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ABSTRACT. This paper establishes the existence of multiple positive solutions for ternary system

of higher order two-point boundary value problems by using five functionals fixed point theorem.

We also establish the existence of at least 2k − 1 positive solutions to the boundary value problem

for an arbitrary positive integer k.
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1. INTRODUCTION

There has been much attention focused in establishing the existence of positive

solutions for higher order boundary value problems (BVPs) due to their applicability

for all areas of science, engineering and technology. The concept that arises in in-

dustries like automobile, aerospace, chemical, pharmaceutical, petroleum, electronics

and communications as well as emerging technologies such as nanotechnology and

biotechnology can be modeled as BVPs. In these applied settings, the positive solu-

tions are meaningful. In recent years, researchers have shown interest in establishing

the existence of positive solutions for systems of BVPs. To mention a few along these

lines are Cheng and Zhang [3], Henderson and Ntouyas [7]–[10], Liu, Kang and Wu

[13], Xu and Yang [17]. Recently, Prasad, Murali and Rao [16] studied the existence

of multiple positive solutions for the system of higher order two-point boundary value

problems.
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Till now in the literature, the study of positive solutions for system of two equa-

tions are available. We wish to extend these results to the systems of three equations,

y
(m)
1 (t) + f1(t, y1(t), y2(t), y3(t)) = 0, t ∈ [a, b],

y
(n)
2 (t) + f2(t, y1(t), y2(t), y3(t)) = 0, t ∈ [a, b],

y
(l)
3 (t) + f3(t, y1(t), y2(t), y3(t)) = 0, t ∈ [a, b],











(1.1)

satisfying two-point boundary conditions,

y
(i)
1 (a) = 0, i = 0, 1, 2, . . . , m− 2,

y
(p)
1 (b) = 0, ( 1 ≤ p ≤ m− 1, but fixed),

y
(j)
2 (a) = 0, j = 0, 1, 2, . . . , n− 2,

y
(q)
2 (b) = 0, ( 1 ≤ q ≤ n− 1, but fixed),

y
(k)
3 (a) = 0, k = 0, 1, 2, . . . , l − 2,

y
(r)
3 (b) = 0, ( 1 ≤ r ≤ l − 1, but fixed)



























































(1.2)

where m,n, l ≥ 2, b > a ≥ 0 and fi : [a, b] × R
3 → R

+ are continuous, for i = 1, 2, 3.

By applying five functionals fixed point theorem for the BVP (1.1)–(1.2), we establish

the existence of multiple positive solutions. This theorem generalizes the fixed point

theorem of cone expansion and compression which is of norm type and it allows to

choose functionals that satisfy certain conditions which are used in place of norm. In

applications to BVPs the functionals will typically be the minimum or maximum of

the function over a specific interval.

The rest of the paper is organized as follows. In section 2, we construct the

Green’s function for the homogeneous problem corresponding to BVP (1.1)–(1.2)

and estimate bounds for the Green’s function. In section 3, we establish criteria for

the existence of at least three positive solutions for the BVP (1.1)–(1.2), by using five

functionals fixed point theorem. We also establish the existence of at least 2k − 1

positive solutions to the BVP (1.1)–(1.2) for an arbitrary positive integer k. As an

application, we give an example to obtain at least three positive solutions to the BVP.

2. GREEN’S FUNCTION AND BOUNDS

In this section, we construct the Green’s function for the homogeneous BVP

corresponding to (1.1)–(1.2) using Cauchy function concept and we estimate bounds

for the Green’s function.

Let Gm1(t, s) be the Green’s function for the homogeneous BVP,

−y(m1)(t) = 0, t ∈ [a, b], (2.1)

y(i1)(a) = 0, i1 = 0, 1, 2, . . . , m1 − 2,

y(j1)(b) = 0, (1 ≤ j1 ≤ m1 − 1, but fixed)

}

(2.2)
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and after the computation it is given by

Gm1(t, s) =

{

H1(t, s), a ≤ t ≤ s ≤ b,

H2(t, s), a ≤ s ≤ t ≤ b,

where

H1(t, s) =
(t− a)m1−1(b− s)m1−j1−1

(m1 − 1)!(b− a)m1−j1−1
,

H2(t, s) =
(t− a)m1−1(b− s)m1−j1−1

(m1 − 1)!(b− a)m1−j1−1
−

(t− s)m1−1

(m1 − 1)!
.

It is clear that the Green’s function Gm1(t, s) > 0, for all (t, s) ∈ (a, b) × (a, b) by

simple algebraic calculations.

Lemma 2.1. For (t, s) ∈ [a, b] × [a, b], we have

Gm1(t, s) ≤ Gm1(b, s). (2.3)

Proof. Let a ≤ t ≤ s ≤ b. Then, we have

∂Gm1(t, s)

∂t
=

(t− a)m1−2(b− s)m1−j1−1

(m1 − 2)!(b− a)m1−j1−1
≥ 0.

Therefore, the Green’s function Gm1(t, s) is increasing in t. Hence the inequality

(2.3).

Let a ≤ s ≤ t ≤ b. Then, we have

∂Gm1(t, s)

∂t
=

(t− a)m1−2(b− s)m1−j1−1

(m1 − 2)!(b− a)m1−j1−1
−

(t− s)m1−2

(m1 − 2)!

=
1

(m1 − 2)!(b− a)m1−j1−1

[

(t− a)m1−2(b− s)m1−j1−1

− (t− s)m1−2(b− a)m1−j1−1
]

=
(t− a)m1−j1−1(b− s)m1−j1−1

(m1 − 2)!(b− a)m1−j1−1

[

(t− a)j1−1

−
(t− s)m1−2(b− a)m1−j1−1

(t− a)m1−j1−1(b− s)m1−j1−1

]

≥
(t− a)m1−j1−1(b− s)m1−j1−1

(m1 − 2)!(b− a)m1−j1−1

[

(t− a)j1−1 − (t− s)j1−1
]

≥ 0.

Therefore, the Green’s function Gm1(t, s) is increasing in t. Hence the inequality

(2.3).

Lemma 2.2. Let I =
[

3a+b
4
, a+3b

4

]

. For (t, s) ∈ I × [a, b], we have

Gm1(t, s) ≥
1

4m1−1
Gm1(b, s). (2.4)
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Proof. Let a ≤ t ≤ s ≤ b and t ∈ I. Then, we have

Gm1(t, s)

Gm1(b, s)
≥

(

t− a

b− a

)m1−1

≥
1

4m1−1
.

Let a ≤ s ≤ t ≤ b and t ∈ I. Then, we have

Gm1(t, s)

Gm1(b, s)
=

(t− a)m1−1(b− s)m1−j1−1 − (t− s)m1−1(b− a)m1−j1−1

(b− a)m1−1(b− s)m1−j1−1 − (b− s)m1−1(b− a)m1−j1−1

=
(t− a)m1−j1−1(b− s)m1−j1−1

[

(t− a)j1 − (t−s)m1−1(b−a)m1−j1−1

(t−a)m1−j1−1(b−s)m1−j1−1

]

(b− a)m1−j1−1(b− s)m1−j1−1[(b− a)j1 − (b− s)j1]

≥
(t− a)m1−j1−1[(t− a)j1 − (t− s)j1]

(b− a)m1−j1−1[(b− a)j1 − (b− s)j1]

≥

(

t− a

b− a

)m1−1

≥
1

4m1−1
.

Hence the result.

3. MULTIPLE POSITIVE SOLUTIONS

In this section, we establish the existence of at least three positive solutions for

the BVP (1.1)–(1.2), by using five functionals fixed point theorem. And then, we

establish the existence of at least 2k − 1 positive solutions for an arbitrary positive

integer k.

Let B be a real Banach space with cone P . A map α : P → [0,∞) is said to be

nonnegative continuous concave functional on P if α is continuous and

α(λx+ (1 − λ)y) ≥ λα(x) + (1 − λ)α(y),

for all x, y ∈ P and λ ∈ [0, 1]. Similarly, we say that a map β : P → [0,∞) is said to

be nonnegative continuous convex functional on P if β is continuous and

β(λx+ (1 − λ)y) ≤ λβ(x) + (1 − λ)β(y),

for all x, y ∈ P and λ ∈ [0, 1].

Let γ, β, θ be nonnegative continuous convex functionals on P and α, ψ be nonneg-

ative continuous concave functionals on P , then for nonnegative numbers h′, a′, b′, d′

and c′, we define the following convex sets.

P (γ, c′) = {y ∈ P : γ(y) < c′},

P (γ, α, a′, c′) = {y ∈ P : a′ ≤ α(y); γ(y) ≤ c′},

Q(γ, β, d′, c′) = {y ∈ P : β(y) ≤ d′; γ(y) ≤ c′},

P (γ, θ, α, a′, b′, c′) = {y ∈ P : a′ ≤ α(y); θ(y) ≤ b′; γ(y) ≤ c′},

Q(γ, β, ψ, h′, d′, c′) = {y ∈ P : h′ ≤ ψ(y); β(y) ≤ d′; γ(y) ≤ c′}.
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In obtaining multiple positive solutions of the BVP (1.1)–(1.2), the following so

called five functionals fixed point theorem will be fundamental.

Theorem 3.1 ([2]). Let P be a cone in the real Banach space B. Suppose α and ψ

are nonnegative continuous concave functionals on P , and γ, β, θ are nonnegative

continuous convex functionals on P , such that for some positive numbers c′ and e′,

α(y) ≤ β(y) and ‖y‖ ≤ e′γ(y) i for all y in P (γ, c′). Suppose further that T :

P (γ, c′) → P (γ, c′) is completely continuous and there exist constants h′, d′, a′ and

b′ ≥ 0 with 0 < d′ < a′ such that each of the following is satisfied.

(B1) {y ∈ P (γ, θ, α, a′, b′, c′) : α(y) > a′} 6= ∅ and α(Ty) > a′ for y ∈ P (γ, θ, α, a′, b′, c′),

(B2) {y ∈ Q(γ, β, ψ, h′, d′, c′) : β(y) < d′} 6= ∅ and β(Ty) < d′ for y ∈ Q(γ, β, ψ, h′, d′, c′),

(B3) α(Ty) > a′ provided y ∈ P (γ, α, a′, c′) with θ(Ty) > b′,

(B4) β(Ty) < d′ provided y ∈ Q(γ, β, d′, c′) with ψ(Ty) < h′.

Then T has at least three fixed points y1, y2, y3 ∈ P (γ, c′) such that β(y1) < d′, a′ <

α(y2) and d′ < β(y3) with α(y3) < a′.

Let B = E × E × E, where E = {y : y ∈ C(p)[a, b]}, p = max{m,n, l}, be the

Banach space equipped with the norm ‖(y1, y2, y3)‖ = ‖y1‖0 + ‖y2‖0 + ‖y3‖0 and

‖yi‖0 = max
t∈[a,b]

|yi(t)|, for i = 1, 2, 3.

Let

η = min

{

1

4m−1
,

1

4n−1
,

1

4l−1

}

. (3.1)

Define the cone P ⊂ B by

P =

{

(y1, y2, y3) ∈ B, yi(t) ≥ 0, t ∈ [a, b], i = 1, 2, 3 and

mint∈I

{
∑3

i=1 |yi(t)|
}

≥ η‖(y1, y2, y3)‖

}

.

Let I1 =
[

2a+b
3
, a+2b

3

]

and define the nonnegative continuous concave functionals α, ψ

and the nonnegative continuous convex functionals β, θ, γ on P by

α(y1, y2, y3) = min
t∈I

{

3
∑

i=1

|yi(t)|

}

, ψ(y1, y2, y3) = min
t∈I1

{

3
∑

i=1

|yi(t)|

}

,

γ(y1, y2, y3) = max
t∈[a,b]

{

3
∑

i=1

|yi(t)|

}

, β(y1, y2, y3) = max
t∈I1

{

3
∑

i=1

|yi(t)|

}

,

and

θ(y1, y2, y3) = max
t∈I

{

3
∑

i=1

|yi(t)|

}

.

We observe that, for any (y1, y2, y3) ∈ P , we have

α(y1, y2, y3) ≤ β(y1, y2, y3), (3.2)
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and

‖(y1, y2, y3)‖ ≤
1

η
γ(y1, y2, y3). (3.3)

Let

L = min

{
∫ b

a

Gm(b, s)ds,

∫ b

a

Gn(b, s)ds,

∫ b

a

Gl(b, s)ds

}

and

M = max

{
∫ b

a

Gm(b, s)ds,

∫ b

a

Gn(b, s)ds,

∫ b

a

Gl(b, s)ds

}

.

We denote the operators Tm : P → E, Tn : P → E, Tl : P → E, and defined by

Tm(y1, y2, y3)(t) =

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds,

Tn(y1, y2, y3)(t) =

∫ b

a

Gn(t, s)f2(s, y1(s), y2(s), y3(s))ds,

Tl(y1, y2, y3)(t) =

∫ b

a

Gl(t, s)f3(s, y1(s), y2(s), y3(s))ds.

Theorem 3.2. Suppose there exist 0 < a′ < b′ < b′

η
< c′ such that fi, satisfies the

following conditions for i = 1, 2, 3,

(A1) fi(t, y1, y2, y3) <
a′

3M
, t ∈ [a, b] and

3
∑

i=1

|yi| ∈ [ηa′, a′],

(A2) fi(t, y1, y2, y3) >
b′

3ηL
, t ∈ I and

3
∑

i=1

|yi| ∈

[

b′,
b′

η

]

,

(A3) fi(t, y1, y2, y3) <
c′

3M
, t ∈ [a, b] and

3
∑

i=1

|yi| ∈ [0, c′].

Then the BVP (1.1)–(1.2) has at least three positive solutions (u1, u2, u3),(v1, v2, v3)

and (w1, w2, w3) such that β(u1, u2, u3) < a′, b′ < α(v1, v2, v3) and a′ < β(w1, w2, w3)

with α(w1, w2, w3) < b′.

Proof. Define the operator T : P → B by

T (y1, y2, y3)(t) = (Tm(y1, y2, y3)(t), Tn(y1, y2, y3)(t), Tl(y1, y2, y3)(t)).

It is obvious that the fixed point of T is the solution of the BVP (1.1)–(1.2). We

seek three fixed points of T . First, we show that T : P → P . Let (y1, y2, y3) ∈ P .

Clearly, Tm(y1, y2, y3) ≥ 0, Tn(y1, y2, y3) ≥ 0 and Tl(y1, y2, y3) ≥ 0, for t ∈ [a, b]. Also,

for (y1, y2, y3) ∈ P ,

Tm(y1, y2, y3)(t) =

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds

≤

∫ b

a

Gm(b, s)f1(s, y1(s), y2(s), y3(s))ds
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so that

‖Tm(y1, y2, y3)‖0 ≤

∫ b

a

Gm(b, s)f1(s, y1(s), y2(s), y3(s))ds.

Next, if (y1, y2, y3) ∈ P , then by Lemma 2.2, we have

min
t∈I

Tm(y1, y2, y3)(t) = min
t∈I

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds

≥ η

∫ b

a

Gm(b, s)f1(s, y1(s), y2(s), y3(s))ds

≥ η‖Tm(y1, y2, y3)‖0.

Similarly,

min
t∈I

Tn(y1, y2, y3)(t) ≥ η‖Tn(y1, y2, y3)‖0

and

min
t∈I

Tl(y1, y2, y3)(t) ≥ η‖Tl(y1, y2, y3)‖0.

Therefore,

min
t∈I

{Tm(y1, y2, y3)(t) + Tn(y1, y2, y3)(t) + Tl(y1, y2, y3)(t)}

≥ η‖Tm(y1, y2, y3)‖0 + η‖Tn(y1, y2, y3)‖0 + η‖Tl(y1, y2, y3)‖0

= η‖(Tm(y1, y2, y3), Tn(y1, y2, y3), Tl(y1, y2, y3))‖

= η‖T (y1, y2, y3)‖.

Hence, T (y1, y2, y3) ∈ P and so T : P → P . Moreover, T is completely continuous

operator. From (3.2) and (3.3), for each (y1, y2, y3) ∈ P , we have α(y1, y2, y3) ≤

β(y1, y2, y3) and ‖(y1, y2, y3)‖ ≤
1

η
γ(y1, y2, y3). To show that T : P (γ, c′) → P (γ, c′).

Let (y1, y2, y3) ∈ P (γ, c′). Then 0 ≤
∑3

i=1 |yi(t)| ≤ c′. We may use condition (A3) to

obtain

γ(T (y1, y2, y3)(t)) = max
t∈[a,b]

{

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gn(t, s)f2(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gl(t, s)f3(s, y1(s), y2(s), y3(s))ds
}

<
c′

3M

∫ b

a

Gm(b, s)ds+
c′

3M

∫ b

a

Gn(b, s)ds+
c′

3M

∫ b

a

Gl(b, s)ds

≤ c′.

Therefore T : P (γ, c′) → P (γ, c′).

Now we verify that the conditions (B1), (B2) of Theorem 3.1 are satisfied. It is

obvious that
{

(y1, y2, y3) ∈ P

(

γ, θ, α, b′,
b′

η
, c′

)

: α(y1, y2, y3) > b′
}

6= ∅
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and

{(y1, y2, y3) ∈ Q(γ, β, ψ, ηa′, a′, c′) : β(y1, y2, y3) < a′} 6= ∅.

Next, let (y1, y2, y3) ∈ P (γ, θ, α, b′, b′

η
, c′) or (y1, y2, y3) ∈ Q(γ, β, ψ, ηa′, a′, c′). Then,

b′ ≤
∑3

i=1 |yi(t)| ≤
b′

η
and ηa′ ≤

∑3
i=1 |yi(t)| ≤ a′.

Now, we may apply condition (A2) to get

α(T (y1, y2, y3)(t)) = min
t∈I

{

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gn(t, s)f2(s, y1(s, y2(s), y3(s))ds

+

∫ b

a

Gl(t, s)f3(s, y1(s), y2(s), y3(s))ds
}

≥ η
{

∫ b

a

Gm(b, s)f1(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gn(b, s)f2(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gl(b, s)f3(s, y1(s), y2(s), y3(s))ds
}

>
b′

3L

∫ b

a

Gm(b, s)ds+
b′

3L

∫ b

a

Gn(b, s)ds+
b′

3L

∫ b

a

Gl(b, s)ds

≥ b′.

Clearly, by condition (A1), we have

β(T (y1, y2, y3)(t)) = max
t∈I1

{

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gn(t, s)f2(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gl(t, s)f3(s, y1(s), y2(s), y3(s))ds
}

≤

∫ b

a

Gm(b, s)f1(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gn(b, s)f2(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gl(b, s)f3(s, y1(s), y2(s), y3(s))ds

<
a′

3M

∫ b

a

Gm(b, s)ds+
a′

3M

∫ b

a

Gn(b, s)ds+
a′

3M

∫ b

a

Gl(b, s)ds

≤ a′.
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To see that (B3) is satisfied, let (y1, y2, y3) ∈ P (γ, α, b′, c′) with θ(T (y1, y2, y3)) >
b′

η
.

Then, we have

α(T (y1, y2, y3)(t)) = min
t∈I

{

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gn(t, s)f2(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gl(t, s)f3(s, y1(s), y2(s), y3(s))ds
}

≥ η
{

max
t∈[a,b]

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds

+ max
t∈[a,b]

∫ b

a

Gn(t, s)f2(s, y1(s), y2(s), y3(s))ds

+ max
t∈[a,b]

∫ b

a

Gl(t, s)f3(s, y1(s), y2(s), y3(s))ds
}

≥ η
{

max
t∈I

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds

+ max
t∈I

∫ b

a

Gn(t, s)f2(s, y1(s), y2(s), y3(s))ds

+ max
t∈I

∫ b

a

Gl(t, s)f3(s, y1(s), y2(s), y3(s))ds
}

= ηθ(T (y1, y2, y3)) ≥ b′.

Finally, we show that (B4) holds. Let (y1, y2, y3) ∈ Q(γ, β, a′, c′) with ψ(T (y1, y2, y3)) <

ηa′. Then, we have

β(T (y1, y2, y3)(t)) = max
t∈I1

{

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gn(t, s)f2(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gl(t, s)f3(s, y1(s), y2(s), y3(s))ds
}

≤ max
t∈[a,b]

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds

+ max
t∈[a,b]

∫ b

a

Gn(t, s)f2(s, y1(s), y2(s), y3(s))ds

+ max
t∈[a,b]

∫ b

a

Gl(t, s)f3(s, y1(s), y2(s), y3(s))ds

≤

∫ b

a

Gm(b, s)f1(s, y1(s), y2(s), y3(s))ds

+

∫ b

a

Gn(b, s)f2(s, y1(s), y2(s), y3(s))ds
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+

∫ b

a

Gl(b, s)f3(s, y1(s), y2(s), y3(s))ds

≤
1

η

{

min
t∈I

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds

+ min
t∈I

∫ b

a

Gn(t, s)f2(s, y1(s), y2(s), y3(s))ds

+ min
t∈I

∫ b

a

Gl(t, s)f3(s, y1(s), y2(s), y3(s))ds
}

≤
1

η

{

min
t∈I1

∫ b

a

Gm(t, s)f1(s, y1(s), y2(s), y3(s))ds

+ min
t∈I1

∫ b

a

Gn(t, s)f2(s, y1(s), y2(s), y3(s))ds

+ min
t∈I1

∫ b

a

Gl(t, s)f3(s, y1(s), y2(s), y3(s))ds
}

=
1

η
ψ(T (y1, y2, y3)) ≤ a′.

We have proved that all the conditions of Theorem 3.1 are satisfied. Therefore,

the BVP (1.1)–(1.2) has at least three positive solutions, (u1, u2, u3), (v1, v2, v3) and

(w1, w2, w3).

Now, we establish the existence of at least 2k − 1 positive solutions for the BVP

(1.1)–(1.2), by using induction on k.

Theorem 3.3. Let k be an arbitrary positive integer. Assume that there exist numbers

ar (r = 1, 2, . . . , k) and bs (s = 1, 2, . . . , k − 1) with 0 < a1 < b1 <
b1
η
< a2 < b2 <

b2
η
< · · · < ak−1 < bk−1 <

bk−1

η
< ak such that fi, for i = 1, 2, 3 satisfies the following

conditions:

fi(t, y1, y2, y3) <
ar

3M
, for all t ∈ [a, b] and

3
∑

i=1

|yi| ∈ [ηar, ar], r = 1, 2, . . . , k, (3.4)

fi(t, y1, y2, y3) >
bs

3ηL
, for all t ∈ I and

3
∑

i=1

|yi| ∈

[

bs,
bs

η

]

, s = 1, 2, . . . , k− 1. (3.5)

Then the BVP (1.1)–(1.2) has at least 2k − 1 positive solutions in P ak
.

Proof. We use induction on k. First, for k = 1, we know from (3.4) that T : P a1 →

Pa1 , then it follows from Schauder fixed point theorem that the BVP (1.1)–(1.2)

has at least one positive solution in P a1 . Next, we assume that this conclusion

holds for k = l. In order to prove that this conclusion holds for k = l + 1, we

suppose that there exist numbers ar(r = 1, 2, . . . , l + 1) and bs(s = 1, 2, . . . , l) with

0 < a1 < b1 <
b1
η
< a2 < b2 <

b2
η
< · · · < al < bl <

bl

η
< al+1 such that fi, for
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i = 1, 2, 3, satisfies

fi(t, y1, y2, y3) <
ar

3M
, for all t ∈ [a, b] and

3
∑

i=1

|yi| ∈ [ηar, ar], r = 1, 2, . . . , l + 1,

(3.6)

fi(t, y1, y2, y3) >
bs

3ηL
, for all t ∈ I and

3
∑

i=1

|yi| ∈

[

bs,
bs

η

]

, s = 1, 2, . . . , l. (3.7)

By assumption, the BVP (1.1)–(1.2) has at least 2l− 1 positive solutions (ui, vi, wi),

i = 1, 2, . . . , 2l − 1 in P al
. At the same time, it follows from Theorem (3.3), (3.6)

and (3.7) that the BVP (1.1)–(1.2) has at least three positive solutions (u∗1, v
∗

1, w
∗

1),

(u∗2, v
∗

2, w
∗

2) and (u∗3, v
∗

3, w
∗

3) in P al+1
such that β(u∗1, v

∗

1, w
∗

1) < al, bl < α(u∗2, v
∗

2, w
∗

2)

and al < β(u∗3, v
∗

3, w
∗

3) with α(u∗3, v
∗

3, w
∗

3) < bl. Obviously, (u∗2, v
∗

2, w
∗

2) and (u∗3, v
∗

3, w
∗

3)

are different from (ui, vi, wi), i = 1, 2, . . . , 2l − 1. Therefore, the BVP(1.1)–(1.2) has

at least 2l+ 1 positive solutions in P al+1
, which shows that this conclusion also holds

for k = l + 1.

4. EXAMPLE

Consider the system of differential equations,

y′′1(t) + f1(t, y1(t), y2(t), y3(t)) = 0, t ∈ [0, 1],

y′′′2 (t) + f2(t, y1(t), y2(t), y3(t)) = 0, t ∈ [0, 1],

y′′′′3 (t) + f3(t, y1(t), y2(t), y3(t)) = 0, t ∈ [0, 1],

subject to boundary conditions,

y1(0) = 0, y′1(1) = 0,

y2(0) = 0, y′2(0) = 0, y′2(1) = 0,

y3(0) = 0, y′3(0) = 0, y′′3(0) = 0, y′′3(1) = 0,

where

f1(t, y1, y2, y3) =

{

e(y1+y2+y3)

100
+ (y1+y2+y3)2

75
+ 1

2
, 0 ≤ y1 + y2 + y3 ≤ 15,

e(y1+y2+y3)

101
+ 7

2
, y1 + y2 + y3 ≥ 15,

f2(t, y1, y2, y3) =

{

e(y1+y2+y3)

101
+ 2(y1+y2+y3)2

87
+ 1

3
, 0 ≤ y1 + y2 + y3 ≤ 15,

e(y1+y2+y3)

101
+ 479

87
, y1 + y2 + y3 ≥ 15,

f3(t, y1, y2, y3) =

{

e(y1+y2+y3)

99
+ 3(y1+y2+y3)2

95
+ 1

5
, 0 ≤ y1 + y2 + y3 ≤ 15,

e(y1+y2+y3)

99
+ 694

95
, y1 + y2 + y3 ≥ 15.
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The Green’s functions G1(t, s), G2(t, s) and G3(t, s) are given by

G1(t, s) =

{

t, t ≤ s,

s, s ≤ t,

G2(t, s) =

{

t2(1−s)
2!

, t ≤ s,
t2(1−s)

2!
− (t−s)2

2!
, s ≤ t,

G3(t, s) =

{

t3(1−s)
3!

, t ≤ s,
t3(1−s)

3!
− (t−s)3

3!
, s ≤ t.

Clearly, the Green’s function Gi(t, s), i=1,2,3 is positive. By direct calculations, we

obtain η = 0.015625, L = 0.04167 and M = 0.5 . Clearly, fi are continuous and

increasing on [0,∞), for i = 1, 2, 3. If we choose a′ = 1.01, b′ = 15 and c′ = 50000,

then 0 < a′ < b′ < b′

η
≤ c′ and fi satisfies

(i) fi(t, y1, y2, y3) < 0.67333 = a′

3M
, t ∈ [0, 1] and y1 + y2 + y3 ∈ [0.01578125, 1.01],

(ii) fi(t, y1, y2, y3) > 7679.385649 = b′

3ηL
, t ∈ [1

4
, 3

4
] and y1 + y2 + y3 ∈ [15, 960],

(iii) fi(t, y1, y2, y3) < 33333.333 = c′

3M
, t ∈ [0, 1] and y1 + y2 + y3 ∈ [0, 50000],

for i = 1, 2, 3. Then all the conditions of Theorem 3.2 are satisfied. Thus, by The-

orem 3.2, the BVP has at least three positive solutions (u1, u2, u3), (v1, v2, v3) and

(w1, w2, w3) satisfying β(u1, u2, u3) < 1.01, 15 < α(v1, v2, v3) and 1.01 < β(w1, w2, w3)

with α(w1, w2, w3) < 15.
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