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ABSTRACT. Sufficient conditions are obtained for the existence of at least three positive T -

periodic solutions for the first order functional difference equation

∆x(n) = −a(n)x(n) + f(n, x(h(n))).

The Leggett-Williams multiple fixed point theorem has been used to prove our results. We have

applied our results to Hematopoiesis models in population dynamics and obtained an interesting

result. The result is new in the literature.
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1. Introduction

Let R denote the set of real numbers, Z the set of integers, R+ the set of positive

reals, and T ≥ 1 be an integer. Let [a, b] = {a, a + 1, ..., b} for a < b, a, b ∈ Z,
∏b

n=a u(n) denote the product of u(n) from n = a to n = b with the understanding

that
∏b

n=a u(n) = 1 for all a > b.

In this paper, we investigate the existence of multiple positive periodic solutions

for the first order functional difference equation

∆x(n) = −a(n)x(n) + f(n, x(h(n))) (1.1)

where a(n), b(n) and h(n), n ∈ Z, are T -periodic positive sequences with T ≥ 1,

0 < a(n) < 1, n ∈ Z, f(n, x) is T -periodic in n and is continuous in x for each n ∈ Z,

and ∆x(n) = x(n+ 1) − x(n).

Equation (1.1) is the discrete analog of the first order scalar delay differential

equation

x′(t) = −a(t)x(t) + f(t, x(h(t))). (1.2)

Much attention have been given in recent years for the existence of positive periodic

solutions of the Eqs. (1.2). One may refer the works in [3, 7, 10, 12, 13] and references

cited there in. The results obtained in [3, 7, 10, 12, 13] deal with the existence of at
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least one or two positive periodic solutions of (1.2). In [1, 16, 17], attempts have been

made by the authors to study the existence of three positive T -periodic solutions

of (1.2) using the Leggett-Williams multiple fixed point theorem [11]. It has been

observed that very little is known on the existence of positive periodic solutions of

(1.1). It is only recently that attentions has been given to study the existence of

positive periodic solutions of (1.1). The works of Ma and Yu [13], Raffoul [18] and

Zeng [22] may be treated as a basis for the study of positive periodic solutions of (1.1).

They used Krasnoselskii’s fixed point theorem [2] to prove the results. Motivated by

the work in Raffoul [18], Liu [12] obtained several sufficient conditions for the existence

of at least one T -periodic solution for the functional difference equation

∆x(n) + a(n)x(n) = f(n, x(n), x(n− τ1(n)), . . . , x(n− τm(n)))

where {a(n);n ∈ Z} and {τi(n);n ∈ Z}, i = 1, 2, . . . , m are T -periodic sequences

with T ≥ 1, f(n, u) is T -periodic in n for each u = (x0, . . . , xm, xm+1) ∈ Rm+2, and

is continuous in u for each n ∈ Z.

In this paper, we obtain several sufficient conditions for the existence of at least

three positive T -periodic solutions of (1.1) using the Leggett-Williams multiple fixed

point theorem [11]. As dealt by the authors in the references, we shall obtain an

equivalent summation series operator of (1.1) using a Green’s kernel. Then apply-

ing the bounds on the Green’s kernel, we shall prove that the operator satisfies the

conditions of the Leggett-Williams multiple fixed point theorem. Our Corollaries 2.4

and 2.8 give a partial answer to an open problem proposed in [18, p. 07]. Some of the

open problems in [18] has been proved in [13] using Krasnoselskii fixed point theorem.

The following concept will be used in the statement of the Leggett-Williams fixed

point theorem. Let X be a Banach space and K be a cone in X. A mapping ψ is

said to be a concave nonnegative continuous functional on K if ψ : K → [0,∞) is

continuous and

ψ(µx+ (1 − µ)y) ≥ µψ(x) + (1 − µ)ψ(y), x, y ∈ K, µ ∈ [0, 1].

Let c1, c2, c3 be positive constants. With K and X as defined above, we define Kc1 =

{y ∈ K : ‖y‖ < c1}, K(ψ, c2, c3) = {y ∈ K : c2 ≤ ψ(y), ‖y‖ < c3}.

Theorem 1.1 (Leggett-Williams fixed point theorem [11]). Let (X, ‖·‖) be a Banach

space and K ⊂ X a cone, and c4 a positive constant. Suppose there exists a concave

nonnegative continuous functional ψ on K with ψ(u) ≤ ‖u‖ for u ∈ K̄c4 and let

A : K̄c4 → K̄c4 be a completely continuous mapping. Assume that there are numbers

c1, c2, c3, c4 with 0 < c1 < c2 < c3 ≤ c4 such that

(i) {u ∈ K(ψ, c2, c3) : ψ(u) > c2} 6= φ, and ψ(Au) > c2 for all u ∈ K(ψ, c2, c3);

(ii) ‖Au‖ < c1 for all u ∈ K̄c1;

(iii) ψ(Au) > c2 for all u ∈ K(ψ, c2, c4) with ‖Au‖ > c3.
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Then A has at least three fixed points u1, u2, u3 in K̄c4. Furthermore, ‖u1‖ ≤ c1 <

‖u2‖, and ψ(u2) < c2 < ψ(u3).

In this article, let X be the set of all periodic sequences which forms a Banach

space under the norm

‖x‖ = max
n∈[0,T−1]

|x(n)|. (1.3)

2. Main Results

One may observe that (1.1) is equivalent to

x(n) =

n+T−1
∑

s=n

G(n, s)b(s)f(s, x(h(s))), (2.1)

where G(n, s) =
Q

n+T−1

θ=s+1
(1−a(θ))

1−
Q

T−1

θ=0
(1−a(θ))

, n ≤ s ≤ n + T − 1, is the Green’s kernel satisfying

the property:

0 < α =
δ

1 − δ
≤ G(n, s) ≤

1

1 − δ
= β (2.2)

where 0 < δ = α
β

=
∏T−1

n=0 (1 − a(n)) < 1.

We consider the Banach space as defined in (1.3). Define an operator A : X → X

by

(Ax)(n) =

n+T−1
∑

s=n

G(n, s)b(s)f(s, x(h(s))). (2.3)

Using (2.2) we obtain

‖Ax‖ ≤ β

n+T−1
∑

s=n

b(s)f(s, x(h(s)))

and hence

Ax ≥ α

n+T−1
∑

s=n

b(s)f(s, x(h(s))) ≥
α

β
‖Ax‖.

In view of the above inequality, we define a cone K ⊂ X as

K = {x ∈ X : x(n) ≥ 0, n ∈ Z, x(n) ≥ δ‖x‖}.

Then A(K) ⊂ K. The existence of a positive periodic solution of (1.1) is equivalent

to the existence of a fixed point of A in K. Here we use the Leggett-Williams multiple

fixed point theorem, that is, Theorem 1.1 to obtain the existence of three fixed points

of A in K. A small exercise shows that A : K → K is completely continuous.

For the rest of the paper, we denote

fλ = lim sup
x→λ

max
0≤n≤T−1

f(n, x)

x
, λ = 0,∞.
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Throughout the paper, we consider a nonnegative concave functional ψ on the cone

K given by

ψ(x) = min
0≤n≤T−1

x(n).

Assume that the following hold:

(H1) There exists a constant c1 > 0 such that

β

T−1
∑

n=0

f(n, x(h(n))) < c1 for 0 ≤ x ≤ c1.

(H2) There exists a constant c2 > c1 > 0 such that

α

T−1
∑

n=0

f(n, x(h(n))) > c2 for c2 ≤ x ≤
c2

δ
.

(H3) There exists a constant c4 >
c2
δ

such that

β

T−1
∑

n=0

f(n, x(h(n))) ≤ c4 for 0 ≤ x ≤ c4.

With the above defined concave functional ψ on K and the conditions (H1), (H2)

and (H3), we observe that the conditions of the Theorem 1.1 are satisfied. Hence the

operator Ax defined in (2.3) has at least three positive T -periodic solutions. This

leads to the following theorem:

Theorem 2.1. Under the above assumptions (H1), (H2) and (H3), Eq. (1.1) has at

least three positive T -periodic solutions.

Theorem 2.2. Assume that there exists a constant c2 > 0 such that (H2) holds.

Further, suppose that

(H4) β lim supx→∞

∑T−1
n=0

f(n,x(h(n)))
‖x‖

< 1

and

(H5) β lim supx→0

∑T−1
n=0

f(n,x(h(n)))
‖x‖

< 1.

Then (1.1) has at least three positive T -periodic solutions.

Proof. By (H4), there exists a constant ǫ ∈ (0, 1) and a real δ > 0 such that

β

T−1
∑

n=0

f(n, x(h(n))) < ǫ‖x‖ for x ≥ δ.

Set

γ = max
0≤x≤δ

β

T−1
∑

n=0

f(n, x(h(n))).

Then β
∑T−1

n=0 f(n, x(h(n))) < ǫ‖x‖ + γ for x ≥ 0. Choose

c4 > max

{

γ

1 − ǫ
,
c2

δ

}

.
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Then for x ∈ Kc4,

β

T−1
∑

n=0

f(n, x(h(n))) < ǫ‖x‖ + γ ≤ ǫc4 + γ ≤ c4

which implies (H3).

Next from (H5), it follows that for each ǫ1 ∈ (0, 1), there exists a δ1 > 0, δ ∈ (0, c2)

such that

β

T−1
∑

n=0

f(n, x(h(n))) < ǫ1‖x‖ for x ≤ δ1.

Choose c1 ∈ (0, δ1). Then c1 < c2 and for x ∈ Kc1 ,

β

T−1
∑

n=0

f(n, x(h(n))) < ǫ1‖x‖ < ‖x‖ ≤ c1,

which implies (H1). Hence by Theorem 2.1, Eq.(1.1) has at least three positive T -

periodic solutions. This completes the proof of the theorem.

Theorem 2.3. Let f∞ < 1−δ
T

and f 0 < 1−δ
T

hold. Furthermore, suppose that there

exists a constant c2 > 0 such that

(H6) f(n, x) ≥ 1−δ
δT
c2 for c2 ≤ x ≤ c2

δ
and 0 ≤ n ≤ T − 1.

Then (1.1) has at least three positive T -periodic solutions.

Proof. Clearly, f∞ < 1−δ
T

and f 0 < 1−δ
T

implies (H4) and (H5) respectively. The

condition (H6) implies the condition (H2). Consequently, by Theorem 2.2, (1.1) has

at least three positive T -periodic solutions. The Theorem is proved.

Remark 2.4. We observe Theorems 2.2–2.3 are different versions of Theorem 2.1.

Corollary 2.5. Let f∞ = 0, f 0 = 0 and assume that there exists a constant c2 > 0

such that (H6) holds. Then (1.1) has at least three positive T -periodic solutions.

Remark 2.6. Corollary 2.5 answers the following open problem proposed in [18,

p. 07]:

What can be said about Eq. (1.1) when f∞ = 0 and f 0 = 0.

In fact, with an additional condition, we have shown that (1.1) has at least three

positive T -periodic solutions. Raffoul [18] considered the equation

x(n + 1) = a(n)x(n) + λu(n)f(x(h− τ(n))). (2.4)

Equation (1.1) is equivalent to

x(n + 1) = (1 − a(n))x(n) + f(n, x(h(n))). (2.5)

Setting b(n) = 1 − a(n) and λ = 1, we observe that (2.4) and (2.5) are equivalent.

So far, we have obtained results if 0 < b(n) < 1 holds. In the following, we give some
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analogous results for b(n) > 1. In this case, the Green’s kernel is negative. Hence

a proper adjustment on the bound of the Green’s kernel is given. Equation (2.5) is

equivalent to (2.1) where G(n, s) =
Q

n+T−1

θ=s+1
b(θ)

1−
Q

n+T−1

θ=n
b(θ)

is the Green’s kernel satisfying the

property

α1 =

∏T−1
s=0 b

−1(s)

|1 −
∏n+T−1

s=n b(s)|
≤ G(n, s) ≤

∏T−1
s=0 b(s)

|1 −
∏n+T−1

s=n b(s)|
= β1

for all s ∈ [n, n + T − 1]. Set σ = α1

β1
= (

∏T−1
s=0 b

−1(s))2.

We consider the Banach space as defined in (1.3) and an operator as in (2.3).

Define a cone K in X by

K = {x ∈ X; x(n) ≥ 0, x(n) ≥ σ‖x‖}.

Then it is easy to prove that A(K) ⊂ K and is completely continuous. If we proceed

as before in the proof of the earlier theorems given in the paper, we have the following:

Theorem 2.7. Suppose that there exist constants 0 < c1 < c2 and c4 > 0 such that

(H7) β1

∑T−1
n=0 f(n, x(h(n))) < c1 for 0 ≤ x ≤ c1,

(H8) α1

∑T−1
n=0 f(n, x(h(n))) > c2 for c2 ≤ x ≤ c2

σ
,

and

(H9) β1

∑T−1
n=0 f(n, x(h(n))) ≤ c4 for 0 ≤ x ≤ c4.

Then (1.1) has at least three positive T -periodic solutions.

Proceeding as in the lines of Theorem 2.2, we can prove the following theorem:

Theorem 2.8. Suppose that there exists a constant c2 > 0 such that (H8) holds.

Further assume that

(H4) β1 lim supx→∞

∑T−1
n=0

f(n,x(h(n)))
‖x‖

< 1

and

(H5) β1 lim supx→0

∑T−1
n=0

f(n,x(h(n)))
‖x‖

< 1.

Then (1.1) has at least three positive T -periodic solutions.

Theorem 2.9. Let f∞ < 1
β1T

and f 0 < 1
β1T

hold, and assume that there exists a

constant c2 > 0 such that (H8) holds. Then (1.1) has at least three positive T -periodic

solutions.

Corollary 2.10. Let f∞ = 0, f 0 = 0 and assume that there exists a constant c2 > 0

such that (H8) hold. Then (1.1) has at least three positive T -periodic solutions.

Our Corollary 2.10 answers the open problem (3) proposed by Raffoul in [18].
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3. Application to Hematopoiesis Model

As a particular case of (1.1), we have the scalar equation

∆u(n) = −a(n)u(n) + p(n)
ul(n− τ(n))

1 + um(n− τ(n))
, (3.1)

which is a hematopoiesis model; it describes the production of red blood cells. In

this model it is realistic to assume the periodicity of some parameters because of

the periodic variations of the environment, which play an important role in many

biological and ecological systems. Mackey and Glass [14] also used this equation, with

a continuous function as an initial condition to describe some physiological control

systems.

Here a, p, τ are positive periodic sequences with a common period T , and the

constants m, l, T are positive. Equation (3.1) is the discrete analog of the differential

equation

x′(t) = −a(t)x(t) + p(t)
xl(t− τ(t))

1 + xm(t− τ(t))
. (3.2)

Existence of a solution to (3.1) has been proved by Wan et al [19], while global

attractivity has been studied by Wang and Li [21].

Zeng [22] shown that if l = 1, 0 < a(n) < 1, and maxn∈[0,T−1] p(n) > 1−δ
δ2T

, then

(3.1) has at least one positive T -periodic solution, where δ =
∏T−1

n=0 (1−a(n))−1. Now,

we apply Theorem 2.1 to Eq. (3.1) to obtain a sufficient condition for the existence

of three positive T -periodic solutions of Eq. (3.1).

Theorem 3.1. Let 1 < l < m, 0 < a(n) < 1, and

T−1
∑

n=0

p(n) ≥
m(1 − δ)

δl(m− l + 1)

[

m− l + 1

l − 1

]
l−1

m

(3.3)

hold. Then (3.1) has at least three positive T -periodic solutions.

Proof. Set f(n, x) = p(n) xl(n−τ(n))
1+xm(n−τ(n))

. Since 1 < l < m, it follows that f 0 = 0 and

f∞ = 0. To complete the proof of the theorem, it requires to show that there exist a

c2 > 0 such that (H2) is satisfied, that is, there exists a positive constant c2 > 0 such

that
T−1
∑

n=0

p(n)
xl(n− τ(n))

1 + xm(n− τ(n))
> (1 − δ)c2 for c2 ≤ ‖x‖ ≤

c2

δ
. (3.4)

Since x ∈ K, c2δ ≤ x(s− τ(s)) ≤ ‖x‖ ≤ c2
δ
. Now,

T−1
∑

n=0

p(n)
xl(n− τ(n))

1 + xm(n− τ(n))
≥

δlcl2
1 + ( c2

δ
)m

T−1
∑

n=0

p(n)

≥
δlδmcl2
δm + cm2

T−1
∑

n=0

p(n).
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Hence (3.4) holds if

T−1
∑

n=0

p(n) >
1 − δ

δm+l
.
δm + cm2

cl−1
2

. (3.5)

Set c2 = δ( l−1
m−l+1

)
1

m , which is the minimizer of 1−δ
δm+l .

δm+cm
2

cl−1

2

. Then (3.4) follows from

(3.3). This completes the proof of the theorem.

Another particular case of Eq. (1.1) is the functional difference equation

∆x(n) = −a(n)x(n) + p(n)xm(n− τ(n))e−γx(n−τ(n)) (3.6)

Zeng [22] showed that if m = 1, max0≤n≤T−1 p(n) > 1−δ
δ2T

, and 0 < a(n) < 1, then (1.1)

has at least three positive T -periodic solutions. In the following theorem, we give a

sufficient condition for the existence of three positive T -periodic solutions of (3.6).

Theorem 3.2. Let m > 1, 0 < a(n) < 1, and

T−1
∑

n=0

p(n) ≥ (1 − δ)δm−2(
γl

δ2(m− 1)
)m−1 (3.7)

hold. Then (3.6) has at least three positive T -periodic solutions.

Proof. Set f(n, x) = p(n)xm(n− τ(n))e−γx(n−τ(n)). Clearly m > 1 implies that f 0 = 0

and f∞ = 0. Thus, in order to show that (3.6) has three positive T -periodic solutions,

in view of Theorem 2.1, it remains to show that there exists a constant c2 such that

(H2) holds, that is,

α

T−1
∑

n=0

p(n)xm(n− τ(n))e−γx(n−τ(n)) > c2mboxforc2 ≤ ‖x‖ ≤
c2

δ
. (3.8)

Clearly

T−1
∑

n=0

p(n)xm(n− τ(n))e−γx(n−τ(n)) ≥ cm2 e
−γ

c2
δ

T−1
∑

n=0

p(n).

Set c2 = δ(m−1)
γ

. It is easy to see that c2 = δ(m−1)
γ

is the minimizer of

(

1

δ
− 1

)

c2(δc2)
−meγ

c2
δ

which shows that the property

T−1
∑

n=0

p(n) ≥
(1 − δ)

δcm−1
2

eγ
c2
δ

follows from (3.7). Consequently, (3.8) holds. Thus the theorem is proved.
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