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ABSTRACT. In this paper we develop the monotone method for nonlinear multi-order 2-systems

of Riemann-Liouville fractional differential equations. That is, a hybrid system of nonlinear equa-

tions of orders q1 and q2 where 0 < q1, q2 < 1. In the development of this method we recall any

needed existence results along with any necessary changes; including results from needed linear the-

ory. Further we prove a comparison result paramount for the discussion of fractional multi-order

inequalities that utilizes lower and upper solutions of the system. The monotone method is then

developed via the construction of sequences of linear systems based on the upper and lower solutions,

and are used to approximate the solution of the original nonlinear multi-order system.
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1. INTRODUCTION

Fractional differential equations have various applications in widespread fields

of science, such as in engineering [4], chemistry [5, 11, 12], physics [1, 2, 6], and

others [7, 8]. In the majority of the literature existence results for Riemann-Liouville

fractional differential equations are proven by a fixed point method. Initially we

will recall existence by lower and upper solution method, which will be useful to

developing our main results. Despite there being a number of existence theorems

for nonlinear fractional differential equations, much as in the integer order case, this

does not necessarily imply that calculating a solution explicitly will be routine, or

even possible. Therefore, it may be necessary to employ an iterative technique to

numerically approximate a needed solution. In this paper we construct such a method.

Specifically, we construct a technique to approximate solutions to the nonlinear

Riemann-Liouville (R-L) fractional differential multi-order 2-system. A multi-order

system is of the type where the equation in each component is of unique order. That
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is, a fractional system of the type

Dq1x1 = f1(t, x1, x2)

Dq2x2 = f2(t, x1, x2).

This is a generalization of normal R-L systems and yields a type of hybrid system of a

fractional type. We note that various complications arise from systems of this type as

many known properties used in the study of fractional differential equations require

modification, but at the same time multi-order systems present far more possibilities

for applications. For example, consider allowing each species in a population model

to have their own order of derivative. Though we will not consider any specific

applications in this study, we hope this will add to the groundwork of future studies.

The iterative technique we construct will be a generalization of the monotone

method for multi-order R-L 2-systems of order q1, q2, where 0 < q1, q2 < 1. The

monotone method, in broad terms, is a technique in which sequences are constructed

from the unique solutions of linear differential equations, and initially based off of

lower and upper solutions of the original nonlinear equation. These sequences con-

verge uniformly and monotonically, from above and below, to maximal and minimal

solutions of the nonlinear equation. If the nonlinear DE considered has a unique

solution then both sequences will converge uniformly to that unique solution. The

advantage of the monotone method is that it allows us to approximate solutions to

nonlinear DEs using linear DEs; further using upper and lower solutions guarantee

the interval of existence. For more information on the monotone method for ordinary

DEs see [9].

There are notable complications that arise when developing the monotone method

for multi-order systems. First of all, as seen in previous work involving the R-L case

in these methods, the sequences we construct, {vn}, {wn} do not converge uniformly

to extremal solutions, but the weighted sequences {t1−qivn,i}, {t1−qiwn,i} converge

uniformly to t1−qivi and t1−qiwi respectively, where i ∈ {1, 2} and v, w are maximal

and minimal solutions of the original equation. Another complication unique to multi-

order systems is that various properties do not carry over simply. For example, a well

known result for the R-L derivative is that the fractional derivative of the weighted

Mittag-Leffer function, which we define below in Section 2, is itself. That is

Dq
t t

q−1Eq,q(t
q) = tq−1Eq,q(t

q).

This property is dependent on the order of q used, and therefore the weighted Mittag-

Leffler function of order q1 will not have this property with the derivative of order q2.

This issue is present in the proof of Theorem 2.8 especially and will be detailed there.

For our main method we consider the case where the nonlinear function f is

quasimonotone nondecreasing in x, and briefly discuss the case where f has mixed
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quasimonotone properties. We note that the monotone method has been established

for the standard nonlinear Riemann-Liouville fractional differential N -systems of or-

der q in [3], and that this study acts as a generalization of that work for N = 2. We

hope to extend this method to the more general multi-order N -system case in the

near future.

2. PRELIMINARY RESULTS

In this section, we will first consider basic results regarding scalar Riemann-

Liouville differential equations of order q, 0 < q < 1. We will recall basic definitions

and results in this case for simplicity, and we note that many of these results carry over

naturally to the multi-order case. Then we will consider existence and comparison

results for multi-order systems of order 0 < q1, q2 < 1 which will be used in our

main result. In the next section, we will apply these preliminary results to develop

the monotone method for these multi-order R-L systems. Note, for simplicity we

only consider results on the interval J = (0, T ], where T > 0. Further, we will let

J0 = [0, T ], that is J0 = J̄ .

Definition 2.1. Let p = 1 − q, a function φ(t) ∈ C(J, R) is a Cp function if tpφ(t) ∈

C(J0, R). The set of Cp functions is denoted Cp(J, R). Further, given a function

φ(t) ∈ Cp(J, R) we call the function tpφ(t) the continuous extension of φ(t).

Now we define the R-L integral and derivative of order q on the interval J .

Definition 2.2. Let φ ∈ Cp(J, R), then Dq
t φ(t) is the q-th R-L derivative of φ with

respect to t ∈ J defined as

Dq
t φ(t) =

1

Γ(1 − q)

d

dt

∫ t

0

(t − s)−qφ(s)ds,

and Iq
t φ(t) is the q-th R-L integral of φ with respect to t ∈ J defined as

Iq
t φ(t) =

1

Γ(q)

∫ t

0

(t − s)q−1φ(s)ds.

Note that in cases where the initial value may be different or ambiguous, we

will write out the definition explicitly. The next definition is related to the solution

of linear R-L fractional differential equations and is also of great importance in the

study of the R-L derivative.

Definition 2.3. The Mittag-Leffler function with parameters α, β ∈ R, denoted Eα,β,

is defined as

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
,

which is entire for α, β > 0.
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The next result gives us that the q-th R-L integral of a Cp continuous function

is also a Cp continuous function. This result will give us that the solutions of R-L

differential equations are also Cp continuous.

Lemma 2.4. Let f ∈ Cp(J, R), then Iq
t f(t) ∈ Cp(J, R), i.e. the q-th integral of a Cp

continuous function is Cp continuous.

Note the proof of this lemma for q ∈ R
+ can be found in [3]. Now we consider

results for the nonhomogeneous linear R-L differential equation,

Dq
t x(t) = λx(t) + z(t), (2.1)

with initial condition

tpx(t)
∣∣
t=0

= x0/Γ(q),

where x0 and λ are constants, and z ∈ Cp(J, R), which has unique solution

x(t) = x0tq−1Eq,q(λtq) +

∫ t

0

(t − s)q−1Eq,q(λ(t − s)q)z(s) ds.

Next, we recall a result we will utilize extensively in our proceeding comparison

and existence results, and likewise in the construction of the monotone method. We

note that this result is similar to the well known comparison result found in literature,

as in [10], but we do not require the function to be Hölder continuous of order λ > q.

Lemma 2.5. Let m ∈ Cp(J, R) be such that for some t1 ∈ J we have m(t1) = 0 and

m(t) ≤ 0 for t ∈ (0, t1]. Then

Dq
t m(t)

∣∣
t=t1

≥ 0.

The proof of this lemma can be found in [3], along with further discussion as to

why and how we weaken the Hölder continuous requirement of this known comparison

result. We use this lemma in the proof of the later main comparison result, which

will be critical in the construction of the monotone method.

Now, we will turn our attention to results for the nonlinear R-L fractional multi-

order systems, and in doing so we must discuss any changes. First, we will consider

systems of orders q1 and q2, 0 ≤ q1, q2 < 1. For simplicity we will let q = (q1, q2), and

when we write inequalities x ≤ y, we mean it is true for both components. Further,

from this point on, we will use the subscript i which we will always assume is in

{1, 2}. For defining Cp continuity for multi-order systems we define pi = 1 − qi and

for simplicity of notation we will define the function xp such that xpi
(t) = tpixi(t) for

t ∈ J0. We also note that at times it will be convenient to emphasize the product of

tp, therefore we will define tpx(t) = xp(t) for t ∈ J0. Now, we define the set of Cp

continuous functions as

Cp(J, R2) = {x ∈ C(J, R2) | xp ∈ C(J0, R
2)}.
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For the rest of our results we will be considering the nonlinear R-L fractional multi-

order system

Dqixi = fi(t, x) (2.2)

xpi
(0) = x0

i /Γ(qi)

where f ∈ C(J0 × R
2, R2), and x0 is a constant. Note that just as in the scalar case,

a solution x ∈ Cp(J, R2) of (2.2) also satisfies the equivalent R-L integral equation

xi(t) =
x0

i

Γ(qi)
tqi−1 +

1

Γ(qi)

∫ t

0

(t − s)qi−1fi(s, x(s))ds. (2.3)

Thus, if f ∈ C(J0 × R
2, R2) then (2.2) is equivalent to (2.3). See [7, 10] for details.

Now we will recall a Peano type existence theorem for equation (2.2).

Theorem 2.6. Suppose f ∈ C(R0, R
2) and |fi(t, x)| ≤ Mi on R0, where

R0 = {(t, x) : |tpx(t) − x0| ≤ η, t ∈ J0}

Then the solution of (2.2) exists on J .

This result is presented for the scalar case in [10], and in [3] it was proven that

the solution can be extended to all of J . We note that for multi-order systems it is

proved in much the same way. Next we will consider the main Comparison Theorem

for multi-order 2-systems, which will be utilized extensively in our main results. For

this result we will require f to satisfy the following definition.

Definition 2.7. A function f(t, x1, x2) is said to be quasimonotone nondecreasing in

x if f1 is nondecreasing in x2 and f2 is nondecreasing in x1. That is, if x ≤ y on J ,

then

f1(t, x1, x2) ≤ f1(t, x1, y2),

f2(t, x1, x2) ≤ f2(t, y1, x2).

For our comparison result below we will utilize that the Beta function

B(x, y) =

∫ 1

0

sx−1(1 − s)y−1ds,

is decreasing in x and y for x, y > 0. To prove this suppose x1 ≥ x2 > 0; then we

have sx1−1 ≤ sx2−1 for s ∈ (0, 1). Therefore

B(x1, y) ≤

∫ 1

0

sx2−1(1 − s)y−1ds = B(x2, y).

Implying B(x, y) is decreasing in x for x > 0, and by symmetry of the Beta function

we have that B is also decreasing in y for y > 0.
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Theorem 2.8. Let v, w ∈ Cp be lower and upper solutions of the nonlinear multiorder

2-system, i.e.

Dqivi ≤ fi(t, v), Γ(qi)vpi
(0) = v0

i ≤ x0
i (2.4)

Dqiwi ≥ fi(t, w), Γ(qi)wpi
(0) = w0

i ≥ x0
i .

If f is quasimonotone nondecreasing and satisfies the following Lipschitz condition

for i = 1, 2,

fi(t, x) − fi(t, y) ≤ Li

[
(x1 − y1) + (x2 − y2)

]
, (2.5)

for x ≥ y, then v(t) ≤ w(t) on J provided v0 ≤ w0.

Proof. First we will consider the case when one of the inequalities in (2.4) is strict.

Without loss of generality suppose that

Dqiwi > fi(t, w), and w0
i > x0

i ,

then we claim that v < w on J . To prove this, suppose that the conclusion is false,

e.g. suppose the set

ω = {t ∈ J : w1(t) ≤ v1(t)} ∪ {t ∈ J : w2(t) ≤ v2(t)}

is nonempty. Let τ = inf ω > 0. Now there exists an i such that vi(τ) = wi(τ);

without loss of generality suppose i = 1. Because v0 < w0, by the continuity of v and

w we have that v1(t) − w1(t) < 0 on (0, τ), implying that v1(t) − w1(t) ≤ 0 on (0, τ ]

and further v2(t) ≤ w2(t) for t ∈ (0, τ ]. Therefore, by Lemma 2.5 we have that

Dq1

t [v1(τ) − w1(τ)] ≥ 0.

Now utilizing this and the quasimonotonicity of f we have

f1(τ, v(τ)) ≥ Dq1

t v1(τ) ≥ Dq1

t w1(τ)

> f1(τ, w1(τ), w2(τ))

= f1(τ, v1(τ), w2(τ)) ≥ f1(τ, v(τ)),

which is a contradiction. Therefore, the result is true if one of the inequalities is

strict. We will use this to prove the main result. To do so, consider the function w̃

defined as

w̃i(t) = wi(t) + ε

(
tqi−1Eqi,qi

(2Ltqi) +
∞∑

k=1

∞∑

m=1

(2L)k+m−1 tkq1+mq2−1

Γ(kq1 + mq2)

)
, (2.6)

for ε > 0 sufficiently small and where L = max{L1, L2}. For simplicity, let Z(t)

denote the series in (2.6). Further, as the weighted Mittag-Leffler function defined in

terms of powers q1 and q2 will be required throughout the remainder of the proof, for

simplicity define the function E with a single whole number parameter as

Ei(t) = tqi−1Eqi,qi
(2Ltqi).
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Therefore w̃i(t) = wi(t)+ε[Ei(t)+Z(t)]. Now we will show that the series Z converges

uniformly. To do so, note that there exists a K > 1 such that for all k > K,

kq1 − 1 > 0. So, for any k > K and m > 1,

(2L)k+m−1 T kq1+mq2−1

Γ(kq1 + mq2)
= B(kq1, mq2)

(2L)k+m−1 tkq1+mq2−1

Γ(kq1)Γ(mq2)

≤ B(q1, q2)
(2L)k+m−1 T kq1+mq2−1

Γ(kq1)Γ(mq2)
,

which is obtained by the monotonicity of B. Now, note that the series

B(q1, q2)

∞∑

k=K

∞∑

m=1

(2L)k+m−1 T kq1+mq2−1

Γ(kq1)Γ(mq2)

=
B(q1, q2)

2L

∞∑

k=K

(2L)kT kq1

Γ(kq1)

∞∑

m=1

(2L)mTmq2−1

Γ(mq2)

≤ 2L B(q1, q2)T
q1Eq1,q1

(2LT q1)E2(T ),

which converges. So by the Weirstrass M-Test,

∞∑

k=K

∞∑

m=1

(2L)k+m−1 tkq1+mq2−1

Γ(kq1 + mq2)

converges uniformly on J0. Therefore, Z(t) is made up of a uniformly convergent

series along with a finite number (K − 1) of weakly singular terms. With this result

we may compute the q1-th derivative of Z(t) term by term, doing so we obtain

Dq1

t Z(t) =
∞∑

k=1

∞∑

m=1

(2L)k+m−1 t(k−1)q1+mq2−1

Γ((k − 1)q1 + mq2)

=
∞∑

m=1

(2L)m tmq2−1

Γ(mq2)
+

∞∑

k=2

∞∑

m=1

(2L)k+m−1 t(k−1)q1+mq2−1

Γ((k − 1)q1 + mq2)

= 2L
(
E2(t) + Z(t)

)
.

Similarly, we can show that

Dq2

t Z(t) = 2L
(
E1(t) + Z(t)

)
.

Using this result we note that

Dq1

t w̃1(t) = Dq1

t w1(t) + 2Lε
(
E1(t) + E2(t) + Z(t)

)

≥ f1(t, w̃) − L1[(w̃1 − w1) + (w̃2 − w2)] + 2Lε
(
E1(t) + E2(t) + Z(t)

)

= f1(t, w̃) − L1ε
(
E1(t) + E2(t) + 2Z(t)

)
+ 2Lε

(
E1(t) + E2(t) + Z(t)

)

≥ f1(t, w̃) + Lε
(
E1(t) + E2(t)

)

> f1(t, w̃).

Similarly, we can show that Dq2

t w̃2(t) > f2(t, w̃).
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Now we wish to show that w̃0 > x0; to do so we note

tp1w̃1(t) = tp1w1(t) + εEq1,q1
(2Ltq1) + ε

∞∑

k=1

∞∑

m=1

(2L)k+m−1 t(k−1)q1+mq2

Γ(kq1 + mq2)
,

implying that

tp1w̃1(t)
∣∣
t=0

= w0
1/Γ(q1) + ε/Γ(q1) > x0

1/Γ(q1).

Therefore w̃0
1 > x0

1, and similarly we can show that w̃0
2 > x0

2. Now, from what was

shown previously with strict inequalities we have that v < w̃ on J , and letting ε → 0

we get v ≤ w on J .

We note that if we were to generalize the series Z(t) for an N -dimensional space,

we could do so in the following way. Let

ZN(t) =

∞∑

k1=1

∞∑

k2=1

∞∑

k3=1

· · ·

∞∑

kN=1

(2L)1·k−N+1 tq·k−1

Γ(q · k)
,

where 1 is the unit vector, k = (k1, k2, k3, . . . , kN), and q = (q1, q2, q3, . . . , qN). With

this generalization, the function we used in the proof of Theorem 2.8 would be Z2

and importantly,

Z1(t) = 2Ltq1−1Eq1,q1
(2Ltq1),

implying that ZN is a generalization of the Cp weighted Mittag-Leffler function for

multi-order N -systems. This function will be paramount when we turn our attention

to N -systems at a later date.

Now, if we know of the existence of lower and upper solutions v and w such that

v ≤ w, we can prove the existence of a solution in the set

Ω = {(t, y) : v(t) ≤ y ≤ w(t), t ∈ J}.

We consider this result in the following theorem.

Theorem 2.9. Let v, w ∈ Cp(J, R2) be lower and upper solutions of (2.2) such that

v(t) ≤ w(t) on J and let f ∈ C(Ω, R), where Ω is defined as above. Then there exists

a solution x ∈ Cp(J, R2) of (2.2) such that v(t) ≤ x(t) ≤ w(t) on J .

This theorem is proved in the same way as seen in [3], with only minor additions

to apply it to multi-order 2-systems.

3. MONOTONE METHOD

In this section we will develop the monotone iterative technique for nonlinear

multi-order systems of the type (2.2).
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Theorem 3.1. Let f ∈ C(J0 × R
2, R2) be quasimonotone nondecreasing and let

v0, w0 ∈ Cp(J, R) be lower and upper solutions of system (2.2) such that v0 ≤ w0 on

J. Further suppose f satisfies a one-sided Lipschitz condition such that f1 is Lipschitz

in x1 and f2 is Lipschitz in x2, that is

f1(t, z1, x2) − f1(t, y1, x2) ≥ −M1(z1 − y1),

f2(t, x1, z2) − f2(t, x1, y2) ≥ −M2(z2 − y2),

whenever v0 ≤ x ≤ w0, and v0 ≤ y ≤ z ≤ w0. Then there exist monotone sequences

{vn} and {wn} such that

tpvn → tpv, tpwn → tpw,

uniformly and monotonically on J0, where v and w are minimal and maximal solutions

of (2.2) on J provided v0
0 ≤ x0 ≤ w0

0.

Proof. To begin we note that the sequences we wish to construct are defined as the

unique solutions of the following linear multi-order fractional systems

Dqivn+1i = fi(t, vn) − Mi(vn+1i − vni) (3.1)

Dqiwn+1i = fi(t, wn) − Mi(wn+1i − wni),

where v0 and w0 are defined in our hypothesis. We would like to show that these

sequences are monotone and that the weighted sequences converge uniformly. To do

so we consider the more general multi-order system

Dqiyi = fi(t, ξ) − Mi(yi − ξi) (3.2)

yp(0) = x0,

with v0 ≤ ξ(t) ≤ w0 on J . We note that since system (3.2) is linear that a unique so-

lution exists in Cp(J, R) for every particular choice of ξ. Therefore, we may construct

a mapping F , such that y = F [ξ] will output the unique solution of (3.2). With this

mapping, we can define our sequences as

vn+1 = F [vn], wn+1 = F [wn].

We claim that F is monotone nondecreasing. To prove this, suppose that v0 ≤

ξ ≤ η ≤ w0 on J , and let y = F [ξ] and z = F [η]. Now, using the quasimonotone

property of f , along with the Lipschitz condition from our hypothesis we have that

Dq1z1 ≥ f1(t, η1, ξ2) − M1(z1 − η1)

= f1(t, η1, ξ2) + f1(t, ξ1, ξ2) − f1(t, ξ1, ξ2) − M1(z1 − η1)

≥ f1(t, ξ1, ξ2) − M1(z1 − ξ1).
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Similarly, we can show that Dq2z2 ≥ f2(t, ξ)−M2(z2 − ξ2). Now, since (3.2) is linear,

it is Lipschitz of the form (2.5), thus y ≤ z on J by Theorem 2.8. This gives us that

F [η] ≤ F [ξ] as we claimed.

From here we can show that the sequences in (3.1) are monotone. We will begin

by showing that v0 ≤ F [v0] and w0 ≥ F [w0], to do so, let v1 = F [v0], and then note

that

Dqiv1i = fi(t, v0) − Mi(v1i − v0i),

and because

Dqiv0i ≤ fi(t, v0) − Mi(v0i − v0i)

we may apply Theorem 2.8 to show that v0 ≤ v1 on J . Similarly, w1 ≤ w0 on J .

Next, by the monotonicity property of F we have that

v1 = F [v0] ≤ F [w0] = w1.

Therefore, v0 ≤ v1 ≤ w1 ≤ w0 on J . Using this as our inductive basis step suppose

this is true for up to some k ≥ 1, that is, vk−1 ≤ vk ≤ wk ≤ wk−1. Now, letting

vk+1 = F [vk] and wk+1 = F [wk] and using the monotone property of F along with

our induction hypothesis we have that

vk+1 = F [vk] ≥ F [vk−1] = vk,

and similarly we have that wk+1 ≤ wk on J . Finally, we can also show that on J

vk+1 = F [vk] ≤ F [wk] = wk+1.

So, by induction we have that v0 ≤ vn−1 ≤ vn ≤ wn ≤ wn−1 ≤ w0 for all n ≥ 1 on J .

Now we wish to show that the weighted sequences {tpvn} and {tpwn} converge

uniformly on J0. To so we will apply the Arzelá-Ascoli Theorem; therefore we must

show these sequences are uniformly bounded and equicontinuous. For any n ≥ 0 we

submit that

|tpivni| ≤ tpi
(
|vni − v0i| + |v0i|

)
≤ tpi

(
|w0i − v0i| + |v0i|

)
,

implying that the sequence {tpvn} is uniformly bounded. Noting that we can show

a similar result for {tpwn} we conclude that both weighted sequences are uniformly

bounded. Now using this we can show that our weighted sequences are equicontinu-

ous. First, for simplicity let

f̃i(t, vn) = fi(t, vn−1) − Mi(vni − vn−1i),

for all n ≥ 1, and noting that f̃ is Cp continuous and that {tpvn} is uniformly bounded,

we can choose a N ≥ 0 such that

tp1 f̃1(t, vn) ≤ N1
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on J0 for any n ≥ 1. Now, choose t, τ such that 0 < t ≤ τ ≤ T . In the following

proof of equicontinuity we use the fact that

τp1(τ − s)q1−1 − tp1(t − s)q1−1 ≤ 0

for 0 < s < t. To show why this is true, consider the function φ(t) = tp1(t− s)q1−1 =

tp1(t − s)−p1 and note that

d
dt

φ(t) = p1t
p1−1(t − s)−p1 − p1t

p1(t − s)−p1−1

= −tp1−1(t − s)−p1−1p1s ≤ 0.

This implies that φ is nonincreasing, therefore φ(τ) − φ(t) ≤ 0. Now consider,

|τp1vn1(τ) − tp1vn1(t)| ≤
1

Γ(q1)

∫ t

0

|τp1(τ − s)q1−1 − tp1(t − s)q1−1||f̃1(t, vn)|ds

+
τp1

Γ(q1)

∫ τ

t

(τ − s)q1−1|f̃1(t, vn)|ds

≤
N1

Γ(q1)

∫ t

0

[
tp1(t − s)q1−1 − τp1(τ − s)q1−1

]
sq1−1ds

+
N1τ

p1

Γ(q1)

∫ τ

t

(τ − s)q1−1sq1−1ds

≤
N1t

p1

Γ(q1)

∫ t

0

(t − s)q1−1sq1−1ds −
N1τ

p1

Γ(q1)

∫ τ

0

(τ − s)q1−1sq1−1ds

+
2N1τ

p1

Γ(q1)tp1

∫ τ

t

(τ − s)q1−1ds

=
N1Γ(q1)

Γ(q2)
(tq1 − τ q1) +

2N1τ
p1

Γ(q1)tp1

1

q1
(τ − t)q1

≤
2N1τ

p1

Γ(q1 + 1)tp1

(τ − t)q1 .

In the case that t = 0, we note that

|τp1vn1(τ) − x0/Γ(q1)| ≤
N1

Γ(q1)

∫ τ

0

(τ − s)q1−1ds =
N1

Γ(q1 + 1)
τ q1.

Now, we can choose K1 ≥ 0 such that

K1 ≥
2N1

Γ(q1+1)
T p1

tp1
≥ N1

Γ(q1+1)
,

which we note is not dependent on n. Therefore, we have that

|τp1vn1(τ) − tp1vn1(t)| ≤ K1|τ − t|q1,

for 0 ≤ t ≤ τ ≤ T and for all n ≥ 1. Similarly, we can show that

|τp2vn2(τ) − tp2vn2(t)| ≤ K2|τ − t|q2,

for all n ≥ 1. With this, it is now routine to show that {tpvn} is equicontinuous.

Likewise, {tpwn} is also equicontinuous. Therefore, by the Arzelá-Ascoli Theorem

there exist subsequences of both {tpvn} and {tpwn} that converge uniformly on J0, and
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due to their monotonic nature the full sequences themselves also converge uniformly

on J0. Given this, suppose that tpvn → tpv and tpwn → tpw on J0; we wish to show

that v and w are extremal solutions of (2.2) on J . To do so, first note that vn → v

point wise on J , and due to the nature of f̃ we have that

tpivni =
x0

i

Γ(qi)
+

tpi

Γ(qi)

∫ t

0

(t − s)qi−1fi(s, vn−1) − Mi(vni(s) − vn−1i(s))ds,

which converges uniformly on J0 to

tpivi =
x0

i

Γ(qi)
+

tpi

Γ(qi)

∫ t

0

(t − s)qi−1fi(s, v)ds,

implying that

vi =
x0

i

Γ(qi)
tqi−1 +

1

Γ(qi)

∫ t

0

(t − s)qi−1fi(s, v)ds

on J , and thus that v is a solution to (2.2). By a similar argument w is also a

solution to (2.2). We will use induction to show that v and w are minimal and

maximal solutions. First, let x be a solution to (2.2), such that v0
0 ≤ x0 ≤ w0

0. By

Theorem 2.9 we know such a solution exists such that v0 ≤ x ≤ w0 on J . Given this,

and using the same steps we used to prove the monotonicity of F we have that

Dqiv1i ≤ fi(t, x) − Mi(v1i − xi) and Dqiw1i ≥ fi(t, x) − Mi(w1i − xi),

implying that v1 ≤ x ≤ w1 on J by Theorem 2.8. Using this as a basis step, we may

use the same steps again to inductively show that vn ≤ x ≤ wn on J for all n ≥ 0,

thus implying that v ≤ x ≤ w on J . This gives us that v and w are extremal solutions

and finishes the proof.

We note that if f satisfies a full two-sided Lipshitz condition, then v = x = w

which will be the unique solution of (2.2).

Now, we can extend the result of Theorem 3.1 to a more general result. For the

following we will assume that f(t, x1, x2) satisfies a mixed quasimonotone property,

which we define here.

Definition 3.2. A function f(t, x1, x2) is said to possess a mixed quasimonotone

property if f1 is nonincreasing in x2 and f2 is nondecreasing in x1. That is, if x ≤ y

on J , then

f1(t, x1, x2) ≤ f1(t, x1, y2),

f2(t, x1, x2) ≥ f2(t, y1, x2).

With this generalization we can also consider a generalization of our lower and

upper solutions to coupled lower and upper quasisolutions.
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Definition 3.3. Let v, w ∈ Cp(J, R2); v and w are coupled lower and upper quasiso-

lutions of (2.2) if

Dq1v1 ≤ f1(t, v1, w2), Dq1

t w1 ≥ f1(t, w1, v2),

Dq2v2 ≤ f2(t, v1, v2), Dq2

t w2 ≥ f2(t, w1, w2),

Γ(qi)vpi
(0) = v0

i ≤ x0
i , Γ(qi)wpi

(0) = w0
i ≥ x0

i .

On the other hand, v and w are coupled quasisolutions of (2.2) if

Dq1v1 = f1(t, v1, w2), Dq1

t w1 = f1(t, w1, v2),

Dq2v2 = f2(t, v1, v2), Dq2

t w2 = f2(t, w1, w2),

vpi
(0) = x0

i /Γ(qi), wpi
(0) = x0

i /Γ(qi).

Further, one can define coupled extremal quasisolutions of (2.2) in the usual way.

Now, we will generalize the result of Theorem 3.1 to when f satisfies a mixed

quasimonotone property. This case requires the use of coupled lower and upper

quasisolutions and the construction will involve coupled quasisolutions.

Theorem 3.4. Let f ∈ C(J0 × R
2, R2) possess the mixed quasimonotone property

mentioned above. Let v0, w0 ∈ Cp(J, R) be coupled lower and upper quasisolutions

of system (2.2) such that v0 ≤ w0 on J. Suppose further that f satisfies the same

Lipshitz condition of Theorem 3.1. Then there exist monotone sequences {vn} and

{wn} such that

tpvn → tpv, tpwn → tpw,

uniformly and monotonically on J0, where v and w are coupled minimal and maximal

quasisolutions of (2.2) on J provided v0
0 ≤ x0 ≤ w0

0.

Proof. The proof of this case follows the same process as Theorem 3.1, with the

distinction of managing coupled quasisolutions. For example, the sequences we will

construct are the unique solutions of linear systems of the form

Dq1y1 = f1(t, η1, ξ2) − M1(y1 − η1), (3.3)

Dq2y2 = f2(t, η1, η2) − M2(y2 − η2),

ypi
(0) = x0

i /Γ(qi),

for v0 ≤ ξ, η ≤ w0 on J . Similarly, for each ξ and η we have a unique solution y;

therefore, as done previously, we define the mapping A to output this unique solution

for each ξ and η. Therefore, A[η, ξ] = y. Now, we propose that A is monotone

nondecreasing in its first variable and monotone nonincreasing in its second variable.



366 Z. DENTON

To prove this, suppose that v0 ≤ ξ ≤ η ≤ w0 and v0 ≤ µ ≤ w0, and let y = A[ξ, µ]

and x = A[η, µ]. Then, using the Lipschitz condition of f we have

Dq1x1 = f1(t, η1, µ2) − M1(x1 − η1) + f1(t, ξ1, µ2) − f1(t, ξ1, µ2)

≥ f1(t, ξ1, µ2) − M1(x1 − ξ1).

Further, using this process again along with quasimonotonic property of f we have

that

Dq2x2 ≥ f2(t, η1, η2) − M2(x2 − ξ2).

Therefore, by Theorem 2.8 we have that x ≥ y on J , implying that A is monotonic

nondecreasing in its first variable, since A[ξ, µ] ≤ A[η, µ]. Similarly, we can show that

A[µ, ξ] ≥ A[µ, η], hence proving our proposition. From here we define the sequences

{vn} and {wn} as

vn+1 = A[vn, wn], and wn+1 = A[wn, vn].

The proof from here follows in the same manner as Theorem 3.1.

We note that we can develop similar results if the mixed qasuimonotone property

of f is reversed, that is if f1 is nondecreasing in x2 and f2 is nonincreasing in x1. The

construction and proof of this case will follow in a similar fashion as Theorem 3.4.

In the future, we wish to turn our attention to multi-order systems of finite order

N . Further, the construction of numerical applications of this type is quite unwieldy,

but is something we would like to consider along with N -systems. From here, it

would be compelling to study various physical models that would lend themselves to

multi-order fractional systems. Our hope is that this initial study may open the doors

to further results in multi-order systems beyond the use of the Caputo derivative.
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