) + G(s,x(s))dA_g^+(s) + H(s,x(s))ds)$$
$$x(t_0) = x_0$$

where A is the infinitesimal generator of a C_0 -semigroup of operators, K is a continuous function and E, F, G, H are Lipschitzian multivalued stochastic processes. We established the existence of mild solutions of the quantum stochastic evolution inclusions.

AMS (MOS) Subject Classification. 81S25, 34A60.

1. Introduction

The problem of existence of solutions of Lipschitzian quantum stochastic differential inclusions was solved in [8]. This gave a multivalued generalization of quantum stochastic calculus of Hudson and Parthasarathy formulation [13]. Some topological properties of the solution sets were established in [3] and [4]. A further analysis of quantum stochastic differential inclusions for the case of hypermaximal monotone type was established in [9] while the existence of solutions of quantum stochastic evolution inclusions was established in [10]. The existence of solutions of quantum stochastic differential inclusions of discontinuous coefficients via fixed point theorem was established in [14]. A detailed account of the theory of differential inclusions involved can be found in [2] and [6].

The existence of mild solutions of evolution inclusions for classical integrodifferential inclusions was established in [7], [5] and the references in them. The continuous selection of solution sets of evolution equations was established in [1] and [16].

In [11] a weaker form of solution of right Hudson-Parthasarathy quantum stochastic differential equations which is mild solution was established. In the same way under a Filippov-type assumption, a weaker form of solution, which is mild solution of quantum stochastic evolution inclusions arising from [8] and [10], was established in this work. Moreover, this in turn gives a multivalued generalization of the result [11].

In the sequel the work shall be as follows: in section 2, preliminaries on notations and basic results are established. Our main result shall be established in section 3.

2. Preliminaries

In this section we shall adopt the notations in [8]. Let \mathbb{D} be some pre-Hilbert space whose completion is \mathcal{R} ; γ is a fixed Hilbert and $L^2_{\gamma}(\mathbb{R}_+)$ is the space of square integrable γ -valued maps on \mathbb{R}_+ .

The inner product of the Hilbert space $\mathcal{R} \otimes \Gamma(L^2_{\gamma}(\mathbb{R}_+))$ will be denoted by $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$ the norm induced by $\langle \cdot, \cdot \rangle$. Let \mathbb{E} be linear space generated by the exponential vectors in Fock space $\Gamma(L^2_{\gamma}(\mathbb{R}_+))$. We define the locally convex space \mathcal{A} of noncommutative stochastic processes whose topology τ_w , is generated by the family of seminorms $\{\|x\|_{\eta\xi} = |\langle \eta, x\xi \rangle|, x \in \mathcal{A}, \eta, \xi \in \mathbb{D} \otimes \mathbb{E}\}$. The completion of (\mathcal{A}, τ_w) is denoted by $\widetilde{\mathcal{A}}$. The underlying elements of $\widetilde{\mathcal{A}}$ consist of linear maps from $\mathbb{D} \otimes \mathbb{E}$ into $\mathcal{R} \otimes \Gamma(L^2_{\gamma}(\mathbb{R}_+))$ having domains of their adjoints containing $\mathbb{D} \otimes \mathbb{E}$. For a fixed Hilbert space γ , the spaces $L^p_{loc}(\widetilde{\mathcal{A}}), L^{\infty}_{\gamma,loc}(\mathbb{R}_+)$ and $L^p_{loc}(I \times \widetilde{\mathcal{A}})$ are adopted as in [8].

For a topological space \mathcal{N} , let $clos(\mathcal{N})$ be the collection of all nonempty closed subsets of \mathcal{N} ; we shall employ the Hausdorff topology on $clos(\widetilde{\mathcal{A}})$ as defined in [8]. Moreover, for $A, B \in clos(\mathbb{C})$ and $x \in \mathbb{C}$, a complex number, we define the Hausdorff distance, $\rho(A, B)$ as:

$$\begin{split} \mathbf{d}(x,B) &\equiv \inf_{y \in B} |x-y|, \qquad \delta(A,B) \equiv \sup_{x \in A} \mathbf{d}(x,B) \\ \text{and } \rho(A,B) &\equiv \max(\delta(A,B), \delta(B,A)). \end{split}$$

Then ρ is a metric on $clos(\mathbb{C})$ and induces a metric topology on the space.

By a multivalued stochastic process indexed by $I = [0, T] \subseteq \mathbb{R}_+$, we mean a multifunction on I with values in $clos(\widetilde{\mathcal{A}})$. If Φ is a multivalued stochastic process indexed by $I \subseteq \mathbb{R}_+$, then a selection of Φ is a stochastic process $X : I \to \widetilde{\mathcal{A}}$ with the property that $X(t) \in \Phi(t)$ for almost all $t \in I$. A multivalued stochastic process Φ will be called (i) adapted if $\Phi(t) \subseteq \widetilde{\mathcal{A}}_t$ for each $t \in \mathbb{R}_+$; (ii) measurable if $t \mapsto d_{\eta\xi}(x, \Phi(t))$ is measurable for arbitrary $x \in \widetilde{\mathcal{A}}, \eta, \xi \in \mathbb{D} \otimes \mathbb{E}$; (iii) locally absolutely *p*-integrable if $t \mapsto \|\Phi(t)\|_{\eta\xi}, t \in \mathbb{R}_+$, lies in $L^p_{loc}(\widetilde{\mathcal{A}})$ for arbitrary $\eta, \xi \in \mathbb{D} \otimes \mathbb{E}$

The set of all absolutely *p*-integrable multivalued stochastic processes will be denoted by $L^p_{loc}(\widetilde{\mathcal{A}})_{mvs}$ and for $p \in (0, \infty)$, $L^p_{loc}(I \times \widetilde{\mathcal{A}})_{mvs}$ is the set of maps $\Phi : I \times \widetilde{\mathcal{A}} \to clos(\widetilde{\mathcal{A}})$ such that $t \mapsto \Phi(t, X(t)), t \in I$ lies in $L^p_{loc}(\widetilde{\mathcal{A}})_{mvs}$ for every $X \in L^p_{loc}(\widetilde{\mathcal{A}})$. Quantum stochastic evolution inclusions. Let Y be a metric space, an open (resp. closed) ball in Y with centre y and radius r is denoted by $B_Y(y,r)$ (resp., $\overline{B}_Y(y,r)$). A multifunction $\Phi: Y \to clos(\widetilde{\mathcal{A}})$ is said to be $\rho_{\eta\xi}$ -continuous at $x' \in Y$ if for each $\eta, \xi \in \mathbb{D} \otimes \mathbb{E}$, $\epsilon > 0$ there exists $\delta > 0$ such that $\rho_{\eta\xi}(\Phi(x), \Phi(x')) \leq \epsilon$ for any $x \in B_Y(x', r)$.

 Φ will be said to be $\rho_{\eta\xi}$ -continuous if it is so at each $x' \in Y$, $\eta, \xi \in \mathbb{D} \otimes \mathbb{E}$. Let \mathcal{L} be the σ -algebra of the Lebesgue measurable subsets of \mathbb{R} and, for $A \in \mathcal{L}$, let $\mu(A)$ be the Lebesgue measure of A, with $\mu(A) < \infty$. A multifunction $\Phi : Y \to clos(\widetilde{\mathcal{A}})$ is said to be *Lusin measurable* if for each $\eta, \xi \in \mathbb{D} \otimes \mathbb{E}$, $\epsilon > 0$, there exists a compact set $K_{\epsilon}^{\eta\xi} \subset A$ with $\mu(A \setminus K_{\epsilon}^{\eta\xi}) < \epsilon$ such that Φ restricted to $K_{\epsilon}^{\eta\xi}$ is $\rho_{\eta\xi}$ -continuous.

A map $\Phi: I \times \widetilde{\mathcal{A}} \to \operatorname{clos}(\widetilde{\mathcal{A}})$ is said to be *Lipschitzian* if for each $\eta, \xi \in \mathbb{D} \underline{\otimes} \mathbb{E}$, there exists $l_{\eta\xi}^{\Phi}: I \to (0, \infty)$ in $L_{loc}^{1}(I)$ such that

$$\rho_{\eta\xi}(\Phi(t,x),\Phi(t,y)) \le l_{\eta\xi}^{\Phi}(t) ||x-y||_{\eta\xi}$$

for $x, y \in \widetilde{\mathcal{A}}$ and almost all $t \in I$. The functions $\{l^{\Phi}_{\eta\xi}(\cdot) : \eta, \xi \in \mathbb{D} \otimes \mathbb{E}\}$ are called Lipschitz functions for Φ . Let $E, F, G, H \in L^2_{loc}(I \times \widetilde{\mathcal{A}})_{mvs}$, in this paper we are concerned with the quantum stochastic evolution inclusions

$$dx(t) \in Ax(t) + \int_{0}^{t} K(t,s)(E(s,x(s))d\Lambda_{\pi}(s) + F(s,x(s))dA_{f}(s) + G(s,x(s))dA_{g}^{+}(s) + H(s,x(s))ds)$$

$$x(t_{0}) = x_{0}$$
(2.1)

As established in [8], using the relations:

$$\begin{aligned} (\mu E)(t,x)(\eta,\xi) &= \{ \langle \eta, \mu_{\alpha\beta}(t)p(t,x)\xi \rangle : p(t,x) \in E(t,x) \} \\ (\nu F)(t,x)(\eta,\xi) &= \{ \langle \eta, \nu_{\beta}(t)q(t,x)\xi \rangle : q(t,x) \in F(t,x) \} \\ (\sigma G)(t,x)(\eta,\xi) &= \{ \langle \eta, \sigma_{\alpha}(t)u(t,x)\xi \rangle : u(t,x) \in G(t,x) \} \\ H(t,x)(\eta,\xi) &= \{ v(t,x)(\eta,\xi) : v(\cdot,X(\cdot)) \end{aligned}$$

is a selection of $H(\cdot, X(\cdot)) \forall X \in L^2_{loc}(\widetilde{\mathcal{A}})$

$$\mathbb{P}(t,x)(\eta,\xi) = (\mu E)(t,x)(\eta,\xi) + (\nu F)(t,x)(\eta,\xi)$$
$$+ (\sigma G)(t,x)(\eta,\xi) + H(t,x)(\eta,\xi)$$

problem (2.1) can be rewritten in a non-classical form

$$\frac{d}{dt}\langle \eta, x(t)\xi \rangle \in \langle \eta, Ax(t)\xi \rangle + \int_0^t K(t,s)\mathbb{P}(s, x(s))(\eta, \xi)ds$$

$$x(t_0) = x_0$$
(2.2)

where $\mathbb{P}: I \times \widetilde{\mathcal{A}} \to 2^{sesq(\mathbb{D} \otimes \mathbb{E})^2}$ is a sesquilinear form-valued multifunction; A is the infinitesimal generator of a C_0 -semigroup of bounded linear operators $\{G(t); t \ge 0\}$ from $\widetilde{\mathcal{A}}$ into $\widetilde{\mathcal{A}}$. Also, $D = \{(t, s) \in I \times I; t \ge s\}$ and $K: D \to \mathbb{R}$ is continuous.

Let $L^1(I, \widetilde{\mathcal{A}})$ be the space of all Bochner integrable maps from I to $\widetilde{\mathcal{A}}$ and $C(I, \widetilde{\mathcal{A}})$ the space of continuous maps from I to $\widetilde{\mathcal{A}}$. The spaces $L^1(I, \widetilde{\mathcal{A}})$ and $C(I, \widetilde{\mathcal{A}})$ are locally convex spaces with topologies τ_1 and τ_{con} respectively, generated by the family of seminorms:

$$\tau_1: \{ \| \cdot \|_{1,\eta\xi} : \eta, \xi \in \mathbb{D}\underline{\otimes}\mathbb{E} \} \text{ with } \|z\|_{1,\eta\xi} = \int_I dt |\langle \eta, z(t)\xi \rangle|$$

and

$$\tau_{con}: \{ \| \cdot \|_{con,\eta\xi} : \eta, \xi \in \mathbb{D}\underline{\otimes}\mathbb{E} \} \text{ with } \| z \|_{con,\eta\xi} = \sup_{t \in I} |\langle \eta, z(t)\xi \rangle|$$

An adapted stochastic process $x : I \to \widetilde{\mathcal{A}}$ is said to be a *mild solution* of (2.2) or equivalently (2.1) if $x(\cdot) \in C(I, \widetilde{\mathcal{A}})$ and there exists a Bochner integrable function $f(\cdot) \in L^1(I, \widetilde{\mathcal{A}})$ such that

$$\langle \eta, f(t)\xi \rangle \in \mathbb{P}(t, x(t))(\eta, \xi) \text{ a.e. } t \in I$$

$$\langle \eta, x(t)\xi \rangle = \langle \eta, G(t)x_0\xi \rangle + \int_0^t G(t) \int_0^\tau K(\tau, s)\langle \eta, f(s)\xi \rangle ds d\tau, \quad t \in I$$

$$(2.3)$$

 $(x(\cdot), f(\cdot))$ shall be called a *trajectory selection pair* of problem (2.2).

The second relation in equation (2.3) may be rewritten as

$$\langle \eta, x(t)\xi \rangle = \langle \eta, G(t)x_0\xi \rangle + \int_0^t U(t,s)\langle \eta, f(s)\xi \rangle ds d\tau, \quad t \in I$$

where $U(t,s) = \int_s^t G(t)K(\tau,s)d\tau$. For arbitrary $\eta, \xi \in \mathbb{D} \underline{\otimes} \mathbb{E}$; $B_{\eta\xi}$ and B are defined as :

$$B_{\eta\xi} = \{ x \in \widetilde{\mathcal{A}} : ||x||_{\eta\xi} \le 1 \} \text{ and } B = \{ x \in \mathbb{C} : |x| \le 1 \}$$

A map $\Psi: I \times \widetilde{\mathcal{A}} \to 2^{sesq(\mathbb{D} \otimes \mathbb{E})^2}$ is said to be *Lipschitzian* if for each $\eta, \xi \in \mathbb{D} \otimes \mathbb{E}$, there exists $l_{\eta\xi}: I \to (0, \infty)$ in $L^1_{loc}(I)$ such that

$$\rho(\Psi(t, x)(\eta, \xi), \Psi(t, y)(\eta, \xi)) \le l_{\eta\xi}(t) \|x - y\|_{\eta\xi}(t) \|x - y\|_{\eta\xi}(t) \|y - y\|_{\eta\xi}(t)$$

for $x, y \in \widetilde{\mathcal{A}}$ and almost all $t \in I$.

Let Y be a metric space, a multifunction $\Psi : Y \to 2^{sesq(\mathbb{D}\otimes\mathbb{E})^2}$ is said to be ρ continuous at $x' \in Y$ if for each $\eta, \xi \in \mathbb{D}\otimes\mathbb{E}$, $\epsilon > 0$ there exists $\delta > 0$ such that $\rho(\Psi(x)(\eta,\xi),\Psi(x')(\eta,\xi)) \leq \epsilon$ for any $x \in B_Y(x',r)$. A sesquilinear form valued multifunction, $\Psi : I \to 2^{sesq(\mathbb{D}\otimes\mathbb{E})^2}$ is said to be *Lusin measurable* if for each $\eta, \xi \in$ $\mathbb{D}\otimes\mathbb{E}, \epsilon > 0$, there exists a compact set $K_{\epsilon}^{\eta\xi} \subset A, A \subset I$ with $\mu(A \setminus K_{\epsilon}^{\eta\xi}) < \epsilon$ such that Ψ restricted to $K_{\epsilon}^{\eta\xi}$ is ρ -continuous.

We shall assume the following hypotheses in what follows.

Hypothesis 1 (i) A is the infinitesimal generator of a C_0 -semigroup of bounded linear operators $\{G(t); 0 \le t \le T\}$. (ii) Let $E, F, G, H \in L^2_{loc}(I \times \widetilde{\mathcal{A}})_{mvs}$ and $\Phi \in \{E, F, G, H\}, \Phi(\cdot, \cdot) : I \times \widetilde{\mathcal{A}} \to clos(\widetilde{\mathcal{A}})$ is nonempty such that for any $x \in \widetilde{\mathcal{A}}, \Phi(\cdot, x)$ is Lusin measurable on I.

(iii) There exists $l^{\Phi}_{\eta\xi}: I \to (0,\infty)$ in $L^1_{loc}(I)$ such that

$$\rho_{\eta\xi}(\Phi(t,x),\Phi(t,y)) \le l_{\eta\xi}^{\Phi}(t) \|x-y\|_{\eta\xi}$$

for $x, y \in \widetilde{\mathcal{A}}$ and arbitrary $\eta, \xi \in \mathbb{D} \underline{\otimes} \mathbb{E}$.

(iv) There exists $q_{\eta\xi}^{\Phi}(\cdot) \in L^1_{loc}(I, (0, \infty))$ such that for each $t \in I$;

$$\Phi(t,0) \subset q^{\Phi}_{\eta\xi}(t)B_{\eta\xi}.$$

(v) $D = \{(t, s) \in I \times I; t \ge s\}$ and $K : D \to \mathbb{R}$ is continuous.

By proposition (6.1) in [8], \mathbb{P} is Lipschitzian whenever, E, F, G, H are Lipschitzian. We remark that in the same manner, if $E(\cdot, x), F(\cdot, x), G(\cdot, x), H(\cdot, x)$ are Lusin measurable then $\mathbb{P}(\cdot, x)(\eta, \xi)$ is Lusin measurable. Moreover, if there exists $q_{\eta\xi}^{\Phi}(\cdot) \in L^{1}_{loc}(I, (0, \infty))$ such that for each $t \in I$;

$$\Phi(t,0) \subset q^{\Phi}_{\eta\xi}(t) B_{\eta\xi}$$

Then there exists $q_{\eta\xi}(\cdot) \in L^1_{loc}(I, (0, \infty))$ such that for each $t \in I$;

$$\mathbb{P}(t,0)(\eta,\xi) \subset q_{\eta\xi}(t)B.$$

where $q_{\eta\xi}(t) = \max\{q_{\eta\xi}^{\Phi}(t); \text{ for each } t \in I\}$. Therefore Hypothesis 1 can be restated as:

Hypothesis 2 (i) A is the infinitesimal generator of a C_0 -semigroup of bounded linear operators $\{G(t); 0 \le t \le T\}$.

(ii) For arbitrary $\eta, \xi \in \mathbb{D} \underline{\otimes} \mathbb{E}$, $\mathbb{P}(\cdot, \cdot) : I \times \widetilde{\mathcal{A}} \to 2^{sesq(\mathbb{D} \underline{\otimes} \mathbb{E})^2}$ has nonempty closed and bounded values in \mathbb{C} , and for any $x \in \widetilde{\mathcal{A}}$, $\mathbb{P}(\cdot, x)(\eta, \xi)$ is Lusin measurable on I. (iii) There exists $l_{\eta\xi} : I \to (0, \infty)$ in $L^1_{loc}(I)$ such that

$$\rho(\mathbb{P}(t,x)(\eta,\xi),\mathbb{P}(t,y)(\eta,\xi)) \le l_{\eta\xi}(t) \|x-y\|_{\eta\xi}$$

for $x, y \in \widetilde{\mathcal{A}}$ and arbitrary $\eta, \xi \in \mathbb{D} \underline{\otimes} \mathbb{E}$. (iv) There exists $q_{\eta\xi}(\cdot) \in L^1_{loc}(I, (0, \infty))$ such that for each $t \in I$;

$$\mathbb{P}(t,0)(\eta,\xi) \subset q_{\eta\xi}(t)B$$

(v) $D = \{(t,s) \in I \times I; t \geq s\}$ and $K : D \to \mathbb{R}$ is continuous. Set $n_{\eta\xi}(t) = \int_0^t l_{\eta\xi}(u) du, t \in I, M = \sup_{t \in I} ||G(t)||_{\eta\xi}$ and $M_0 = \sup_{(t,s)\in D} |K(t,s)|$, then $|U(t,s)| \leq MM_0(t-s) \leq MM_0T$. The following results are analogues of Lemmas 3.1 and 3.2 in [7]. **Lemma 2.1.** Let $\Psi_1, \Psi_2 : I \to 2^{sesq(\mathbb{D} \otimes \mathbb{E})^2}$ be two Lusin measurable multifunctions and let $\epsilon_1, \epsilon_2 > 0$ be such that

$$H(t)(\eta,\xi) = \left(\Psi_1(t)(\eta,\xi) + \epsilon_1 B\right) \cap \left(\Psi_2(t)(\eta,\xi) + \epsilon_2 B\right) \neq \emptyset, \quad \forall t \in I$$

Then the multifunction $H: I \to 2^{sesq(\mathbb{D} \otimes \mathbb{E})^2}$ has a Lusin measurable selection $h: I \to sesq(\mathbb{D} \otimes \mathbb{E})^2$

Proof. Since Ψ_1 and Ψ_2 are Lusin measurable, we can construct a sequence $\{J_n\}$ of pairwise disjoint compact sets $J_n \subset I$ satisfying, for each $n \in \mathbb{N}$, the following properties:

(I) Ψ_1 and Ψ_2 restricted to J_n are ρ -continuous.

- (II) $J_n \subset I \setminus \bigcup_{i=1}^n J_i;$
- (III) $\mu(I \setminus \bigcup_{i=1}^n J_i) < \frac{1}{2^n}$

Set $J_0 = I \setminus \bigcup_n J_n$ and observe that, by (iii), $\mu(J_0) = 0$. $\{J_n\}_{n \ge 0}$ is partition of I.

We claim that for each $n = 0, 1, \ldots$ and arbitrary $\eta, \xi \in \mathbb{D} \otimes \mathbb{E}$, there is a Lusin measurable function $h_n : J_n \to sesq(\mathbb{D} \otimes \mathbb{E})^2$ which is a selector of the multifunction H restricted to J_n . To show this, fix an arbitrary $n \in \mathbb{N}$. For each $t \in J_n$ and $\eta, \xi \in \mathbb{D} \otimes \mathbb{E}$, pick out a point $u_{t,\eta\xi} \in H(t)(\eta, \xi)$. Since $H(t)(\eta, \xi)$ is open and Ψ_1 and Ψ_2 restricted to J_n are ρ -continuous, there is a $\delta_t > 0$ such that

$$u_{t_k,\eta\xi} \in \left(\Psi_1(s)(\eta,\xi) + \epsilon_1 B\right) \cap \left(\Psi_2(s)(\eta,\xi) + \epsilon_2 B\right)$$
(2.4)

for every $s \in B^{J_n}(t, \delta_t)$.

The family $\{B^{J_n}(t, \delta_t)\}_{t \in J_n}$ is an open covering of J_n . As J_n is compact, it admits a finite subcovering, $\{B^{J_n}(t_k, \delta_{t_k})\}_{k=1}^q$, say. Now consider the partition $\{I_k\}_{k=1}^q$ of J_n given by

$$I_1 = B^{J_n}(t_1, \delta_{t_1}) \ I_k = B^{J_n}(t_k, \delta_{t_k}) \setminus \bigcup_{i=1}^{k-1} I_i, \quad 2 \le k \le q$$

and define $h_n: J_n \to sesq(\mathbb{D}\underline{\otimes}\mathbb{E})^2$ by

$$h_n(t)(\eta,\xi) = \sum_{k=1}^q u_{t_k} \chi I_k(t)(\eta,\xi).$$

Then h_n is Lusin measurable and h_n is a selector of H restricted to J_n .

Let $s \in J_n$ be arbitrary, thus $s \in I_k$ for some $1 \leq k \leq q$. Since $s \in I_k \subset B^{J_n}(t_k, \delta_{t_k})$. In view of (2.4) (with $t = t_k$) we have

$$u_{t_k,\eta\xi} \in \left(\Psi_1(s)(\eta,\xi) + \epsilon_1 B\right) \cap \left(\Psi_2(s)(\eta,\xi) + \epsilon_2 B\right)$$

thus $h_n(s)(\eta,\xi) \in H(s)(\eta,\xi)$, for $h_n(s) = u_{t_k}$. Hence h_n is a Lusin measurable selector of H restricted to J_n . Then for arbitrary $\eta, \xi \in \mathbb{D} \underline{\otimes} \mathbb{E}$; $h: I \to sesq(\mathbb{D} \underline{\otimes} \mathbb{E})^2$ given by

$$h(t)(\eta,\xi) = \sum_{n\geq 0} h_n(t)\chi J_n(t)(\eta,\xi).$$

is a Lusin measurable selector of H.

Lemma 2.2. Let $\mathbb{P} : I \times \widetilde{\mathcal{A}} \to 2^{sesq(\mathbb{D} \otimes \mathbb{E})^2}$ satisfy Hypothesis 2. Then for arbitrary adapted stochastic process $x : I \to \widetilde{\mathcal{A}}$ continuous; $t \mapsto \langle \eta, u(t)\xi \rangle$ Lusin measurable and $\epsilon > 0$, for each $\eta, \xi \in \mathbb{D} \otimes \mathbb{E}$ we have: (i) the multifunction $t \mapsto \mathbb{P}(t, x(t))(\eta, \xi)$ is Lusin measurable on I; (ii) the multifunction $t \mapsto \langle \eta, G(t)\xi \rangle$ defined by

$$\langle \eta, G(t)\xi \rangle = \left(\mathbb{P}(t, x(t))(\eta, \xi) + \epsilon B \right)$$

$$\cap B\left(u(t)(\eta, \xi), d(u(t)(\eta, \xi), \mathbb{P}(t, x(t))(\eta, \xi)) + \epsilon \right)$$

has a Lusin measurable selection $g: I \to sesq(\mathbb{D} \otimes \mathbb{E})^2$.

Proof. Let x_n be a sequence of piecewise continuous functions $x_n : I \to \widetilde{\mathcal{A}}$ converging to x uniformly on I. Given $\epsilon > 0$, let $K_{\epsilon} \subset I$ be a compact set, with $\mu(I \setminus K_{\epsilon}) < \epsilon$, such that $l_{\eta\xi}$ restricted to K_{ϵ} is continuous and for each $n \in \mathbb{N}$, the multifunction $t \mapsto \mathbb{P}(t, x_n(t))(\eta, \xi)$ restricted to K_{ϵ} is ρ -continuous.

Set $M_{\epsilon} = \sup_{t \in K_{\epsilon}} l_{\eta\xi}(t)$. Let $t_0, t \in K_{\epsilon}$ be arbitrary. We have:

$$\rho(\mathbb{P}(t, x(t))(\eta, \xi), \mathbb{P}(t_0, x(t_0))(\eta, \xi)) \leq \rho(\mathbb{P}(t, x(t))(\eta, \xi), \mathbb{P}(t, x_n(t))(\eta, \xi))
+ \rho(\mathbb{P}(t, x_n(t))(\eta, \xi), \mathbb{P}(t_0, x_n(t_0))(\eta, \xi))
+ \rho(\mathbb{P}(t_0, x_n(t_0))(\eta, \xi), \mathbb{P}(t_0, x(t_0))(\eta, \xi))
\leq M_{\epsilon} ||x_n(t) - x(t)||_{\eta\xi} + \rho(\mathbb{P}(t, x_n(t))(\eta, \xi), \mathbb{P}(t_0, x_n(t_0))(\eta, \xi))
+ M_{\epsilon} ||x_n(t_0) - x(t_0)||_{\eta\xi}
\leq M_{\epsilon}\sigma_n + \rho(\mathbb{P}(t, x_n(t))(\eta, \xi), \mathbb{P}(t_0, x_n(t_0))(\eta, \xi))$$

where $\sigma_n = \sup_{t \in I} ||x_n(t) - x(t)||_{\eta\xi}$. Since $\sigma_n \to 0$ as $n \to \infty$ and $t \mapsto \mathbb{P}(t, x_n(t))(\eta, \xi)$ restricted to K_{ϵ} is ρ -continuous. The multifunction $t \mapsto \mathbb{P}(t, x(t))(\eta, \xi)$ restricted to K_{ϵ} is ρ -continuous and (i) is proved.

For arbitrary $\eta, \xi \in \mathbb{D} \underline{\otimes} \mathbb{E}$, $t \in I$ set $\langle \eta, G^1(t)\xi \rangle = \mathbb{P}(t, x(t))(\eta, \xi)$, $\langle \eta, G^2(t)\xi \rangle = B(u(t)(\eta, \xi), d(u(t)(\eta, \xi), \langle \eta, G^1(t)\xi \rangle))$ and observe that $t \mapsto \langle \eta, G^1(t)\xi \rangle$ and $\langle \eta, G^2(t)\xi \rangle$ are Lusin measurable on I. Furthermore, for each $t \in I$, $\eta, \xi \in \mathbb{D} \underline{\otimes} \mathbb{E}$ we have

$$\langle \eta, G(t)\xi \rangle = (\langle \eta, G^1(t)\xi \rangle + \epsilon B) \cap (\langle \eta, G^2(t)\xi \rangle + \epsilon B) \text{ and } \langle \eta, G(t)\xi \rangle \neq \emptyset.$$

Hence by Lemma (2.1), $\langle \eta, G(t)\xi \rangle$ has a Lusin measurable selection $g: I \to sesq(\mathbb{D} \otimes \mathbb{E})^2$, thus (ii) holds.

Main Result

Theorem 3.1. If Hypothesis 2 is satisfied, then for every $x_0 \in \widetilde{\mathcal{A}}$, the Cauchy problem (2.2) has a mild solution $x(\cdot) \in C(I, \widetilde{\mathcal{A}})$.

Proof. We note that if an adapted stochastic process $z(\cdot) : I \to \widetilde{\mathcal{A}}$ is continuous, then every Lusin measurable selection $t \mapsto \langle \eta, u(t)\xi \rangle$ of the multifunction $t \mapsto \mathbb{P}(t, z(t))(\eta, \xi) + B$ is Bochner integrable on I. Therefore, for any $t \in I$, we have

$$\begin{aligned} |\langle \eta, u(t)\xi \rangle| &\leq \rho \big(\mathbb{P}(t, z(t))(\eta, \xi) + B, \{0\} \big) \\ &\leq \rho \big(\mathbb{P}(t, z(t))(\eta, \xi), \mathbb{P}(t, 0)(\eta, \xi) \big) + \rho \big(\mathbb{P}(t, 0)(\eta, \xi), \{0\} \big) + 1 \\ &\leq l_{\eta\xi}(t) ||z(t)||_{\eta\xi} + q_{\eta\xi}(t) + 1. \end{aligned}$$

Let $0 < \epsilon < 1$, $\epsilon_n = \frac{\epsilon}{2^{n+2}}$.

Consider $f_0: I \to \widetilde{\mathcal{A}}$ an arbitrary Lusin measurable, Bochner integrable function and define

$$\langle \eta, x_0(t)\xi \rangle = \langle \eta, G(t)x_0\xi \rangle + \int_0^t U(t,s)\langle \eta, f_0(s)\xi \rangle ds, \quad t \in I$$

Since $x_0(\cdot)$ is continuous, by Lemma 2.2 there exists a Lusin measurable function $f_1: I \to \widetilde{\mathcal{A}}$ which, for each $t \in I$, the map $t \mapsto \langle \eta, f_1(t)\xi \rangle$ satisfies

$$\langle \eta, f_1(t)\xi \rangle \in \left(\mathbb{P}(t, x_0(t))(\eta, \xi) + \epsilon_1 B \right)$$

$$\cap B \left(\langle \eta, f_0(t)\xi \rangle, d(\langle \eta, f_0(t)\xi \rangle, \mathbb{P}(t, x_0(t))(\eta, \xi)) + \epsilon_1 \right)$$

Obviously, $\langle \eta, f_1(\cdot)\xi \rangle$ is Bochner integrable on I. Let $x_1(\cdot) : I \to \widetilde{\mathcal{A}}$ such that for arbitrary $\eta, \xi \in \mathbb{D} \underline{\otimes} \mathbb{E}$, we define the map $t \mapsto \langle \eta, x_1(t)\xi \rangle$ as:

$$\langle \eta, x_1(t)\xi \rangle = \langle \eta, G(t)x_0\xi \rangle + \int_0^t U(t,s)\langle \eta, f_1(s)\xi \rangle ds, \quad t \in I.$$

By induction, we construct a sequence $t \mapsto \langle \eta, x_n(t)\xi \rangle$, $n \ge 2$ given by

$$\langle \eta, x_n(t)\xi \rangle = \langle \eta, G(t)x_0\xi \rangle + \int_0^t U(t,s)\langle \eta, f_n(s)\xi \rangle ds, \quad t \in I$$
(3.1)

where $t \mapsto \langle \eta, f_n(t) \xi \rangle$ is a Lusin measurable function which for $t \in I$ satisfies:

$$\langle \eta, f_n(t)\xi \rangle \in \left(\mathbb{P}(t, x_{n-1}(t))(\eta, \xi) + \epsilon_n B \right) \cap B\left(\langle \eta, f_{n-1}(t)\xi \rangle, d(\langle \eta, f_{n-1}(t)\xi \rangle, \mathbb{P}(t, x_{n-1}(t))(\eta, \xi)) + \epsilon_n \right).$$

$$(3.2)$$

 $\langle \eta, f_n(\cdot)\xi \rangle$ is also Bochner integrable. From (3.2), for $n \geq 2$ and $t \in I$, we obtain:

$$\begin{aligned} |\langle \eta, (f_n(t) - f_{n-1}(t))\xi \rangle| &\leq d(\langle \eta, f_{n-1}(t)\xi \rangle, \mathbb{P}(t, x_{n-1}(t))(\eta, \xi)) + \epsilon_n \\ &\leq d(\langle \eta, f_{n-1}(t)\xi \rangle, \mathbb{P}(t, x_{n-2}(t))(\eta, \xi)) \\ &\quad + \rho(\mathbb{P}(t, x_{n-2}(t))(\eta, \xi), \mathbb{P}(t, x_{n-1}(t))(\eta, \xi)) + \epsilon_n \\ &\leq \epsilon_{n-1} + l_{\eta\xi}(t) ||x_{n-1}(t) - x_{n-2}(t)||_{\eta\xi} + \epsilon_n. \end{aligned}$$

Since $\epsilon_{n-1} + \epsilon_n < \epsilon_{n-2}$, for $n \ge 2$, we deduce that

$$|\langle \eta, (f_n(t) - f_{n-1}(t))\xi \rangle| \le \epsilon_{n-2} + l_{\eta\xi}(t) ||x_{n-1}(t) - x_{n-2}(t)||_{\eta\xi}.$$
(3.3)

For arbitrary $\eta, \xi \in \mathbb{D} \underline{\otimes} \mathbb{E}$, denote $p_{0,\eta\xi} = d(\langle \eta, f_0(t)\xi \rangle, \mathbb{P}(t, x_0(t))(\eta, \xi)), t \in I$. We then prove by recurrence, that for $n \geq 2$ and $t \in I$:

$$\begin{aligned} \|x_{n}(t) - x_{n-1}(t)\|_{\eta\xi} &\leq \sum_{k=0}^{n-2} \int_{0}^{t} \epsilon_{n-2-k} \frac{(MM_{0}T)^{k+1} (n_{\eta\xi}(t) - n_{\eta\xi}(u))^{k}}{k!} du \\ &+ \epsilon_{0} \int_{0}^{t} \frac{(MM_{0}T)^{n} (n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n-1}}{(n-1)!} du \\ &+ \int_{0}^{t} \frac{(MM_{0}T)^{n} (n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n-1}}{(n-1)!} p_{0,\eta\xi}(u) du. \end{aligned}$$
(3.4)

We start with n = 2. In view of (3.1), (3.2) and (3.3), for $t \in I$, $\eta, \xi \in \mathbb{D} \underline{\otimes} \mathbb{E}$ there is

$$\begin{split} \|x_{2}(t) - x_{1}(t)\|_{\eta\xi} &= |\langle \eta, (x_{2}(t) - x_{1}(t))\xi \rangle| \\ &\leq \int_{0}^{t} |U(t,s)| \cdot |\langle \eta, (f_{2}(s) - f_{1}(s))\xi \rangle| ds \\ &\leq \int_{0}^{t} MM_{0}T [\epsilon_{0} + l_{\eta\xi}(s)\|x_{1}(s) - x_{0}(s)\|_{\eta\xi}] ds \\ &\leq \epsilon_{0} MM_{0}Tt + \int_{0}^{t} \left[MM_{0}Tl_{\eta\xi}(s) \\ &\int_{0}^{s} |U(s,r)| \cdot |\langle \eta, (f_{1}(r) - f_{0}(r))\xi \rangle dr \right] ds \\ &\leq \epsilon_{0} MM_{0}Tt \\ &+ \int_{0}^{t} \left[(MM_{0}T)^{2}l_{\eta\xi}(s) \int_{0}^{s} (p_{0,\eta\xi}(u) + \epsilon_{1}) du \right] ds \\ &\leq \epsilon_{0} MM_{0}Tt \\ &+ \int_{0}^{t} \left[(MM_{0}T)^{2} (p_{0,\eta\xi}(u) + \epsilon_{1}) \int_{u}^{t} l_{\eta\xi}(s) ds \right] du \\ &= \epsilon_{0} MM_{0}Tt \\ &+ \int_{0}^{t} (MM_{0}T)^{2} (n_{\eta\xi}(t) - n_{\eta\xi}(s)) [p_{0,\eta\xi}(s) + \epsilon_{0}] ds, \end{split}$$

that is, (3.4) is verified for n = 2.

Using again (3.3) and (3.4), we conclude:

$$\begin{aligned} \|x_{n+1}(t) - x_n(t)\|_{\eta\xi} &= |\langle \eta, (x_{n+1}(t) - x_n(t))\xi \rangle| \\ &\leq \int_0^t |U(t,s)| \cdot |\langle \eta, (f_{n+1}(s) - f_n(s))\xi \rangle| ds \\ &\leq \int_0^t MM_0 T \big[\epsilon_{n-1} + l_{\eta\xi}(s) \|x_n(s) - x_{n-1}(s)\|_{\eta\xi} \big] ds \\ &\leq \epsilon_{n-1} MM_0 T t + \int_0^t l_{\eta\xi}(s) \end{aligned}$$

$$\begin{split} & \left[\sum_{k=0}^{n-2} \int_{0}^{s} \epsilon_{n-2-k} \frac{(MM_{0}T)^{k+2}(n_{\eta\xi}(s) - n_{\eta\xi}(u))^{k}}{k!} du \right. \\ & + \int_{0}^{s} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n-1}}{(n-1)!} \\ & \left(p_{0,\eta\xi}(u) + \epsilon_{0}\right) du \right] ds \\ &= \epsilon_{n-1} MM_{0}Tt + \sum_{k=0}^{n-2} \epsilon_{n-2-k} \\ & \int_{0}^{t} \left[\frac{(MM_{0}T)^{k+2}(n_{\eta\xi}(s) - n_{\eta\xi}(u))^{k}}{k!} l_{\eta\xi}(s) du \right] ds \\ & + \int_{0}^{t} l_{\eta\xi}(s) \\ & \left(\int_{0}^{s} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n-1}}{(n-1)!} l_{\eta\xi}(s) \right. \\ & \left(p_{0,\eta\xi}(u) + \epsilon_{0} \right) du \right) ds \\ &= \epsilon_{n-1} MM_{0}Tt + \sum_{k=0}^{n-2} \epsilon_{n-2-k} \\ & \int_{0}^{t} \left(\int_{u}^{t} \frac{(MM_{0}T)^{k+2}(n_{\eta\xi}(s) - n_{\eta\xi}(u))^{k}}{k!} l_{\eta\xi}(s) ds \right) du \\ & + \int_{0}^{t} \left(\int_{u}^{t} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n-1}}{(n-1)!} l_{\eta\xi}(s) ds \right) \\ & \left(p_{0,\eta\xi}(u) + \epsilon_{0} \right) du \\ &= \epsilon_{n-1} MM_{0}Tt + \sum_{k=0}^{n-2-k} \epsilon_{n-2-k} \\ & \int_{0}^{t} \frac{(MM_{0}T)^{k+2}(n_{\eta\xi}(s) - n_{\eta\xi}(u))^{k+1}}{(k+1)!} du \\ & + \int_{0}^{t} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n}}{n!} (p_{0,\eta\xi}(u) + \epsilon_{0}) du \\ &= \sum_{k=0}^{n-1-k} \int_{0}^{t} \frac{(MM_{0}T)^{k+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n}}{k!} (p_{0,\eta\xi}(u) + \epsilon_{0}) du , \\ &+ \int_{0}^{t} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n}}{n!} (p_{0,\eta\xi}(u) + \epsilon_{0}) du , \\ &+ \int_{0}^{t} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n}}{n!} (p_{0,\eta\xi}(u) + \epsilon_{0}) du , \\ &+ \int_{0}^{t} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n}}{n!} (p_{0,\eta\xi}(u) + \epsilon_{0}) du , \\ &+ \int_{0}^{t} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n}}{n!} (p_{0,\eta\xi}(u) + \epsilon_{0}) du , \\ &+ \int_{0}^{t} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n}}{n!} (p_{0,\eta\xi}(u) + \epsilon_{0}) du , \\ &+ \int_{0}^{t} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n}}{n!} (p_{0,\eta\xi}(u) + \epsilon_{0}) du , \\ &+ \int_{0}^{t} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n}}{n!} (p_{0,\eta\xi}(u) + \epsilon_{0}) du , \\ &+ \int_{0}^{t} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n}}{n!} (p_{0,\eta\xi}(u) + \epsilon_{0}) du , \\ &+ \int_{0}^{t} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n}}{n!} (p_{0,\eta\xi}(u) + \epsilon_{0}) du , \\ &+ \int_{0}^{t} \frac{(MM_{0}T)^{n+1}(n_{\eta\xi}(t) - n_{\eta\xi}(u))^{n}}{n!} (p_{0,\eta\xi}(u) + \epsilon_{0}) du , \\ &+ \int_{0}^{t} \frac{(MM_{0}T)^{n+1}(n$$

therefore the relation (3.4) is true for n + 1.

From (3.4), it follows that for $n \ge 2$ and $t \in I$, $\eta, \xi \in \mathbb{D}\underline{\otimes}\mathbb{E}$:

$$||x_n(t) - x_{n-1}(t)||_{\eta\xi} \le a_{n,\eta\xi},\tag{3.5}$$

where

$$a_{n,\eta\xi} = \sum_{k=0}^{n-2} \epsilon_{n-2-k} \frac{(MM_0T)^{k+1} n_{\eta\xi}(T)^k}{k!} + \frac{(MM_0T)^n n_{\eta\xi}(T)^{n-1}}{(n-1)!} \left[\int_0^t p_{0,\eta\xi}(u) du + \epsilon_0 \right]$$

The series $\{a_{n,\eta\xi}\}$ converges. We infer from (3.5) that $x_n(\cdot)$ converges to a continuous function, $x(\cdot) : I \to \widetilde{\mathcal{A}}$. Moreover, from the definition of $x_n(\cdot)$ in (3.1)and the completeness of $\widetilde{\mathcal{A}}$ we conclude that $x(\cdot)$ is an adapted stochastic process belonging to $C(I, \widetilde{\mathcal{A}})$.

On the other hand, in view of (3.3), there is

$$|\langle \eta, (f_n(t) - f_{n-1}(t))\xi \rangle| \le \epsilon_{n-2} + l_{\eta\xi}(t)a_{n-1,\eta\xi}, \quad t \in I, n \ge 3$$

which implies that the sequence $\langle \eta, f_n(\cdot)\xi \rangle$ converges to $t \mapsto \langle \eta, f(\cdot)\xi \rangle$, where $f(\cdot) : I \to \widetilde{\mathcal{A}}$ is a Lusin measurable function. Since $x_n(\cdot)$ is bounded and

$$||f_n(t)||_{\eta\xi} = |\langle \eta, f_n(t)\xi \rangle| \le l_{\eta\xi}(t) ||x_{n-1}(t)||_{\eta\xi} + q_{\eta\xi}(t) + 1,$$

hence $f(\cdot)$ is Bochner integrable.

By passing with $n \to \infty$ in (3.1) and using Lebesgue dominated convergence theorem, we obtain

$$\langle \eta, x(t)\xi \rangle = \langle \eta, G(t)x_0\xi \rangle + \int_0^t U(t,s)\langle \eta, f(s)\xi \rangle ds, \quad t \in I.$$

On the other hand, from (3.2) we get

$$\langle \eta, f_n(t)\xi \rangle \in (\mathbb{P}(t, x_n(t))(\eta, \xi) + \epsilon_n B), \quad t \in I, n \ge 1$$

and letting $n \to \infty$ we obtain

$$\langle \eta, f(t)\xi \rangle \in (\mathbb{P}(t, x(t))(\eta, \xi) \quad t \in I.$$

Hence $x(\cdot)$ is a mild solution of the Cauchy problem (2.2) and the trajectory selection pair is $(x(\cdot), f(\cdot))$.

REFERENCES

- A. Anguraj and C. Murugesan, Continuous selections of set of mild solutions of evolution inclusions, *Electronic J. Diff. Equations* 21 (2005), 1–7.
- [2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin 1984.
- [3] E. O. Ayoola, Continuous selections of solution sets of Lipschitzian quantum stochastic differential inclusions. Int. J. Theor. Phys. 43, 10 (2004), 2041–2059.
- [4] E. O. Ayoola, Topological properties of solution sets of Lipschitzian quantum stochastic differential inclusions. Acta Appl. Math 100 (2008), 15–37.
- [5] A. Cernea, On an Evolution inclusion in non-separable Banach spaces Opuscula Mathematica 29, 2 (2009), 131–138.
- [6] K. Deimling, Multivalued differential equations, Walter de Gruyter 1992.

- [7] F. S. De Blasi and G. Pianigiani, Evolution inclusions in non separable Banach spaces, Comment. Math. Univ. Carolinae. 40, 11 (1999) 227–250.
- [8] G. O. S. Ekhaguere, Lipschitzian quantum stochastic differential inclusions Int. J. Theor. Phys. 31, 11 (1992) 2003–2034.
- [9] G. O. S. Ekhaguere, Quantum stochastic differential inclusions of hypermaximal monotone type Int. J. Theor. Phys. 34, 3 (1995), 323–353.
- [10] G.O. S. Ekhaguere, Quantum stochastic evolutions Int. J. Theor. Phys. 35, 9 (1996), 1909– 1946.
- [11] F. Fagnola and S. J. Wills, Mild solutions of quantum stochastic differential equations, *Elect. Comm. in Probab.* 5 (2000), 158–171.
- [12] A. Guichardet, Symmetric Hilbert spaces and related topics Lecture Notes in Mathematics, 261, Springer-Verlag, Berlin 1972.
- [13] R. L. Hudson and K. R. Parthasarathy, Quantum Ito's formula and stochastic evolutions Comm. Math. Phys. 93, 3 (1984), 301–323.
- [14] M. O. Ogundiran and E. O. Ayoola, Upper semicontinuous Quantum stochastic differential Inclusions via Kakutani-Fan Fixed point theorem, *Dynamics systems and applications*, 21 (2012), 121–132.
- [15] K. R. Parthasarathy, An introduction to Quantum stochastic calculus, Monographs in Mathematics 85, Birkhauser Verlag, Basel 1992.
- [16] V. Staicu, Continuous selections of solution sets to Evolution equations Proc. Amer. Math. Soc. 113, 2 (1991), 403–413.