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ABSTRACT. Under a Filippov-type assumption, a study of the Quantum stochastic evolution

inclusions is done in this paper. Given a quantum stochastic evolution inclusions:

dx(t) ∈ Ax(t) +

∫ t

0

K(t, s)(E(s, x(s))dΛπ(s) + F (s, x(s))dAf (s)

+ G(s, x(s))dA+
g (s) + H(s, x(s))ds)

x(t0) = x0

where A is the infinitesimal generator of a C0-semigroup of operators, K is a continuous function

and E, F, G, H are Lipschitzian multivalued stochastic processes. We established the existence of

mild solutions of the quantum stochastic evolution inclusions.

AMS (MOS) Subject Classification. 81S25, 34A60.

1. Introduction

The problem of existence of solutions of Lipschitzian quantum stochastic differ-

ential inclusions was solved in [8]. This gave a multivalued generalization of quantum

stochastic calculus of Hudson and Parthasarathy formulation [13]. Some topological

properties of the solution sets were established in [3] and [4]. A further analysis of

quantum stochastic differential inclusions for the case of hypermaximal monotone

type was established in [9] while the existence of solutions of quantum stochastic

evolution inclusions was established in [10]. The existence of solutions of quantum

stochastic differential inclusions of discontinuous coefficients via fixed point theorem

was established in [14]. A detailed account of the theory of differential inclusions

involved can be found in [2] and [6].

The existence of mild solutions of evolution inclusions for classical integrodiffer-

ential inclusions was established in [7], [5] and the references in them. The continuous

selection of solution sets of evolution equations was established in [1] and [16].

In [11] a weaker form of solution of right Hudson-Parthasarathy quantum sto-

chastic differential equations which is mild solution was established. In the same way

Received March 10, 2014 1083-2564 $15.00 c©Dynamic Publishers, Inc.



308 M. O. OGUNDIRAN

under a Filippov-type assumption, a weaker form of solution, which is mild solution

of quantum stochastic evolution inclusions arising from [8] and [10] , was established

in this work. Moreover, this in turn gives a multivalued generalization of the result

[11].

In the sequel the work shall be as follows: in section 2, preliminaries on notations

and basic results are established. Our main result shall be established in section 3.

2. Preliminaries

In this section we shall adopt the notations in [8]. Let D be some pre-Hilbert

space whose completion is R; γ is a fixed Hilbert and L2
γ(R+) is the space of square

integrable γ-valued maps on R+.

The inner product of the Hilbert space R ⊗ Γ(L2
γ(R+)) will be denoted by 〈·, ·〉

and ‖ · ‖ the norm induced by 〈·, ·〉. Let E be linear space generated by the expo-

nential vectors in Fock space Γ(L2
γ(R+)). We define the locally convex space A of

noncommutative stochastic processes whose topology τw, is generated by the family

of seminorms {‖x‖ηξ = |〈η, xξ〉|, x ∈ A, η, ξ ∈ D⊗E}. The completion of (A, τw) is

denoted by Ã. The underlying elements of Ã consist of linear maps from D⊗E into

R⊗Γ(L2
γ(R+)) having domains of their adjoints containing D⊗E. For a fixed Hilbert

space γ, the spaces L
p
loc(Ã), L∞

γ,loc(R+) and L
p
loc(I × Ã) are adopted as in [8].

For a topological space N , let clos(N ) be the collection of all nonempty closed

subsets of N ; we shall employ the Hausdorff topology on clos(Ã) as defined in [8].

Moreover, for A, B ∈ clos(C) and x ∈ C, a complex number, we define the Hausdorff

distance, ρ(A, B) as:

d(x, B) ≡ inf
y∈B

|x − y|, δ(A, B) ≡ sup
x∈A

d(x, B)

and ρ(A, B) ≡ max(δ(A, B), δ(B, A)).

Then ρ is a metric on clos(C) and induces a metric topology on the space.

By a multivalued stochastic process indexed by I = [0, T ] ⊆ R+, we mean a

multifunction on I with values in clos(Ã). If Φ is a multivalued stochastic process

indexed by I ⊆ R+, then a selection of Φ is a stochastic process X : I → Ã with the

property that X(t) ∈ Φ(t) for almost all t ∈ I. A multivalued stochastic process Φ will

be called (i) adapted if Φ(t) ⊆ Ãt for each t ∈ R+; (ii) measurable if t 7→ dηξ(x, Φ(t))

is measurable for arbitrary x ∈ Ã, η, ξ ∈ D⊗E ; (iii) locally absolutely p-integrable if

t 7→ ‖Φ(t)‖ηξ, t ∈ R+, lies in L
p
loc(Ã) for arbitrary η, ξ ∈ D⊗E

The set of all absolutely p-integrable multivalued stochastic processes will be

denoted by L
p
loc(Ã)mvs and for p ∈ (0,∞), L

p
loc(I×Ã)mvs is the set of maps Φ : I×Ã →

clos(Ã) such that t 7→ Φ(t, X(t)), t ∈ I lies in L
p
loc(Ã)mvs for every X ∈ L

p
loc(Ã).



QUANTUM STOCHASTIC EVOLUTION INCLUSIONS 309

Quantum stochastic evolution inclusions. Let Y be a metric space, an open

(resp. closed) ball in Y with centre y and radius r is denoted by BY (y, r)(resp.,

BY (y, r)). A multifunction Φ : Y → clos(Ã) is said to be ρηξ-continuous at x′ ∈ Y if

for each η, ξ ∈ D⊗E, ǫ > 0 there exists δ > 0 such that ρηξ(Φ(x), Φ(x′)) ≤ ǫ for any

x ∈ BY (x′, r).

Φ will be said to be ρηξ-continuous if it is so at each x′ ∈ Y , η, ξ ∈ D⊗E. Let L

be the σ-algebra of the Lebesgue measurable subsets of R and, for A ∈ L, let µ(A)

be the Lebesgue measure of A, with µ(A) < ∞. A multifunction Φ : Y → clos(Ã) is

said to be Lusin measurable if for each η, ξ ∈ D⊗E, ǫ > 0, there exists a compact set

Kηξ
ǫ ⊂ A with µ(A \ Kηξ

ǫ ) < ǫ such that Φ restricted to Kηξ
ǫ is ρηξ-continuous.

A map Φ : I × Ã → clos(Ã) is said to be Lipschitzian if for each η, ξ ∈ D⊗E,

there exists lΦηξ : I → (0,∞) in L1
loc(I) such that

ρηξ(Φ(t, x), Φ(t, y)) ≤ lΦηξ(t)‖x − y‖ηξ

for x, y ∈ Ã and almost all t ∈ I. The functions {lΦηξ(·) : η, ξ ∈ D⊗E} are called

Lipschitz functions for Φ. Let E, F, G, H ∈ L2
loc(I × Ã)mvs, in this paper we are

concerned with the quantum stochastic evolution inclusions

dx(t) ∈ Ax(t) +

∫ t

0

K(t, s)(E(s, x(s))dΛπ(s) + F (s, x(s))dAf(s)

+ G(s, x(s))dA+
g (s) + H(s, x(s))ds)

x(t0) = x0

(2.1)

As established in [8], using the relations:

(µE)(t, x)(η, ξ) = {〈η, µαβ(t)p(t, x)ξ〉 : p(t, x) ∈ E(t, x)}

(νF )(t, x)(η, ξ) = {〈η, νβ(t)q(t, x)ξ〉 : q(t, x) ∈ F (t, x)}

(σG)(t, x)(η, ξ) = {〈η, σα(t)u(t, x)ξ〉 : u(t, x) ∈ G(t, x)}

H(t, x)(η, ξ) = {v(t, x)(η, ξ) : v(·, X(·))

is a selection of H(·, X(·))∀ X ∈ L2
loc(Ã)}

P(t, x)(η, ξ) = (µE)(t, x)(η, ξ) + (νF )(t, x)(η, ξ)

+ (σG)(t, x)(η, ξ) + H(t, x)(η, ξ)

problem (2.1) can be rewritten in a non-classical form

d

dt
〈η, x(t)ξ〉 ∈ 〈η, Ax(t)ξ〉 +

∫ t

0

K(t, s)P(s, x(s))(η, ξ)ds

x(t0) = x0

(2.2)
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where P : I × Ã → 2sesq(D⊗E)2 is a sesquilinear form-valued multifunction; A is the

infinitesimal generator of a C0-semigroup of bounded linear operators {G(t); t ≥ 0}

from Ã into Ã. Also, D = {(t, s) ∈ I × I; t ≥ s} and K : D → R is continuous.

Let L1(I, Ã) be the space of all Bochner integrable maps from I to Ã and C(I, Ã)

the space of continuous maps from I to Ã. The spaces L1(I, Ã) and C(I, Ã) are

locally convex spaces with topologies τ1 and τcon respectively, generated by the family

of seminorms:

τ1 : {‖ · ‖1,ηξ : η, ξ ∈ D⊗E} with ‖z‖1,ηξ =

∫

I

dt|〈η, z(t)ξ〉|

and

τcon : {‖ · ‖con,ηξ : η, ξ ∈ D⊗E} with ‖z‖con,ηξ = sup
t∈I

|〈η, z(t)ξ〉|

An adapted stochastic process x : I → Ã is said to be a mild solution of (2.2) or

equivalently (2.1) if x(·) ∈ C(I, Ã) and there exists a Bochner integrable function

f(·) ∈ L1(I, Ã) such that

〈η, f(t)ξ〉 ∈ P(t, x(t))(η, ξ) a.e. t ∈ I

〈η, x(t)ξ〉 = 〈η, G(t)x0ξ〉 +

∫ t

0

G(t)

∫ τ

0

K(τ, s)〈η, f(s)ξ〉dsdτ, t ∈ I
(2.3)

(x(·), f(·)) shall be called a trajectory selection pair of problem (2.2).

The second relation in equation (2.3) may be rewritten as

〈η, x(t)ξ〉 = 〈η, G(t)x0ξ〉 +

∫ t

0

U(t, s)〈η, f(s)ξ〉dsdτ, t ∈ I

where U(t, s) =
∫ t

s
G(t)K(τ, s)dτ . For arbitrary η, ξ ∈ D⊗E; Bηξ and B are defined

as :

Bηξ = {x ∈ Ã : ‖x‖ηξ ≤ 1} and B = {x ∈ C : |x| ≤ 1}

A map Ψ : I ×Ã → 2sesq(D⊗E)2 is said to be Lipschitzian if for each η, ξ ∈ D⊗E, there

exists lηξ : I → (0,∞) in L1
loc(I) such that

ρ(Ψ(t, x)(η, ξ), Ψ(t, y)(η, ξ)) ≤ lηξ(t)‖x − y‖ηξ

for x, y ∈ Ã and almost all t ∈ I.

Let Y be a metric space, a multifunction Ψ : Y → 2sesq(D⊗E)2 is said to be ρ-

continuous at x′ ∈ Y if for each η, ξ ∈ D⊗E, ǫ > 0 there exists δ > 0 such that

ρ(Ψ(x)(η, ξ), Ψ(x′)(η, ξ)) ≤ ǫ for any x ∈ BY (x′, r). A sesquilinear form valued

multifunction, Ψ : I → 2sesq(D⊗E)2 is said to be Lusin measurable if for each η, ξ ∈

D⊗E, ǫ > 0, there exists a compact set Kηξ
ǫ ⊂ A, A ⊂ I with µ(A \ Kηξ

ǫ ) < ǫ such

that Ψ restricted to Kηξ
ǫ is ρ-continuous.

We shall assume the following hypotheses in what follows.
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Hypothesis 1 (i) A is the infinitesimal generator of a C0-semigroup of bounded linear

operators {G(t); 0 ≤ t ≤ T}.

(ii) Let E, F, G, H ∈ L2
loc(I × Ã)mvs and Φ ∈ {E, F, G, H}, Φ(·, ·) : I × Ã → clos(Ã)

is nonempty such that for any x ∈ Ã, Φ(·, x) is Lusin measurable on I.

(iii) There exists lΦηξ : I → (0,∞) in L1
loc(I) such that

ρηξ(Φ(t, x), Φ(t, y)) ≤ lΦηξ(t)‖x − y‖ηξ

for x, y ∈ Ã and arbitrary η, ξ ∈ D⊗E.

(iv) There exists qΦ
ηξ(·) ∈ L1

loc(I, (0,∞)) such that for each t ∈ I;

Φ(t, 0) ⊂ qΦ
ηξ(t)Bηξ.

(v) D = {(t, s) ∈ I × I; t ≥ s} and K : D → R is continuous.

By proposition (6.1) in [8], P is Lipschitzian whenever, E, F , G, H are Lips-

chitzian. We remark that in the same manner, if E(·, x), F (·, x), G(·, x), H(·, x) are

Lusin measurable then P(·, x)(η, ξ) is Lusin measurable. Moreover, if there exists

qΦ
ηξ(·) ∈ L1

loc(I, (0,∞)) such that for each t ∈ I;

Φ(t, 0) ⊂ qΦ
ηξ(t)Bηξ.

Then there exists qηξ(·) ∈ L1
loc(I, (0,∞)) such that for each t ∈ I;

P(t, 0)(η, ξ) ⊂ qηξ(t)B.

where qηξ(t) = max{qΦ
ηξ(t); for each t ∈ I}. Therefore Hypothesis 1 can be restated

as:

Hypothesis 2 (i) A is the infinitesimal generator of a C0-semigroup of bounded linear

operators {G(t); 0 ≤ t ≤ T}.

(ii) For arbitrary η, ξ ∈ D⊗E, P(·, ·) : I × Ã → 2sesq(D⊗E)2 has nonempty closed and

bounded values in C, and for any x ∈ Ã, P(·, x)(η, ξ) is Lusin measurable on I.

(iii) There exists lηξ : I → (0,∞) in L1
loc(I) such that

ρ(P(t, x)(η, ξ), P(t, y)(η, ξ)) ≤ lηξ(t)‖x − y‖ηξ

for x, y ∈ Ã and arbitrary η, ξ ∈ D⊗E.

(iv) There exists qηξ(·) ∈ L1
loc(I, (0,∞)) such that for each t ∈ I;

P(t, 0)(η, ξ) ⊂ qηξ(t)B.

(v) D = {(t, s) ∈ I × I; t ≥ s} and K : D → R is continuous.

Set nηξ(t) =
∫ t

0
lηξ(u)du, t ∈ I, M = supt∈I ‖G(t)‖ηξ and M0 = sup(t,s)∈D |K(t, s)|,

then |U(t, s)| ≤ MM0(t − s) ≤ MM0T . The following results are analogues of

Lemmas 3.1 and 3.2 in [7].
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Lemma 2.1. Let Ψ1, Ψ2 : I → 2sesq(D⊗E)2 be two Lusin measurable multifunctions

and let ǫ1, ǫ2 > 0 be such that

H(t)(η, ξ) =
(
Ψ1(t)(η, ξ) + ǫ1B

)
∩

(
Ψ2(t)(η, ξ) + ǫ2B

)
6= ∅, ∀t ∈ I

Then the multifunction H : I → 2sesq(D⊗E)2 has a Lusin measurable selection h : I →

sesq(D⊗E)2

Proof. Since Ψ1 and Ψ2 are Lusin measurable, we can construct a sequence {Jn}

of pairwise disjoint compact sets Jn ⊂ I satisfying, for each n ∈ N, the following

properties:

(I) Ψ1 and Ψ2 restricted to Jn are ρ-continuous.

(II) Jn ⊂ I \ ∪n
i=1Ji;

(III) µ
(
I \ ∪n

i=1Ji

)
< 1

2n

Set J0 = I \ ∪nJn and observe that, by (iii), µ(J0) = 0. {Jn}n≥0 is partition of I.

We claim that for each n = 0, 1, . . . and arbitrary η, ξ ∈ D⊗E, there is a Lusin

measurable function hn : Jn → sesq(D⊗E)2 which is a selector of the multifunction

H restricted to Jn. To show this, fix an arbitrary n ∈ N. For each t ∈ Jn and

η, ξ ∈ D⊗E, pick out a point ut,ηξ ∈ H(t)(η, ξ). Since H(t)(η, ξ) is open and Ψ1 and

Ψ2 restricted to Jn are ρ-continuous, there is a δt > 0 such that

utk,ηξ ∈
(
Ψ1(s)(η, ξ) + ǫ1B

)
∩

(
Ψ2(s)(η, ξ) + ǫ2B

)
(2.4)

for every s ∈ BJn(t, δt).

The family {BJn(t, δt)}t∈Jn
is an open covering of Jn. As Jn is compact, it admits

a finite subcovering, {BJn(tk, δtk)}
q
k=1, say. Now consider the partition {Ik}

q
k=1 of Jn

given by

I1 = BJn(t1, δt1) Ik = BJn(tk, δtk) \ ∪
k−1
i=1 Ii, 2 ≤ k ≤ q

and define hn : Jn → sesq(D⊗E)2 by

hn(t)(η, ξ) =

q∑

k=1

utkχIk(t)(η, ξ).

Then hn is Lusin measurable and hn is a selector of H restricted to Jn.

Let s ∈ Jn be arbitrary, thus s ∈ Ik for some 1 ≤ k ≤ q. Since s ∈ Ik ⊂

BJn(tk, δtk). In view of (2.4) (with t = tk) we have

utk,ηξ ∈
(
Ψ1(s)(η, ξ) + ǫ1B

)
∩

(
Ψ2(s)(η, ξ) + ǫ2B

)

thus hn(s)(η, ξ) ∈ H(s)(η, ξ), for hn(s) = utk . Hence hn is a Lusin measurable selector

of H restricted to Jn. Then for arbitrary η, ξ ∈ D⊗E; h : I → sesq(D⊗E)2 given by

h(t)(η, ξ) =
∑

n≥0

hn(t)χJn(t)(η, ξ).

is a Lusin measurable selector of H .
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Lemma 2.2. Let P : I × Ã → 2sesq(D⊗E)2 satisfy Hypothesis 2. Then for arbitrary

adapted stochastic process x : I → Ã continuous; t 7→ 〈η, u(t)ξ〉 Lusin measurable

and ǫ > 0, for each η, ξ ∈ D⊗E we have:

(i) the multifunction t 7→ P(t, x(t))(η, ξ) is Lusin measurable on I;

(ii) the multifunction t 7→ 〈η, G(t)ξ〉 defined by

〈η, G(t)ξ〉 =
(
P(t, x(t))(η, ξ) + ǫB

)

∩ B
(
u(t)(η, ξ), d(u(t)(η, ξ), P(t, x(t))(η, ξ))+ ǫ

)

has a Lusin measurable selection g : I → sesq(D⊗E)2.

Proof. Let xn be a sequence of piecewise continuous functions xn : I → Ã converging

to x uniformly on I. Given ǫ > 0, let Kǫ ⊂ I be a compact set, with µ(I \ Kǫ) < ǫ,

such that lηξ restricted to Kǫ is continuous and for each n ∈ N, the multifunction

t 7→ P(t, xn(t))(η, ξ) restricted to Kǫ is ρ-continuous.

Set Mǫ = supt∈Kǫ
lηξ(t). Let t0, t ∈ Kǫ be arbitrary. We have:

ρ
(
P(t, x(t))(η, ξ), P(t0, x(t0))(η, ξ)

)
≤ ρ

(
P(t, x(t))(η, ξ), P(t, xn(t))(η, ξ)

)

+ ρ
(
P(t, xn(t))(η, ξ), P(t0, xn(t0))(η, ξ)

)

+ ρ
(
P(t0, xn(t0))(η, ξ), P(t0, x(t0))(η, ξ)

)

≤ Mǫ‖xn(t) − x(t)‖ηξ + ρ
(
P(t, xn(t))(η, ξ), P(t0, xn(t0))(η, ξ)

)

+ Mǫ‖xn(t0) − x(t0)‖ηξ

≤ Mǫσn + ρ
(
P(t, xn(t))(η, ξ), P(t0, xn(t0))(η, ξ)

)

where σn = supt∈I ‖xn(t)−x(t)‖ηξ. Since σn → 0 as n → ∞ and t 7→ P(t, xn(t))(η, ξ)

restricted to Kǫ is ρ-continuous. The multifunction t 7→ P(t, x(t))(η, ξ) restricted to

Kǫ is ρ-continuous and (i) is proved.

For arbitrary η, ξ ∈ D⊗E, t ∈ I set 〈η, G1(t)ξ〉 = P(t, x(t))(η, ξ), 〈η, G2(t)ξ〉 =

B
(
u(t)(η, ξ), d

(
u(t)(η, ξ), 〈η, G1(t)ξ〉

))
and observe that t 7→ 〈η, G1(t)ξ〉 and 〈η, G2(t)ξ〉

are Lusin measurable on I. Furthermore, for each t ∈ I, η, ξ ∈ D⊗E we have

〈η, G(t)ξ〉 =
(
〈η, G1(t)ξ〉 + ǫB

)
∩

(
〈η, G2(t)ξ〉 + ǫB

)
and 〈η, G(t)ξ〉 6= ∅.

Hence by Lemma (2.1), 〈η, G(t)ξ〉 has a Lusin measurable selection g : I → sesq(D⊗E)2,

thus (ii) holds.

Main Result

Theorem 3.1. If Hypothesis 2 is satisfied, then for every x0 ∈ Ã, the Cauchy problem

(2.2) has a mild solution x(·) ∈ C(I, Ã).
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Proof. We note that if an adapted stochastic process z(·) : I → Ã is continu-

ous, then every Lusin measurable selection t 7→ 〈η, u(t)ξ〉 of the multifunction t 7→

P(t, z(t))(η, ξ) + B is Bochner integrable on I. Therefore, for any t ∈ I, we have

|〈η, u(t)ξ〉| ≤ ρ
(
P(t, z(t))(η, ξ) + B, {0}

)

≤ ρ
(
P(t, z(t))(η, ξ), P(t, 0)(η, ξ)

)
+ ρ

(
P(t, 0)(η, ξ), {0}

)
+ 1

≤ lηξ(t)‖z(t)‖ηξ + qηξ(t) + 1.

Let 0 < ǫ < 1, ǫn = ǫ
2n+2 .

Consider f0 : I → Ã an arbitrary Lusin measurable, Bochner integrable function

and define

〈η, x0(t)ξ〉 = 〈η, G(t)x0ξ〉 +

∫ t

0

U(t, s)〈η, f0(s)ξ〉ds, t ∈ I

Since x0(·) is continuous, by Lemma 2.2 there exists a Lusin measurable function

f1 : I → Ã which, for each t ∈ I, the map t 7→ 〈η, f1(t)ξ〉 satisfies

〈η, f1(t)ξ〉 ∈

(
P(t, x0(t))(η, ξ) + ǫ1B

)

∩ B

(
〈η, f0(t)ξ〉, d

(
〈η, f0(t)ξ〉, P(t, x0(t))(η, ξ)

)
+ ǫ1

)

Obviously, 〈η, f1(·)ξ〉 is Bochner integrable on I. Let x1(·) : I → Ã such that for

arbitrary η, ξ ∈ D⊗E, we define the map t 7→ 〈η, x1(t)ξ〉 as:

〈η, x1(t)ξ〉 = 〈η, G(t)x0ξ〉 +

∫ t

0

U(t, s)〈η, f1(s)ξ〉ds, t ∈ I.

By induction, we construct a sequence t 7→ 〈η, xn(t)ξ〉, n ≥ 2 given by

〈η, xn(t)ξ〉 = 〈η, G(t)x0ξ〉 +

∫ t

0

U(t, s)〈η, fn(s)ξ〉ds, t ∈ I (3.1)

where t 7→ 〈η, fn(t)ξ〉 is a Lusin measurable function which for t ∈ I satisfies:

〈η, fn(t)ξ〉 ∈
(
P(t, xn−1(t))(η, ξ) + ǫnB

)

∩ B
(
〈η, fn−1(t)ξ〉, d(〈η, fn−1(t)ξ〉, P(t, xn−1(t))(η, ξ)) + ǫn

)
.

(3.2)

〈η, fn(·)ξ〉 is also Bochner integrable. From (3.2), for n ≥ 2 and t ∈ I, we obtain:

|〈η, (fn(t) − fn−1(t))ξ〉| ≤ d(〈η, fn−1(t)ξ〉, P(t, xn−1(t))(η, ξ)) + ǫn

≤ d(〈η, fn−1(t)ξ〉, P(t, xn−2(t))(η, ξ))

+ ρ(P(t, xn−2(t))(η, ξ), P(t, xn−1(t))(η, ξ)) + ǫn

≤ ǫn−1 + lηξ(t)‖xn−1(t) − xn−2(t)‖ηξ + ǫn.

Since ǫn−1 + ǫn < ǫn−2, for n ≥ 2, we deduce that

|〈η, (fn(t) − fn−1(t))ξ〉| ≤ ǫn−2 + lηξ(t)‖xn−1(t) − xn−2(t)‖ηξ. (3.3)
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For arbitrary η, ξ ∈ D⊗E, denote p0,ηξ = d
(
〈η, f0(t)ξ〉, P(t, x0(t))(η, ξ)

)
, t ∈ I. We

then prove by recurrence, that for n ≥ 2 and t ∈ I:

‖xn(t) − xn−1(t)‖ηξ ≤
n−2∑

k=0

∫ t

0

ǫn−2−k

(MM0T )k+1(nηξ(t) − nηξ(u))k

k!
du

+ ǫ0

∫ t

0

(MM0T )n(nηξ(t) − nηξ(u))n−1

(n − 1)!
du

+

∫ t

0

(MM0T )n(nηξ(t) − nηξ(u))n−1

(n − 1)!
p0,ηξ(u)du.

(3.4)

We start with n = 2. In view of (3.1), (3.2) and (3.3), for t ∈ I, η, ξ ∈ D⊗E there is

‖x2(t) − x1(t)‖ηξ = |〈η, (x2(t) − x1(t))ξ〉|

≤

∫ t

0

|U(t, s)| · |〈η, (f2(s) − f1(s))ξ〉|ds

≤

∫ t

0

MM0T
[
ǫ0 + lηξ(s)‖x1(s) − x0(s)‖ηξ

]
ds

≤ ǫ0MM0Tt +

∫ t

0

[
MM0T lηξ(s)

∫ s

0

|U(s, r)| · |〈η, (f1(r) − f0(r))ξ〉dr

]
ds

≤ ǫ0MM0Tt

+

∫ t

0

[
(MM0T )2lηξ(s)

∫ s

0

(p0,ηξ(u) + ǫ1)du
]
ds

≤ ǫ0MM0Tt

+

∫ t

0

[
(MM0T )2(p0,ηξ(u) + ǫ1)

∫ t

u

lηξ(s)ds
]
du

= ǫ0MM0Tt

+

∫ t

0

(MM0T )2(nηξ(t) − nηξ(s))[p0,ηξ(s) + ǫ0]ds,

that is, (3.4) is verified for n = 2.

Using again (3.3) and (3.4), we conclude:

‖xn+1(t) − xn(t)‖ηξ = |〈η, (xn+1(t) − xn(t))ξ〉|

≤

∫ t

0

|U(t, s)| · |〈η, (fn+1(s) − fn(s))ξ〉|ds

≤

∫ t

0

MM0T
[
ǫn−1 + lηξ(s)‖xn(s) − xn−1(s)‖ηξ

]
ds

≤ ǫn−1MM0Tt +

∫ t

0

lηξ(s)
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[ n−2∑

k=0

∫ s

0

ǫn−2−k

(MM0T )k+2(nηξ(s) − nηξ(u))k

k!
du

+

∫ s

0

(MM0T )n+1(nηξ(t) − nηξ(u))n−1

(n − 1)!

(p0,ηξ(u) + ǫ0)du

]
ds

= ǫn−1MM0Tt +
n−2∑

k=0

ǫn−2−k

∫ t

0

[(MM0T )k+2(nηξ(s) − nηξ(u))k

k!
lηξ(s)du

]
ds

+

∫ t

0

lηξ(s)

( ∫ s

0

(MM0T )n+1(nηξ(t) − nηξ(u))n−1

(n − 1)!
lηξ(s)

(p0,ηξ(u) + ǫ0)du

)
ds

= ǫn−1MM0Tt +
n−2∑

k=0

ǫn−2−k

∫ t

0

( ∫ t

u

(MM0T )k+2(nηξ(s) − nηξ(u))k

k!
lηξ(s)ds

)
du

+

∫ t

0

( ∫ t

u

(MM0T )n+1(nηξ(t) − nηξ(u))n−1

(n − 1)!
lηξ(s)ds

)

(p0,ηξ(u) + ǫ0)du

= ǫn−1MM0Tt +

n−2∑

k=0

ǫn−2−k

∫ t

0

(MM0T )k+2(nηξ(s) − nηξ(u))k+1

(k + 1)!
du

+

∫ t

0

(MM0T )n+1(nηξ(t) − nηξ(u))n

n!
(p0,ηξ(u) + ǫ0)du

=

n−1∑

k=0

ǫn−1−k

∫ t

0

(MM0T )k+1(nηξ(t) − nηξ(u))k

k!
du

+

∫ t

0

(MM0T )n+1(nηξ(t) − nηξ(u))n

n!
(p0,ηξ(u) + ǫ0)du,

therefore the relation (3.4) is true for n + 1.

From (3.4), it follows that for n ≥ 2 and t ∈ I, η, ξ ∈ D⊗E:

‖xn(t) − xn−1(t)‖ηξ ≤ an,ηξ, (3.5)
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where

an,ηξ =

n−2∑

k=0

ǫn−2−k

(MM0T )k+1nηξ(T )k

k!

+
(MM0T )nnηξ(T )n−1

(n − 1)!

[∫ t

0

p0,ηξ(u)du + ǫ0

]
,

The series {an,ηξ} converges. We infer from (3.5) that xn(·) converges to a contin-

uous function, x(·) : I → Ã. Moreover, from the definition of xn(·) in (3.1)and the

completeness of Ã we conclude that x(·) is an adapted stochastic process belonging

to C(I, Ã).

On the other hand, in view of (3.3), there is

|〈η, (fn(t) − fn−1(t))ξ〉| ≤ ǫn−2 + lηξ(t)an−1,ηξ, t ∈ I, n ≥ 3

which implies that the sequence 〈η, fn(·)ξ〉 converges to t 7→ 〈η, f(·)ξ〉, where f(·) :

I → Ã is a Lusin measurable function. Since xn(·) is bounded and

‖fn(t)‖ηξ = |〈η, fn(t)ξ〉| ≤ lηξ(t)‖xn−1(t)‖ηξ + qηξ(t) + 1,

hence f(·) is Bochner integrable.

By passing with n → ∞ in (3.1) and using Lebesgue dominated convergence

theorem, we obtain

〈η, x(t)ξ〉 = 〈η, G(t)x0ξ〉 +

∫ t

0

U(t, s)〈η, f(s)ξ〉ds, t ∈ I.

On the other hand, from (3.2) we get

〈η, fn(t)ξ〉 ∈
(
P(t, xn(t))(η, ξ) + ǫnB

)
, t ∈ I, n ≥ 1

and letting n → ∞ we obtain

〈η, f(t)ξ〉 ∈
(
P(t, x(t))(η, ξ) t ∈ I.

Hence x(·) is a mild solution of the Cauchy problem (2.2) and the trajectory selection

pair is (x(·), f(·)).
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