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ABSTRACT. In this paper, we will consider the higher-order functional dynamic equations with

mixed nonlinearities of the form

{

rn−1(t) φαn−1

[

(rn−2(t)(· · · (r1(t)φα1
[x∆(t)])∆ · · · )∆)∆

]}∆

+

N
∑

j=0

pj(t)φγj
(xσ(gj(t))) = 0,

on an above-unbounded time scale T, where n ≥ 2, and φβ(u) := |u|
β−1

u, β > 0. The funtions gj :

T → T are rd-continuous functions such that limt→∞ gj(t) = ∞, j = 0, 1, . . . , N . The results extend

and improve some known results in the literature on higher order nonlinear dynamic equations.

AMS (MOS) Subject Classification. 34K11, 39A10, 39A99.

1. INTRODUCTION

In this paper we consider the oscillation of solutions of higher order dynamic

equations with mixed nonlinearities of the form
{

rn−1(t)φαn−1

[

(rn−2(t)(· · · (r1(t)φα1 [x
∆(t)])∆ · · · )∆)∆

]}∆

+
N

∑

j=0

pj(t)φγj
(xσ(gj(t))) = 0, (1.1)
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on an arbitrary time scale T, where

(i) n ≥ 2 and φβ(u) := |u|β−1 u, β > 0;

(ii) ri ∈ Crd ([t0,∞)
T
, (0,∞)) for i = 1, 2, . . . , n − 1;

(iii) αi > 0, i = 1, 2, . . . , n − 1 and γj > 0, j = 0, 1, . . . , N are constants;

(iv) pj ∈ Crd ([t0,∞)
T
, [0,∞)), j = 0, 1, . . . , N such that not all of the pj (t)’s vanish

in a neighborhood of infinity;

(v) gj : T → T are rd-continuous functions such that limt→∞ gj(t) = ∞ for j =

0, 1, . . . , N , and τ(t) := inf{t, g0(t), . . . , gN(t)} is increasing function on [t0,∞)T.

Throughout this paper, we let

x[i] := ri φαi

[

(

x[i−1]
)∆

]

, i = 1, 2, . . . , n with rn = 1, αn = 1 and x[0] = x.

Recall that the knowledge and understanding of time scales and time scale no-

tation is assumed. For an excellent introduction to the calculus on time scales, see

Bohner and Peterson [6, 7]. By a solution of Eq. (1.1) we mean a nontrivial real–

valued function x ∈ C1
rd[Tx,∞)T for some Tx ≥ t0 such that x[i] ∈ C1

rd[Tx,∞)T, i =

1, 2, . . . , n − 1 and x(t) satisfies Eq. (1.1) on [Tx,∞)T, where Crd is the space of

right-dense continuous functions.

In the last few years, there has been an increasing interest in the oscillation and

nonoscillation of solutions of various dynamic equations. A large number of papers

were devoted to second order linear and nonlinear dynamic equations on time scales.

For example, Agarwal, Bohner, and Saker [1] discussed the linear delay dynamic

equation

x∆∆(t) + p(t)x(g(t)) = 0;

Erbe, Peterson, and Saker [14], Saker [45], Agarwal, Regan, and Saker [2], and Hassan

[33] investigated the pair of half-linear dynamic equations

(r(t)(x∆(t))α1)∆ + p(t)xα1(t) = 0,

and

(r(t)(x∆(t))α1)∆ + p(t)xα1(σ(t)) = 0;

Erbe, Hassan, Peterson, and Saker [12] and [13] studied the half-linear delay dynamic

equation

(r(t)(x∆(t))α1)∆ + p(t)xα1(g(t)) = 0, (1.2)

with g(t) ≤ t and

r∆(t) ≥ 0 and

∫ ∞

t0

gα1(t)p(t)∆t = ∞; (1.3)

and Hassan [34] extended their results to the half-linear advanced dynamic equation

(1.2) with g(t) ≥ t.
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Erbe, Hassan, Peterson [20] considered nonlinear dynamic equations with mixed

nonlinearities of the form

(

r (t)
(

x∆ (t)
)α1

)∆
+

N
∑

j=0

pj (t) φγj
(x (gj (t))) = 0.

Erbe, Peterson, and Saker [16, 17] and Yu and Wang [49] also derived oscillation

criteria for the third order dynamic equations
(

r2(t)
(

r1(t)x
∆(t)

)∆
)∆

+ p(t)x(t) = 0,

(

r2(t)
[

(r1(t)x
∆(t))∆

]α2
)∆

+ p (t) xγ (t) = 0,

and
(

r2(t)
[

(r1(t)
(

x∆(t)
)α1

)∆
]α2

)∆
+ p (t) x (t) = 0;

their work was further extended by Hassan [32] and Erbe, Hassan, and Peterson [18]

to the equation with delay
(

r2(t)
[

(r1(t)x
∆(t))∆

]α2
)∆

+ p (t) xγ (g (t)) = 0;

also, Han, Li, Sun, and Zhang [31] discussed the third order delay dynamic equation
(

r2(t)
(

r1(t)x
∆(t)

)∆
)∆

+ p(t)x(g (t)) = 0,

where g(t) ≤ t and

r∆
1 (t) ≤ 0 and

∫ ∞

t0

g(t)p(t)∆t = ∞. (1.4)

Also, Erbe, Hassan and Peterson [21] and Elabbasy and Hassan [9] studied third order

nonlinear dynamic equation with mixed nonlinearities

(

r2(t)
[

(r1(t)
(

x∆(t)
)α1

)∆
]α2

)∆
+

N
∑

j=0

pj (t)φγj
(x (gj (t))) = 0,

where α1 and α2 are the ratios of positive odd integers.

Higher order dynamic equations have been studied by many authors. For in-

stance, Grace, Agarwal, and Zafer [26] established oscillation and comparison criteria

for the even order nonlinear dynamic equation

x∆2n

(t) + p (t) (xσ (t))γ = 0,

and Grace [29] developed oscillation criteria for the even order dynamic equation
[

r(t)
(

x∆n−1

(t)
)α]∆

+ p (t) (xσ (t))γ = 0,

where α and γ are the ratios of positive odd integers. Recently, Grace and Hassan

[28] establish oscillation criteria for more general higher order dynamic equation

x[n] (t) + p (t) φγ (xσ (g (t))) = 0.
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For more results on higher order dynamic equations, we refer the reader to the papers

[10, 23, 43, 26, 47, 40, 29, 22, 27].

The purpose of this paper is to establish the asymptotic and oscillatory behavior

of solutions of the nth order nonlinear dynamic equation (1.1) with mixed nonlinear-

ities and without assuming the conditions (1.3) and (1.4). The results in this paper

extend many results in the literature on the oscillation for second order, third order,

and higher order nonlinear dynamic equations.

2. MAIN RESULTS

Before stating our main results, we begin with some preliminary lemmas which

will play an important role in the proof of our main results.

The first one is cited from [28] and improves the well-known lemma due to Kig-

uradze.

Lemma 2.1. Assume that
∫ ∞

t0

r
−1/αi

i (s)∆s = ∞, i = 1, 2, . . . , n − 1. (2.1)

If Eq. (1.1) has an eventually positive solution x, then there exists an integer m ∈ [0, n]

with m + n odd such that

m ≥ 1 implies x[k] > 0 for k = 0, . . . , m − 1, (2.2)

eventually, and

m ≤ n implies (−1)m+k x[k] > 0 for k = m, . . . , n, (2.3)

eventually.

The following lemma improves [46, Lemma 1] and also see [37, 35, 44].

Lemma 2.2. Assume that

γj > γ := γ0, j = 1, 2, . . . , l; and γj < γ := γ0, j = l + 1, l + 2, . . . , N. (2.4)

Then, there exists an N-tuple (η1, η2, . . . , ηN) with ηj > 0 satisfying

N
∑

j=1

γjηj = γ and
N

∑

j=1

ηj = 1. (2.5)

Lemma 2.3 ([25]). Suppose that |x|∆ > 0 on [t0,∞)
T
, β > 0, and β 6= 1. Then

|x|∆

(|x|σ)
β
≤

(

|x|1−β
)∆

1 − β
≤

|x|∆

(|x|)β
on [t0,∞)

T
.
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We will use the following notations: For any t, s ∈ T, define α[h, k] := αh · · ·αk

for 1 ≤ h ≤ k ≤ n− 1 with α := α[1, n] and for an integer m ∈ {0, . . . , n − 1} , define

the functions R̂i(v, u), i = 0, . . . , m − 1; R̄i(v, u), i = 0, . . . , n − 1 and Pi(t), i =

0, . . . , n − 1, by the following recurrence formulas:

R̂i(v, u) :=







[

∫ v

u
R̂i−1(s, u) ∆s

/

rm−i(v)
]1/αm−i

, i = 1, . . . , m − 1,

r
−1/αm
m (v) , i = 0,

R̄i(v, u) :=

{

∫ v

u

[

R̄i−1(v, s)
/

rn−i(s)
]1/αn−i ∆s, i = 1, . . . , n − 1,

1, i = 0,

and

Pi(t) :=

{

[∫ ∞

t
Pi−1 (s)∆s

/

rn−i(t)
]1/αn−i i = 1, . . . , n − 1,

p (t) , i = 0,

where p(t) := p0 (t) +
∏N

j=1 [pj(t)/ ηj]
ηj and provided the improper integrals involved

are convergent.

Lemma 2.4. Assume Eq. (1.1) has an eventually positive solution x(t) and m is

given in Lemma 2.1 such that m ∈ {1, . . . , n − 1} and (2.2) and (2.3) hold for t ≥

t1 ∈ [t0,∞)T. Then the following hold for v ≥ u ≥ t1:

(a) For i = 0, . . . , m − 1

(

x[i](v)
)∆

≥ φ−1
α[i+1,m]

(

x[m] (v)
)

R̂m−i−1(v, u),

and

x[i](v) ≥ φ−1
α[i+1,m]

(

x[m] (v)
)

∫ v

u

R̂m−i−1(s, u) ∆s;

(b) for i = m, . . . , n − 1,

(−1)m+ix[i](u) ≥ φ−1
α[i+1,n]

(

x[n−1] (v)
)

R̄n−i−1(v, u).

Proof. (a) By using (2.2) and (2.3), we get for v ≥ u ≥ t1 ∈ [t0,∞)T,

(

x[m−1](v)
)∆

= φ−1
αm

(

x[m] (v)
)

r−1/αm

m (v) = φ−1
αm

(

x[m] (v)
)

R̂0(v, u).

Replacing v by s and integrating with respect to s from u to v, we get

x[m−1](v) = x[m−1](u) +

∫ v

u

φ−1
αm

(

x[m] (s)
)

R̂0(s, u) ∆s

≥ φ−1
αm

(

x[m] (v)
)

∫ v

u

R̂0(s, u) ∆s,

which yields

(

x[m−2](v)
)∆

≥ φ−1
α[m−1,m]

(

x[m] (v)
)

[
∫ v

u

R̂0(s, u) ∆s

/

rm−1(v)

]1/αm−1

= φ−1
α[m−1,m]

(

x[m] (v)
)

R̂1(v, u).
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Replacing v by s and integrating with respect to s from u to v, we get

x[m−2](v) ≥ x[m−2](u) +

∫ v

u

φ−1
α[m−1,m]

(

x[m] (s)
)

R̂1(s, u) ∆s

≥ φ−1
α[m−1,m]

(

x[m] (v)
)

∫ v

u

R̂1(s, u) ∆s,

which implies

(

x[m−3](v)
)∆

≥ φ−1
α[m−2,m]

(

x[m] (v)
)

[
∫ v

u

R̂1(s, u) ∆s

/

rm−2(v)

]1/αm−2

= φ−1
α[m−2,m]

(

x[m] (v)
)

R̂2(v, u).

Again replacing v by s and integrating with respect to s from u to v, we get

x[m−3](v) ≥ φ−1
α[m−2,m]

(

x[m] (v)
)

∫ v

u

R̂2(s, u) ∆s.

Continuing this process, one can easily see, for i = 1, . . . , m

(

x[m−i](v)
)∆

≥ φ−1
α[m−i+1,m]

(

x[m] (v)
)

R̂i−1(v, u),

and

x[m−i](v) ≥ φ−1
α[m−i+1,m]

(

x[m] (v)
)

∫ v

u

R̂i−1(s, u) ∆s,

or for i = 0, . . . , m − 1

(

x[i](v)
)∆

≥ φ−1
α[i+1,m]

(

x[m] (v)
)

R̂m−i−1(v, u),

and

x[i](v) ≥ φ−1
α[i+1,m]

(

x[m] (v)
)

∫ v

u

R̂m−i−1(s, u) ∆s.

(b) By the fact that x[n−1] is nonincreasing on [t1,∞)T, we get for v ≥ u ≥ t1,

x[n−1](u) ≥ x[n−1](v) = φ−1
αn

(

x[n−1] (v)
)

R̄0(v, u),

which implies

(

x[n−2](u)
)∆

≥ φ−1
α[n−1,n]

(

x[n−1] (v)
) [

R̄0(v, u)
/

rn−1(u)
]1/αn−1 .

Replacing u by s and integrating with respect to s from u ≥ t1 to v ∈ [u,∞)T and

using (2.3), we get

−x[n−2](u) ≥ x[n−2](v) − x[n−2](u)

= φ−1
α[n−1,n]

(

x[n−1] (v)
)

∫ v

u

[

R̄0(v, s)
/

rn−1(s)
]1/αn−1 ∆s

= φ−1
α[n−1,n]

(

x[n−1] (v)
)

R̄1(v, u),

which yields

−
(

x[n−3](u)
)∆

≥ φ−1
α[n−2,n]

(

x[n−1] (v)
) [

R̄1(v, u)
/

rn−2(u)
]1/αn−2

.
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Again replacing u by s and integrating with respect to s from u to v, we get

x[n−3](u) ≥ −x[n−3](v) + x[n−3](u)

= φ−1
α[n−2,n]

(

x[n−1] (v)
)

∫ v

u

[

R̄1(v, s)
/

rn−2(s)
]1/αn−2 ∆s

= φ−1
α[n−2,n]

(

x[n−1] (v)
)

R̄2(v, u).

Continuing this process, we can see for i = 1, . . . , n − m

(−1)n+m−i x[n−i](u) ≥ φ−1
α[n−i+1,n]

(

x[n−1] (v)
)

R̄i−1(v, u),

or for i = m, . . . , n − 1

(−1)m+ix[i](u) ≥ φ−1
α[i+1,n]

(

x[n−1] (v)
)

R̄n−i−1(v, u).

This completes the proof.

In the following, we denote

P (t) :=

[
∫ ∞

t

p(s) ∆s

]1/α

; (2.6)

and for an integer m ∈ {0, . . . , n − 1} ,

Rm,1(t, T ) := φ−1
α[1,m]

(

R̄n−m−1(t, τ(t))
)

∫ τ(t)

T

R̂m−1(s, T ) ∆s; (2.7)

and

Rm,2(t, T ) := φ−1
α[1,m]

(

R̄n−m−1(t, τ(t))
)

R̂m−1(τ(t), T ). (2.8)

3. OSCILLATION CRITERIA FOR EVEN ORDER EQUATIONS

In this section, we establish oscillation criteria for Eq. (1.1) when n is even. It

follows from Lemma 2.1 that there exists an odd m ∈ {1, . . . , n − 1} such that (2.2)

and (2.3) hold eventually.

Theorem 3.1. Assume that (2.1) holds and

N
∑

j=0

∫ ∞

t0

pj (s)∆s = ∞. (3.1)

Then every solution of Eq. (1.1) is oscillatory.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of

generality, assume x(t) > 0 and x (gj (t)) > 0, j = 0, 1, 2, . . . , N on [t0,∞)T. It

follows from Lemma 2.1 that there exists an odd integer m ∈ {1, . . . , n − 1} such

that (2.2) and (2.3) hold for t ≥ t1 ∈ [t0,∞)T. This implies x(t) is strictly increasing

on [t1,∞)T. Then, for sufficiently large t2 ∈ [t1,∞)T, we have xσ(gj(t)) ≥ l for t ≥ t2.

It follows that

φγj
(xσ (gj (t))) ≥ lγj ≥ L for t ∈ [t2,∞)T,
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where L := inf0≤j≤N {lγj} > 0. Eq. (1.1) becomes

−
(

x[n−1] (t)
)∆

=

N
∑

j=0

pj (t) φγj
(xσ (gj (t))) ≥ L

N
∑

j=0

pj (t) for t ∈ [t2,∞)T. (3.2)

Replacing t by s in (3.2)and integrating from t2 to t ∈ [t2,∞)T gives

−x[n−1] (t) + x[n−1] (t2) ≥ L

N
∑

j=0

∫ t

t2

pj (s)∆s.

Hence by (3.1), we have limt→∞ x[n−1] (t) = −∞, which contradicts the fact that

x[n−1] (t) > 0 eventually. This completes the proof.

Theorem 3.2. Assume that (2.4) and (2.1) hold and for sufficiently large T ∈

[t0,∞)T and for every odd integer m ∈ {1, . . . , n − 1} ,

∫ ∞

t0
p (t)Rγ

m,1(t, T )∆t = ∞, if γ < α;

lim supt→∞ P (t)Rm,1(t, T ) > 1, if γ = α;

∫ ∞

t0
τ∆(t)P (t)Rm,2(t, T )∆t = ∞, if γ > α.

(3.3)

Then every solution of Eq. (1.1) is oscillatory.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of

generality, assume x(t) > 0 and x (gj (t)) > 0, j = 0, 1, 2, . . . , N , on [t0,∞)T. It

follows from Lemma 2.1 that there exists an odd integer m ∈ {1, . . . , n − 1} such

that (2.2) and (2.3) hold for t ≥ t1 ∈ [t0,∞)T. Eq. (1.1) becomes

−x[n] (t) =

N
∑

j=0

pj (t) φγj
(xσ (gj (t))) ≥

N
∑

j=0

pj (t) φγj
(xσ (τ (t)))

= φγ (xσ (τ (t)))

N
∑

j=0

pj (t) [xσ (τ (t))]γj−γ . (3.4)

By Lemma 2.2, we have there exists η1, . . . , ηN with

N
∑

j=1

γjηj − γ

N
∑

j=1

ηj = 0.

Using the Arithmetic-geometric mean inequality, see [3, Page 17], we have

N
∑

j=1

ηjvj ≥
N
∏

j=1

v
ηj

j , for any vj ≥ 0, j = 1, . . . , N.
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Then for t ≥ t1

N
∑

j=0

pj (t) [xσ (τ (t))]γj−γ = p0 (t) +
N

∑

j=1

ηj
pj(t)

ηj
[xσ (τ (t))]γj−γ

≥ p0 (t) +

N
∏

j=1

[

pj(t)

ηj

]ηj

[xσ (τ (t))]ηj(γj−γ)

= p0 (t) +
N
∏

j=1

[

pj(t)

ηj

]ηj

= p(t).

This together with (3.4) shows that

−x[n] (t) ≥ p(t)φγ (xσ (τ (t))) , for t ∈ [t1,∞)T. (3.5)

Replacing t by s in (3.5), integrating from t ≥ t1 to v ∈ [t,∞)T, and using the fact

that τ is nondecreasing, we have

−x[n−1](v) + x[n−1](t) ≥

∫ v

t

p (s) φγ (xσ (τ (s))) ∆s

≥

∫ v

t

p (s) φγ (xσ (τ (s))) ∆s

≥ φγ (xσ (τ (t)))

∫ v

t

p (s) ∆s,

and by (2.3), we see that x[n−1](v) > 0. Hence by taking limits as v → ∞, we have

x[n−1](t) ≥ φγ (xσ (τ (t)))

∫ ∞

t

p (s) ∆s. (3.6)

Then by Lemma 2.4, Part (a) we have that for i = 0,

x(v) ≥ φ−1
α[1,m]

(

x[m] (v)
)

∫ v

u

R̂m−1(s, u) ∆s, (3.7)

and

x∆(v) ≥ φ−1
α[1,m]

(

x[m] (v)
)

R̂m−1(v, u). (3.8)

Setting v = τ(t) and u = t1 in (3.7) and (3.8), we have for τ(t) ∈ [t1,∞)T,

x(τ(t)) ≥ φ−1
α[1,m]

(

x[m] (τ(t))
)

∫ τ(t)

t1

R̂m−1(s, t1) ∆s, (3.9)

and

x∆(τ(t)) ≥ φ−1
α[1,m]

(

x[m] (τ(t))
)

R̂m−1(τ(t), t1). (3.10)

Then by Lemma 2.4, Part (b) we have that for i = m,

x[m](u) ≥ φ−1
α[m+1,n]

(

x[n−1] (v)
)

R̄n−m−1(v, u).

Settingv = t and u = τ(t) gives

x[m](τ(t)) ≥ φ−1
α[m+1,n]

(

x[n−1] (t)
)

R̄n−m−1(t, τ(t)) for τ(t) ∈ [t1,∞)T. (3.11)
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Pick t2 ∈ [t1,∞)T such that τ(t) ∈ [t1,∞)T for t ≥ t2. Substituting (3.11) into (3.9)

and (3.10), we get for t ∈ [t2,∞)T,

x(τ(t)) ≥ φ−1
α

(

x[n−1] (t)
)

φ−1
α[1,m]

(

R̄n−m−1(t, τ(t))
)

∫ τ(t)

t1

R̂m−1(s, t1) ∆s

= φ−1
α

(

x[n−1] (t)
)

Rm,1(t, t1), (3.12)

and

x∆(τ(t)) ≥ φ−1
α

(

x[n−1] (t)
)

φ−1
α[1,m]

(

R̄n−m−1(t, τ(t))
)

R̂m−1(τ(t), t1)

= φ−1
α

(

x[n−1] (t)
)

Rm,2(t, t1), (3.13)

where α = α[1, n]. We consider the following three cases:

(a) γ < α. From (3.5) and (3.12) and using the fact that x is strictly increasing,

we have

−x[n] (t) ≥ p (t)φγ (xσ (τ (t))) ≥ p (t) φγ (x (τ (t))) ≥ p (t) φγ (x (τ (t)))

≥ p (t)Rγ
m,1(t, t1)

(

x[n−1] (t)
)γ/α

, for t ∈ [t2,∞)T,

or

−
α

α − γ

(

(

x[n−1] (t)
)(α−γ)/α

)∆ Lemma 2.3
≥ −

(

x[n−1] (t)
)∆

(x[n−1] (t))
γ/α

≥ p (t) Rγ
m,1(t, t1)

≥ p (t) Rγ
m,1(t, t2).

Integrating this inequality from t2 to t, we get

α

α − γ

(

x[n−1] (t2)
)(α−γ)/α

−
α

α − γ

(

x[n−1] (t)
)(α−γ)/α

≥

∫ t

t2

p (s) Rγ
m,1(s, t2)∆s.

Since x[n−1] > 0 eventually and α > γ, then

α

α − γ

(

x[n−1] (t2)
)(α−γ)/α

≥

∫ t

t2

p (s) Rγ
m,1(s, t2)∆s,

which contradicts (3.3) if γ < α.

(b) γ = α. Substituting (3.6) into (3.12) gives

x(τ(t)) ≥ P (t)Rm,1(t, t1)x
σ (τ (t))

≥ P (t)Rm,1(t, t2)x (τ (t))

≥ P (t)Rm,1(t, t2)x (τ (t)) ,

or

P (t)Rm,1(t, t2) ≤ 1,

which implies

lim sup
t→∞

P (t)Rm,1(t, t2) ≤ 1.

This leads to a contradiction to (3.3) if γ = α.
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(c) γ > α. Substituting (3.6) into (3.13) gives

x∆(τ(t)) ≥ P (t)Rm,2(t, t2) [xσ (τ (t))]γ/α

or

α

α − γ

(

[x(τ(t))](α−γ)/α
)∆ Lemma 2.3

≥
(x(τ(t)))∆

(xσ (τ (t)))γ/α
≥ P (t)Rm,2(t, t1)τ

∆(t)

≥ P (t)Rm,2(t, t2)τ
∆(t).

Integrating this inequality from t2 to t, we get

α

α − γ

[

[x(τ(t))](α−γ)/α
](α−γ)/α

−
α

α − γ

[

[x(τ(t2))]
(α−γ)/α

](α−γ)/α

≥

∫ t

t2

P (s)τ∆(s)Rm,2(s, t2)∆s.

Since x > 0 eventually, then

α

γ − α

[

[x(τ(t2))]
(α−γ)/α

](α−γ)/α

≥

∫ t

t2

P (s)τ∆(s)Rm,2(s, t2)∆s,

which contradicts (3.3) if γ > α. This completes the proof.

Theorem 3.3. The conclusions of Theorem 3.2 hold if the third condition in (3.3) is

replaced by
∫ ∞

T

τ∆(t)Qm(t, T )∆t = ∞, (3.14)

for sufficiently large T ∈ [t0,∞)T and for every odd integer m ∈ {1, . . . , n − 1}, where

Qm(t, T ) := φ−1
α[1,m]

[
∫ ∞

s

Pn−m−1(u)∆u

]

R̂m−1(τ(t), T ).

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of

generality, assume x(t) > 0 and x (gj (t)) > 0, j = 0, 1, 2, . . . , N , on [t0,∞)T. It

follows from Lemma 2.1 that there exists an odd integer m ∈ {1, . . . , n − 1} such

that (2.2) and (2.3) hold for t ≥ t1 ∈ [t0,∞)T. As seen in the proof of Theorem 3.2,

we have

x[n−1](t) ≥ φγ (xσ (τ (t)))

∫ ∞

t

p (s) ∆s

= φ−1
α[n,n] (φγ (xσ (τ (t))))

∫ ∞

t

P0 (s) ∆s.

Then

[

x[n−2](t)
]∆

≥ φ−1
α[n−1,n] (φγ (xσ (τ (t))))

[
∫ ∞

t

P0 (s)∆s

/

rn−1(t)

]1/αn−1

= φ−1
α[n−1,n] (φγ (xσ (τ (t)))) P1 (t) .
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Replacing t by s and integrating with respect to s from t ≥ T1 to v ∈ [t,∞)T and

letting v → ∞ and using (2.2) and (2.3), we get

−x[n−2](t) ≥ φ−1
α[n−1,n] [φγ (xσ (τ (t)))]

∫ ∞

t

P1 (s)∆s.

Continuing this process n − m − 2-times, we get

x[m](t) ≥ φ−1
α[m+1,n] (φγ (xσ (τ (t))))

∫ ∞

t

Pn−m−1 (s) ∆s.

Since x∆ > 0 and
(

x[m]
)∆

< 0 on [t1,∞)T, we have for sufficiently large t2 ∈ [t1,∞)T

x[m](τ(t)) ≥ φ−1
α[m+1,n] (φγ (xσ (τ (t))))

∫ ∞

t

Pn−m−1(s)∆s for t ∈ [t2,∞)T. (3.15)

As shown in the proof of Theorem 3.2, we have

x∆(τ(t)) ≥ φ−1
α[1,m]

(

x[m] (τ(t))
)

R̂m−1(τ(t), t1)

≥ φ−1
α[1,m]

(

x[m] (τ(t))
)

R̂m−1(τ(t), t2) for t ∈ [t2,∞)T. (3.16)

From (3.15) and (3.16), we get

x∆(τ(t)) ≥ φ−1
α [φγ (xσ (τ (t)))]

φ−1
α[1,m]

[
∫ ∞

s

Pn−m−1(u)∆u

]

R̂m−1(τ(t), t2)

= φ−1
α [φγ (xσ (τ (t)))] Qm(t, t2),

or
x∆(τ(t))τ∆(t)

(xσ (τ (t)))γ/α
≥ τ∆(t)Qm(t, t2).

We will consider only the case γ > α and the rest of the proof is similar to that of

Theorem 3.2. In view of Lemma 2.3, we have

α

α − γ

(

[x(τ(t))](α−γ)/α
)∆ Lemma 2.3

≥
[x(τ(t))]∆

(xσ (τ (t)))γ/α
≥ τ∆(t)Qm(t, t2).

Integrating this inequality from t2 to t, we get

α

α − γ

[

[x(τ(t))](α−γ)/α
](α−γ)/α

−
α

α − γ

[

[x(τ(t2))]
(α−γ)/α

](α−γ)/α

≥

∫ t

t2

τ∆(s)Qm(s, t2)∆s.

Since x > 0 eventually, then

α

γ − α

[

[x(τ(t2))]
(α−γ)/α

](α−γ)/α

≥

∫ t

t2

τ∆(s)Qm(s, t2)∆s,

which contradicts (3.14). This completes the proof.
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Theorem 3.4. Assume that (2.4) and (2.1) hold and for sufficiently large T ∈

[t0,∞)T and for every odd integer m ∈ {1, . . . , n − 1} ,

lim sup
t→∞

P (t)Rm,1(t, T ) = ∞. (3.17)

Then every bounded solution of Eq. (1.1) is oscillatory.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of

generality, assume x(t) > 0 and x (τj (t)) > 0, j = 0, 1, 2, . . . , N , on [t0,∞)T. It

follows from Lemma 2.1 that there exists an odd integer m ∈ {1, . . . , n − 1} such

that (2.2) and (2.3) hold for t ≥ t1 ∈ [t0,∞)T. As shown in the proof of Theorem 3.2,

we have for sufficiently large t2 ∈ [t1,∞)T

x(τ(t)) ≥ Rm,1(t, t1)φ
−1
α

(

x[n−1] (t)
)

, (3.18)

and

x[n−1](t) ≥ φγ (xσ (τ (t)))

∫ ∞

t

p (s) ∆s, (3.19)

for t ∈ [t2,∞)T. Substituting (3.19) into (3.18) we obtain

x(τ(t)) ≥ P (t)Rm,1(t, t1) [xσ (τ (t))]γ/α ≥ P (t)Rm,1(t, t2) [x (τ (t))]γ/α ,

or

[x(τ(t))]1−γ/α ≥ P (t)Rm,1(t, t2),

which contradicts (3.17). This completes the proof.

In the following, we denote

k+ := max{k, 0}, k− := max{−k, 0} for any k ∈ R,

and we employ the lemma below, see and using the inequality (see [30]).

Lemma 3.5. If X and Y are nonnegative and λ > 1, then

Xλ − λXY λ−1 + (λ − 1)Y λ ≥ 0, (3.20)

where equality holds if and only if X = Y .

We are now ready to state and prove a Philos-type oscillation criteria for equation

(1.1).

Theorem 3.6. Assume that (2.4) and (2.1) hold and τ ◦ σ = σ ◦ τ on [t0,∞)T.

Furthermore, suppose that there exist functions δ ∈ C1
rd([t0,∞)T, (0,∞)) and H, h ∈

Crd (D, R), where D ≡ {(t, u) : t ≥ u ≥ t0} such that

H (t, t) = 0, t ≥ t0, H (t, u) > 0, t > u ≥ t0, (3.21)
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and H has a nonpositive continuous ∆-partial derivative H∆u (t, u) with respect to

the second variable and satisfies

H∆u (t, u) + H (t, u)
η∆(u)

δσ (u)
= −

h (t, u)

δσ (u)
Hα/(α+1) (t, u) , (3.22)

and, for all sufficiently large T and for every odd integer m ∈ {1, . . . , n − 1},

lim sup
t→∞

1

H (t, T )

∫ t

T

[

δ(u)p(u)H (t, u) −
(α/γ)α [h− (t, u)]α+1

(α + 1)α+1 [δ(u)τ∆(u)A(u)Rm,2(u, T )]α

]

∆u

= ∞, (3.23)

where

A(t) :=



















c1, c1 is any positive constant, when γ > α;

1, when γ = α;

c2 P α/γ−1(t), c2 is any positive constant when γ < α.

(3.24)

Then every solution of Eq. (1.1) is oscillatory.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of

generality, assume x(t) > 0 and x (gj (t)) > 0, j = 0, 1, 2, . . . , N , on [t0,∞)T. It

follows from Lemma 2.1 that there exists an odd integer m ∈ {1, . . . , n − 1} such

that (2.2) and (2.3) hold for t ≥ t1 ∈ [t0,∞)T. Define

w(t) :=
δ(t)x[n−1](t)

φγ (x (τ (t)))
. (3.25)

By the product rule and the quotient rule, we get

w∆(t) =
δ(t)

φγ (x (τ (t)))

(

x[n−1](t)
)∆

+

[

δ(t)

φγ (x (τ (t)))

]∆
(

x[n−1](t)
)σ

= δ(t)

(

x[n−1](t)
)∆

φγ (x (τ (t)))

+

[

δ∆(t)

φγ (x (τσ (t)))
−

δ(t) [φγ (x (τ(t)))]∆

φγ (x (τ (t)))φγ (x (τσ (t)))

]

(

x[n−1](t)
)σ

.

As shown in the proof of Theorem 3.2, we have for t ∈ [t1,∞)T

(

x[n−1](t)
)∆

≤ −p(t)φγ (xσ (τ (t))) ,

which implies
(

x[n−1](t)
)∆

φγ (x (τ (t)))
≤ −p(t)

φγ (xσ (τ (t)))

φγ (x (τ (t)))
≤ −p(t).
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Therefore for t ∈ [t1,∞)T

w∆(t) ≤ −δ(t)p(t) +

[

δ∆(t)

φγ (x (τσ (t)))
−

δ(t) [φγ (x (τ(t)))]∆

φγ (x (τ (t))) φγ (x (τσ (t)))

]

(

x[n−1](t)
)σ

= −δ(t)p(t) + δ∆(t)

(

w(t)

δ(t)

)σ

− δ(t)
[φγ (x (τ(t)))]∆

φγ (x (τ (t)))

(

w(t)

δ(t)

)σ

. (3.26)

Since x and τ are differentiable functions, and τ is a nondecreasing, we have x ◦ τ

is a differentiable function and (x (τ(t)))∆ = x∆ (τ(t)) τ∆(t). Then, by the Pötzsche

chain rule ([6, Theorem 1.90]), we obtain

[xγ (τ(t))]∆ = γ

∫ 1

0

[

x (τ(t)) + hµ(t)(x (τ(t)))∆
]γ−1

dh (x (τ(t)))∆

= γ

∫ 1

0

[(1 − h) x (τ(t)) + h x(τσ(t))]γ−1 dh x∆ (τ(t)) τ∆(t)

≥







γ [x(τσ(t))]γ−1 x∆ (τ(t)) τ∆(t), 0 < γ ≤ 1;

γ [x(τ(t))]γ−1 x∆ (τ(t)) τ∆(t), γ ≥ 1.

If 0 < γ ≤ 1, we have that

w∆(t) ≤ −δ(t)p(t) + δ∆(t)

(

w(t)

δ(t)

)σ

− γδ(t)τ∆(t)

(

w(t)

δ(t)

)σ
x∆ (τ(t))

x (τσ(t))

[

x (τσ(t))

x (τ(t))

]γ

,

whereas if γ ≥ 1, we have that

w∆(t) ≤ −δ(t)p(t) + δ∆(t)

(

w(t)

δ(t)

)σ

− γδ(t)τ∆(t)

(

w(t)

δ(t)

)σ
x∆ (τ(t))

x (τσ(t))

x (τσ(t))

x (τ(t))
.

Using the fact that x∆ (t) > 0 on [t1,∞)T, we get that, for γ > 0,

w∆(t) ≤ −δ(t)p(t) + δ∆(t)

(

w(t)

δ(t)

)σ

− γδ(t)τ∆(t)

(

w(t)

δ(t)

)σ
x∆ (τ(t))

x (τσ(t))
. (3.27)

Now, by (3.13), there exists t2 ∈ [t1,∞)T such that τ(t) ∈ [t1,∞)T for t ∈ [t2,∞)T

and

x∆(τ(t)) ≥ φ−1
α

[

x[n−1] (t)
]

Rm,2(t, t1)

≥ φ−1
α

[

x[n−1] (σ(t))
]

Rm,2(t, t1)

=

[(

w(t)

δ(t)

)σ]1/α

[x (τσ(t))]γ/α Rm,2(t, t1),

and so

x∆ (τ(t))

x (τσ(t))
≥

[(

w(t)

δ(t)

)σ]1/α

[x (τσ(t))]γ/α−1 Rm,2(t, t1).
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Then (3.27) becomes for t ∈ [t2,∞)T

w∆(t) ≤ −δ(t)p(t) + δ∆(t)

(

w(t)

δ(t)

)σ

− γδ(t)τ∆(t)Rm,2(t, t1)

[(

w(t)

δ(t)

)σ]1+1/α

[x (τσ(t))]γ/α−1 . (3.28)

If γ > α, then x (τσ(t)) ≥ x(t1) for t ∈ [t2,∞)T, and we have

[x (τσ(t))]γ/α−1 ≥ [x(t1)]
γ/α−1 =: c1 > 0.

If γ = α, we have [x (τσ(t))]γ/α−1 = 1 for t ∈ [t2,∞)T; whereas if γ < α, then there

exist b > 0 and t3 ≥ t2 such that x[n−1](t) ≤ b for all t ≥ t3, and hence from (3.6), we

have

b ≥ x[n−1](t) ≥ φγ (xσ (τ (t)))

∫ ∞

t

p (s) ∆s.

So

[x (τσ(t))]γ/α−1 = [φγ (x (τσ (t)))]
γ−α
αγ

= [φγ (xσ (τ (t)))]
γ−α

αγ ≥ c2

[
∫ ∞

t

p (s)∆s

]
α−γ

αγ

= c2 P α/γ−1(t),

where c2 := b
γ−α

αγ > 0. Combining all these we see that

[x (τσ(t))]γ/α−1 ≥ A(t), for t ≥ t3. (3.29)

From (3.28) and (3.29), we obtain for t ∈ [t3,∞)T

w∆(t) ≤ −δ(t)p(t) + δ∆(t)

(

w(t)

δ(t)

)σ

− γδ(t)τ∆(t)A(t)R2(t, t1)

[(

w(t)

δ(t)

)σ]λ

, (3.30)

where λ := 1 + 1/α > 1. Multiplying both sides of (3.30), with t replaced by u, by

H (t, u) and integrating with respect to u from t3 to t ∈ [t3,∞)T, we have

∫ t

t3

H (t, u) δ(u)p(u)∆u ≤ −

∫ t

t3

H (t, u)w∆ (u)∆u +

∫ t

t3

H (t, u) δ∆(u)

(

w(u)

δ(u)

)σ

∆u

−

∫ t

t3

γδ(u)τ∆(u)A(u)R2(u, t1)H (t, u)

[(

w(u)

δ(u)

)σ]λ

∆u.
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Integrating by parts and using (3.21) and (3.22), we obtain
∫ t

t3

H (t, u) δ(u)p(u)∆u ≤ H (t, t3)w (t3) +

∫ t

t3

H∆u (t, u)wσ (u)∆u

+

∫ t

t3

H (t, u) δ∆(u)

(

w(u)

δ(u)

)σ

∆u

−

∫ t

t3

[

γδ(u)τ∆(u)A(u)R2(u, t1)H (t, u)

[(

w(u)

δ(u)

)σ]λ
]

∆u

= H (t, t3) w (t3) +

∫ t

t3

[

h− (t, u) (H (t, u))
1
λ

(

w(u)

δ(u)

)σ

−γδ(u)τ∆(u)A(u)R2(u, t1)H (t, u)

[(

w(u)

δ(u)

)σ]λ
]

∆u.

(3.31)

Defining X ≥ 0 and Y ≥ 0 by

Xλ := γδ(u)τ∆(u)A(u)R2(u, t1)H (t, u)

[(

w(u)

δ(u)

)σ]λ

,

Y λ−1 :=
h− (t, u)

λ (γδ(u)τ∆(u)A(u)R2(u, t1))
1/λ

,

and using Lemma 3.5, we have

γδ(u)τ∆(u)A(u)R2(u, t1)H (t, u)

[(

w(u)

δ(u)

)σ]λ

− h− (t, u) (H (t, u))
1
λ

(

w(u)

δ(u)

)σ

+
(α/γ)α hα+1

− (t, u)

(α + 1)α+1 [δ(u)τ∆(u)A(u)R2(u, t1)]
α ≥ 0.

From this last inequality and (3.31), we have
∫ t

t3

[

δ(u)p(u)H (t, u) −
(α/γ)α hα+1

− (t, u)

(α + 1)α+1 [δ(u)τ∆(u)A(u)R2(u, t1)]
α

]

∆u ≤ H (t, t3)w (t3) ,

and this implies that

1

H (t, t3)

∫ t

t3

[

δ(u)p(u)H (t, u) −
(α/γ)α hα+1

− (t, u)

(α + 1)α+1 [δ(u)τ∆(u)A(u)R2(u, t3)]
α

]

∆u ≤ w (t3) ,

which contradicts assumption (3.23). This completes the proof.

We assume α ≥ 1 in the following theorem.

Theorem 3.7. Assume that (2.4) and (2.1) hold and α ≥ 1 and τ ◦ σ = σ ◦ τ on

[t0,∞)T. Furthermore, suppose that there exist functions δ ∈ C1
rd([t0,∞)T, (0,∞))

and H, h ∈ Crd (D, R), where D ≡ {(t, u) : t ≥ u ≥ t0} such that (3.21) and H has

a nonpositive continuous ∆-partial derivative H∆u (t, u) with respect to the second

variable and satisfies

H∆u (t, u) + H (t, u)
η∆(u)

δσ (u)
= −

h (t, u)

δσ (u)

√

H (t, u), (3.32)
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and, for all sufficiently large T ∈ [t0,∞)T and for every odd integer m ∈ {1, . . . , n − 1},

lim sup
t→∞

1

H (t, T )

∫ t

T

[

H (t, u) δ(u)p(u) −
[h− (t, u)]2 R1−α

m,1 (u, T )

4γδ(u)τ∆(u)Rm,2(u, T )A(u)B(u)

]

∆u = ∞,

(3.33)

where A is defined by (3.24) and

B(t) :=



















c1, c1 is any positive constant, when γ > α;

1, when γ = α;

c2P
(α−γ)(α−1)(t), c2 is any positive constant when γ < α.

(3.34)

Then every solution of Eq. (1.1) is oscillatory.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of gen-

erality, assume x(t) > 0 and x (gj (t)) > 0, j = 0, 1, 2, . . . , N , on [t0,∞)T. Proceeding

as in the proof of Theorem 3.6, we obtain for t ∈ [t3,∞)T

w∆(t) ≤ −δ(t)p(t) + δ∆(t)

(

w(t)

δ(t)

)σ

− γδ(t)τ∆(t)A(t)Rm,2(t, t1)

[(

w(t)

δ(t)

)σ]1+1/α

= −δ(t)p(t) + δ∆(t)

(

w(t)

δ(t)

)σ

− γδ(t)τ∆(t)A(t)Rm,2(t, t1)
[wσ(t)]1/α−1

[δσ(t)]1+1/α
[wσ(t)]2 . (3.35)

In view of the definition of w and (3.12), we get

[wσ(t)]1/α−1 =

[

δσ(t)
(

x[n−1](t)
)σ

xγ (τσ(t))

]
1−α

α

≥

[

δσ(t)x[n−1](t)

xγ (τ(t))

]

1−α
α

≥

[

δσ(t) [x (τ(t))]α−γ

Rα
m,1(t, T1)

]

1−α
α

=
(δσ(t))

1−α
α

R1−α
m,1 (t, T1)

[x (τ(t))]
(γ−α)(α−1)

α . (3.36)

If γ > α, then x (τ(t)) ≥ x (τ(t3)) for t ≥ t3, we have

[x (τ(t))]
(γ−α)(α−1)

α ≥ [x (τ(T2))]
(γ−α)(α−1)

α =: c1 > 0.

If γ = α, we have [x (τ(t))]
(γ−α)(α−1)

α = 1 for t ≥ t3; whereas if γ < α, then there exist

b > 0 and t4 ≥ t3 such that x[n−1](t) ≤ b for all t ≥ t4, and hence from (3.6), we have

b ≥ x[n−1](t) ≥ φγ (xσ (τ (t)))

∫ ∞

t

p (s)∆s ≥ φγ (x (τ (t)))

∫ ∞

t

p (s) ∆s,
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and so

[x (τ(t))]
(γ−α)(α−1)

α = [x (τ(t))]
(γ−α)(α−1)

α = [φγ (x (τ (t)))]
(γ−α)(α−1)

αγ

≥ c2

[
∫ ∞

t

p (s)∆s

]

(α−γ)(α−1)
α

= c2 P (α−γ)(α−1)(t),

where c2 := b
(γ−α)(α−1)

α > 0. Combining all these, we see that

[x (τσ(t))]
(γ−α)(α−1)

α ≥ B(t), for t ≥ t4.

Substituting into (3.36), we get

[wσ(t)]1/α−1 ≥ (δσ(t))
1−α

α
B(t)

R1−α
m,1 (t, T1)

.

Then (3.35) becomes

w∆(t) ≤ −δ(t)p(t) + δ∆(t)

(

w(t)

δ(t)

)σ

−
γδ(t)τ∆(t)Rm,2(t, t1)A(t)B(t)

R1−α
m,1 (t, t1)

[(

w(t)

δ(t)

)σ]2

.

(3.37)

Multiplying both sides of (3.37), with t replaced by u, by H (t, u), integrating with

respect to u from t4 to t ∈ [t4,∞)T, we have

∫ t

t4

H (t, u) δ(u)p(u)∆u ≤ −

∫ t

t4

H (t, u)w∆(u)∆u +

∫ t

t4

H (t, u) δ∆(u)

(

w(u)

δ(u)

)σ

∆u

−

∫ t

t3

[

γδ(u)τ∆(u)Rm,2(u, t1)A(u)B(u)H (t, u)

R1−α
m,1 (u, t1)

[(

w(u)

δ(u)

)σ]2
]

∆u.

Integrating by parts and using (3.21) and (3.32), we obtain

∫ t

t4

H (t, u) δ(u)p(u)∆u ≤ H (t, t4) w (t4) +

∫ t

t4

H∆u (t, u)wσ (u)∆u

+

∫ t

t4

H (t, u) δ∆(u)

(

w(u)

δ(u)

)σ

∆u

−

∫ t

t3

[

γδ(u)τ∆(u)Rm,2(u, t1)A(u)B(u)H (t, u)

R1−α
m,1 (u, t1)

[(

w(u)

δ(u)

)σ]2
]

∆u

≤ H (t, t4)w (t4) +

∫ t

t4

[

h− (t, u)
√

H (t, u)

(

w(u)

δ(u)

)σ

−
γδ(u)τ∆(u)Rm,2(u, t1)A(u)B(u)H (t, u)

R1−α
m,1 (u, t1)

[(

w(u)

δ(u)

)σ]2
]

∆u.



388 R. P. AGARWAL, S. R. GRACE, AND T. S. HASSAN

It follows that

∫ t

t4

H (t, u) δ(u)p(u)∆u ≤ H (t, t4)w (t4)

−

∫ t

t4

[
√

γδ(u)τ∆(u)Rm,2(u, t1)A(u)B(u)H (t, u)

R1−α
m,1 (u, t1)

(

w(u)

δ(u)

)σ

−
h− (t, u)

2

√

γδ(u)τ∆(u)Rm,2(u, t1)A(u)B(u)

R1−α
m,1 (u, t1)













2

∆u

+

∫ t

t4

[h− (t, u)]2 R1−α
m,1 (u, t1)

4γδ(u)τ∆(u)Rm,2(u, t1)A(u)B(u)
∆u

≤ H (t, t4)w (t4) +

∫ t

t4

[h− (t, u)]2 R1−α
m,1 (t, t1)

4γδ(u)τ∆(u)Rm,2(u, t1)A(u)B(u)
∆u.

Consequently,

1

H (t, t4)

∫ t

t4

[

H (t, u) δ(u)p(u) −
[h− (t, u)]2 R1−α

m,1 (u, t4)

4γδ(u)τ∆(u)Rm,2(u, t4)A(u)B(u)

]

∆u ≤ w (t4) ,

which contradicts assumption (3.33). This completes that proof.

Theorem 3.8. Assume that (2.4) and (2.1) hold and there exists

δ ∈ C1
rd([t0,∞)T, (0,∞)) such that for every sufficiently large T ∈ [t0,∞)T

lim sup
t→∞

∫ t

T

[

δ(u)p(u)−

(

δ∆(u)
)

+
C(u)

Rα
m,1(u, T )

]

∆u = ∞, (3.38)

where

C(t) :=



















c1, c1 is any positive constant, when γ > α;

1, when γ = α;

c2P
α(γ−α)/γ(t), c2 is any positive constant when γ < α.

(3.39)

Then every solution of Eq. (1.1) is oscillatory.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of gen-

erality, assume x(t) > 0 and x (gj (t)) > 0, j = 0, 1, 2, . . . , N , on [t0,∞)T. Proceeding



OSCILLATION CRITERIA 389

as in the proof of Theorem 3.6, we obtain for sufficiently large t3

w∆(t) ≤ −δ(t)p(t) + δ∆(t)

(

w(t)

δ(t)

)σ

− γδ(t)τ∆(t)A(t)Rm,2(t, t1)

[(

w(t)

δ(t)

)σ]1+1/α

≤ −δ(t)p(t) +
(

δ∆(t)
)

+

(

x[n−1](t)
)σ

φγ [x (τσ(t))]

≤ −δ(t)p(t) +
(

δ∆(t)
)

+

x[n−1](t)

φγ [x (τ(t))]
for t ∈ [t3,∞)T.

In view of (3.12), we get

x(τ(t)) ≥ φ−1
α

(

x[n−1] (t)
)

Rm,1(t, t2), for t ∈ [t3,∞)T.

Therefore

w∆(t) ≤ −δ(t)p(t) +

(

δ∆(t)
)

+

Rα
m,1(t, t2)

[x (τ(t))]α−γ , for t ∈ [t3,∞)T. (3.40)

Let γ > α. Since x(t) ≥ x(t3) := c > 0 for all t ≥ t3, we have [x (τ(t))]α−γ ≤ cα−γ :=

c1 for all t ≥ t3. If γ = α, then [x (τ(t))]α−γ = 1 for all t ≥ t3. If γ < α, then there

exist b > 0 and t4 ≥ t3 such that x[n−1](t) ≤ b for all t ≥ t4 and hence from (3.6), we

have

b ≥ x[n−1](t) ≥ φγ (xσ (τ (t)))

∫ ∞

t

p (s)∆s ≥ φγ (x (τ (t)))

∫ ∞

t

p (s) ∆s,

and so

[x (τ(t))]α−γ = [xγ (τ(t))]
α−γ

γ ≤ c2

[
∫ ∞

t

p (s)∆s

]
γ−α

γ

= c2 P α(γ−α)/γ(t),

where c2 := b
α−γ

α > 0. Combining all these we see that

[x (τ(t))]α−γ ≤ C(t), for t ≥ t4.

From (3.40), we have

w∆(t) ≤ −δ(t)p(t) +
(

δ∆(t)
)

+

C(t)

Rα
m,1(t, t1)

≤ −δ(t)p(t) +
(

δ∆(t)
)

+

C(t)

Rα
m,1(t, t4)

.

Integrating this inequality from t4 to t, we find
∫ t

t4

[

δ(s)p(s) −
(

δ∆(s)
)

+

C(s)

Rα
m,1(s, t4)

]

∆s ≤ w(t4).

Taking limit superior as t → ∞, we obtain a contradiction to condition (3.38). This

completes the proof.

As a direct consequence of Theorems 3.1-3.8, we obtain oscillation criteria for

Eq. (1.1) with n = 2; namely, for the equation

(

r1(t)φα1

(

x∆(t)
))∆

+
N

∑

j=0

pj (t) φγj
(xσ (gj (t))) = 0. (3.41)
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Corollary 3.9. Assume that (3.1) holds. Then every solution of Eq. (3.41) is oscil-

latory.

Corollary 3.10. Assume that (2.4) and (2.1) hold. Every solution of Eq. (3.41) is

oscillatory provided one of the following conditions is satisfied for sufficiently large

T ∈ [t0,∞)T :

(a)
∫ ∞

t0
p (t) Rγ

1(t, T )∆t = ∞, if γ < α;

lim supt→∞ P (t)R1(t, T ) > 1, if γ = α;

either
∫ ∞

t0
τ∆(t)P (t)R2(t)∆t

or
∫ ∞

T
τ∆(t)Q(t)∆t = ∞,

if γ > α;

(b) there exist δ ∈ C1
rd([t0,∞)T, (0,∞)) and H, h ∈ Crd (D, R), where D ≡ {(t, u) :

t ≥ u ≥ t0} such that (3.21), (3.22) and

lim sup
t→∞

1

H (t, T )

∫ t

T

[

δ(u)p(u)H (t, u) −
(α1/γ)α1 hα1+1

− (t, u)

(α1 + 1)α1+1 [δ(u)τ∆(u)A(u)R2(u)]α1

]

∆u

= ∞,

where τ ◦ σ = σ ◦ τ on [t0,∞)T;

(c) there exist δ ∈ C1
rd([t0,∞)T, (0,∞)) and H, h ∈ Crd (D, R), where D ≡ {(t, u) :

t ≥ u ≥ t0} such that (3.21), (3.32) such that

lim sup
t→∞

1

H (t, T )

∫ t

T

[

H (t, u) δ(u)p(u) −
[h− (t, u)]2 R1−α

1 (u, T )

4γδ(u)τ∆(u)R2(u)A(u)B(u)

]

∆u = ∞,

for α ≥ 1 and where τ ◦ σ = σ ◦ τ on [t0,∞)T;

(d) there exist δ ∈ C1
rd([t0,∞)T, (0,∞)) such that

lim sup
t→∞

∫ t

T

[

δ(u)p(u)−

(

δ∆(u)
)

+
C(u)

Rα
1 (u, T )

]

∆u = ∞,

where A, B and C are defined by (3.24), (3.34) and (3.39) respectively and where

R1(t, T ) := R1,1(t, T ) =

∫ τ(t)

T

r
−1/α1

1 (s) ∆s, R2(t) := R1,2(t, T ) = r
−1/α1

1 (τ(t)) ,

and

Q(t) := Q1(t, T ) =

[
∫ ∞

t

p(u)∆u

/

r1(τ(t))

]1/α1

.

Corollary 3.11. Assume that (2.4) and (2.1) hold and for sufficiently large T ∈

[t0,∞)T

lim sup
t→∞

P (t)R1(t, T ) = ∞.

Then every bounded solution of Eq. (3.41) is oscillatory.



OSCILLATION CRITERIA 391

For Eq. (1.1) with an even n ≥ 4, we have further criteria for oscillation as shown

below. We denote

P̄i(t) :=







[∫ ∞

t
P̄i−1 (s)∆s

/

rn−i(t)
]1/αn−i i = 1, . . . , n − 1,

∑N
j=0 pj (t) , i = 0.

Theorem 3.12. Assume that (2.4) and (2.1) hold and

either

∫ ∞

t0

P̄1(t)∆t = ∞ or

∫ ∞

t0

P̄2(t)∆t = ∞, (3.42)

and for sufficiently large T ∈ [t0,∞)T,

∫ ∞

t0
p (t) Rγ

n−1,1(t, T )∆t = ∞, if γ < α;

lim supt→∞ P (t)Rn−1,1(t, T ) > 1, if γ = α;

∫ ∞

t0
τ∆(t)P (t)Rn−1,2(t, T )∆t = ∞, if γ > α.

(3.43)

Then every solution of Eq. (1.1) is oscillatory.

Theorem 3.13. The conclusions of Theorem 3.12 hold if the third condition in (3.43)

is replaced by
∫ ∞

T

τ∆(t)Qn−1(t, T )∆t = ∞, (3.44)

for sufficiently large T ∈ [t0,∞)T and where

Qn−1(t, T ) := φ−1
α[1,n−1]

[
∫ ∞

s

p(u)∆u

]

R̂n−2(τ(t), T ).

Theorem 3.14. Assume that (2.4), (2.1) and (3.42) hold and for sufficiently large

T ∈ [t0,∞)T

lim sup
t→∞

P (t)Rn−1,1(t, T ) = ∞. (3.45)

Then every bounded solution of Eq. (1.1) is oscillatory.

Theorem 3.15. Assume (2.4), (2.1) and (3.42) hold and τ ◦ σ = σ ◦ τ on [t0,∞)T.

Furthermore, suppose that there exist functions δ ∈ C1
rd([t0,∞)T, (0,∞)) and H, h ∈

Crd (D, R), where D ≡ {(t, u) : t ≥ u ≥ t0} such that (3.21), (3.22) and

lim sup
t→∞

1

H (t, T )

∫ t

T

[

δ(u)p(u)H (t, u) −
(α/γ)α [h− (t, u)]α+1

(α + 1)α+1 [δ(u)τ∆(u)A(u)Rn−1,2(u, T )]α

]

∆u

= ∞, (3.46)

where A is defined by (3.24). Then every solution of Eq. (1.1) is oscillatory.

Theorem 3.16. Assume (2.4), (2.1) and (3.42) hold, α ≥ 1 and τ ◦ σ = σ ◦ τ on

[t0,∞)T. Furthermore, suppose that there exist functions δ ∈ C1
rd([t0,∞)T, (0,∞))
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and H, h ∈ Crd (D, R), where D ≡ {(t, u) : t ≥ u ≥ t0} such that (3.21), (3.32) and

for all sufficiently large T ∈ [t0,∞)T

lim sup
t→∞

1

H (t, T )

∫ t

T

[

H (t, u) δ(u)p(u) −
[h− (t, u)]2 R1−α

n−1,1(u, T )

4γδ(u)τ∆(u)Rn−1,2(u, T )A(u)B(u)

]

∆u

= ∞, (3.47)

where A and B are defined by (3.24) and (3.34). Then every solution of Eq. (1.1) is

oscillatory.

Theorem 3.17. Assume (2.4), (2.1) and (3.42) hold and there exists

δ ∈ C1
rd([t0,∞)T, (0,∞)) such that for every sufficiently large T ∈ [t0,∞)T

lim sup
t→∞

∫ t

T

[

δ(u)p(u)−

(

δ∆(u)
)

+
C(u)

Rα
n−1,1(u, T )

]

∆u = ∞, (3.48)

where C is defined by (3.39). Then every solution of Eq. (1.1) is oscillatory.

Proofs of Theorems 3.12–3.17. Assume Eq. (1.1) has a nonoscillatory solution x(t).

Then without loss of generality, assume x(t) > 0 and x (gj (t)) > 0, j = 0, 1, 2, . . . , N ,

on [t0,∞)T. It follows from Lemma 2.1 that there exists an odd integer m ∈

{1, . . . , n − 1} such that (2.2) and (2.3) hold for t ≥ t1 ∈ [t0,∞)T. This implies

x(t) is strictly increasing on [t1,∞)T. We claim that (3.42) implies that m = n − 1.

In fact, if 1 ≤ m ≤ n − 3, then for t ≥ t1

x[n](t) < 0, x[n−1](t) > 0, x[n−2](t) < 0, x[n−3](t) > 0. (3.49)

As seen in the proof of Theorem 3.1, there exists t2 ∈ [t1,∞)T and L > 0 such that

−
(

x[n−1] (t)
)∆

=
N

∑

j=0

pj (t) φγj
(xσ (gj (t))) ≥ L

N
∑

j=0

pj (t) = L P̄0(t) for t ∈ [t2,∞)T.

(3.50)

Integrating (3.50) from t to v ∈ [t,∞)T and using (3.49), we get that

x[n−1](t) ≥ −x[n−1](v) + x[n−1](t) ≥ L

∫ v

t

P̄0 (s)∆s.

By taking limits as v → ∞, we have

x[n−1](t) ≥ L

∫ ∞

t

P̄0 (s)∆s.

It is known from Theorem 3.1 that
∫ ∞

t
P̄0 (s)∆s < ∞. Thus

(

x[n−2](t)
)∆

≥ L1/αn−1

[

1

rn−1(t)

∫ ∞

t

P̄0 (s)∆s

]1/αn−1

= L1/αn−1 P̄1(t). (3.51)
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Assume
∫ ∞

t0
P̄1(t)∆t = ∞. Integrating above inequality from t2 to t ∈ [t2,∞)T

and noting that x[n−2] < 0 eventually, we get

x[n−2](t) − x[n−2](t2) ≥ L1/αn−1

∫ t

t2

P̄1(s)∆s.

Then by (3.42), we have limt→∞ x[n−2](t) = ∞, which contradicts the fact that

x[n−2](t) < 0 on [t2,∞)T. Assume
∫ ∞

t0
P̄2(t)∆t = ∞. By integrating the inequal-

ity (3.51) from t to v ∈ [t,∞)T and then taking limits as v → ∞ and using the fact

x[n−2] < 0 eventually, we get

−x[n−2](t) > L1/αn−1

∫ ∞

t

P̄1(s)∆s,

which implies

−
(

x[n−3](t)
)∆

> L1/α[n−2,n−1]

[

1

rn−2(t)

∫ ∞

t

P̄1(s)∆s

]1/αn−2

= L1/α[n−2,n−1]P̄2(t).

Again, integrating above inequality from t2 to t ∈ [t2,∞)T and noting that x[n−3] > 0

eventually, we get

x[n−3](t2) − x[n−3](t) ≥ L1/α[n−2,n−1]

∫ t

t2

P̄2(s)∆s.

As a result, limt→∞ x[n−3](t) = −∞, which contradicts the fact that x[n−3] > 0 on

[t2,∞)T. This shows that if (3.42) holds, then m = n − 1. The rest of the proof of

Theorems 3.12–3.17 are similar to the proof of Theorems 3.2–3.8 with m = n − 1

respectively and hence can be omitted.

Remark 3.18. The conclusions of Theorem 3.12–3.17 remain intact if assumption

(3.42) is replaced by one of the following conditions holds:

either

∫ ∞

t0

P1(t)∆t = ∞ or

∫ ∞

t0

P2(t)∆t = ∞. (3.52)

4. OSCILLATION CRITERIA FOR ODD ORDER EQUATIONS

In this section, we establish the oscillation criteria for Eq. (1.1) when n is odd.

It follows from Lemma 2.1 that there exists an even integer m ∈ {0, . . . , n − 1} such

that (2.2) and (2.3) hold eventually.

Theorem 4.1. Assume that (2.1) and (3.1) hold. Then every solution of Eq. (1.1)

is either oscillatory or tends to zero eventually.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of

generality, assume x(t) > 0 and x (gj (t)) > 0, j = 0, 1, 2, . . . , N , on [t0,∞)T. It

follows from Lemma 2.1 that there exists an even integer m ∈ {0, . . . , n − 1} such

that (2.2) and (2.3) hold for t ≥ t1 ∈ [t0,∞)T.
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(I) We show that if m = 0, then limt→∞ x(t) = 0. In this case

(−1)k x[k] > 0 for k = 0, 1, . . . , n.

This implies that x(t) is strictly decreasing on [t1,∞)T. Then limt→∞ x(t) = l ≥ 0.

Assume l > 0. Then for sufficiently large t2 ∈ [t1,∞)T, we have xσ(gj(t)) ≥ l for

t ≥ t2. It follows that

φγj
(xσ (gj (t))) ≥ lγj ≥ L for t ∈ [t2,∞)T,

where L := inf0≤j≤N {lγj} > 0. Then from (1.1), we obtain

−
(

x[n−1] (t)
)∆

=
N

∑

j=0

pj (t)φγj
(xσ (gj (t))) ≥ L

N
∑

j=0

pj (t) for t ∈ [t2,∞)T.

Replacing t by s in above inequality and integrating from t2 to t ∈ [t2,∞)T, we obtain

−x[n−1] (t) + x[n−1] (t2) ≥ L

N
∑

j=0

∫ t

t2

pj (s)∆s.

Hence by (3.1), we have limt→∞ x[n−1] (t) = −∞, which contradicts the fact that

x[n−1] (t) > 0 eventually.

(II) Assume m ≥ 2. Then the same argument as in the proof of Theorem 3.1

leads to a contradiction to assumption (3.1). This completes the proof.

Theorem 4.2. Assume that (2.1) holds and
∫ ∞

t0

P̄n−1(t)∆t = ∞. (4.1)

If
N

∑

j=0

∫ ∞

t2

pj (s)

∫ gi(s)

t1

r
−1/α1

1 (ζ)∆ζ∆s = ∞, (4.2)

then every solution of Eq. (1.1) is either oscillatory or tends to zero eventually.

Proof. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then without loss of

generality, assume x(t) > 0 and x (gj (t)) > 0, j = 0, 1, 2, . . . , N , on [t0,∞)T. It

follows from Lemma 2.1 that there exists an even integer m ∈ {0, . . . , n − 1} such

that (2.2) and (2.3) hold for t ≥ t1 ∈ [t0,∞)T.

(I) We show that if m = 0, then limt→∞ x(t) = 0. In this case

(−1)k x[k] > 0 for k = 0, 1, . . . , n. (4.3)

This implies that x(t) is strictly decreasing on [t1,∞)T. Then limt→∞ x(t) = l ≥ 0.

Assume l > 0. Then for sufficiently large t2 ∈ [t1,∞)T, we have xσ(gj(t)) ≥ l for

t ≥ t2. It follows that

φγj
(xσ (gj (t))) ≥ lγj ≥ L for t ∈ [t2,∞)T,
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where L := inf0≤j≤N {lγj} > 0. Then from (1.1), we obtain

−
(

x[n−1] (t)
)∆

=
N

∑

j=0

pj (t) φγj
(xσ (gj (t))) ≥ L

N
∑

j=0

pj (t) = L P̄0(t).

Integrating above inequality from t to v ∈ [t,∞)T, we get

−x[n−1](v) + x[n−1](t) ≥ L

∫ v

t

P̄0 (s)∆s,

and by (4.3) we see that x[n−1](v) > 0. Hence by taking limits as v → ∞, we have

x[n−1](t) ≥ L

∫ ∞

t

P̄0 (s)∆s,

which implies

(

x[n−2](t)
)∆

≥ L1/αn−1

[
∫ ∞

t

P̄0 (s)∆s

/

rn−1(t)

]1/αn−1

= L1/αn−1 P̄1(t).

Integrating from t to v ∈ [t,∞)T and letting v → ∞ and using (4.3), we get

−x[n−2](t) ≥ L1/αn−1

∫ ∞

t

P̄1(s)∆s.

Continuing this process, we get

−x[1](t) ≥ L1/α[2,n−1]

∫ ∞

t

P̄n−2(s) ∆s,

which implies

−x∆(t) ≥ L1/α[1,n−1]

[
∫ ∞

t

P̄n−2 (s)∆s

/

r1(t)

]1/α1

= L1/α[1,n−1]P̄n−1(t).

Again, integrating the above inequality from t2 to t ∈ [t2,∞)T, we get

−x(t) + x(t2) ≥ L1/α[1,n−1]

∫ t

t2

P̄n−1(s) ∆s

Hence by (4.1), we have limt→∞ x(t) = −∞, which contradicts the fact that x > 0

eventually. This shows that if m = 0, then limt→∞ x(t) = 0.

(II) Assume m ≥ 2. This implies

x[1](t) > 0, x[2](t) > 0 and x[n−1](t) > 0 for t ≥ t1.

Since x[2](t) > 0 on [t1,∞)T, we have

x[1](t) ≥ x[1](t1) =: c > 0.

Thus for t ≥ t1,

x(t) ≥ x(t) − x(t1) ≥ c1/α1

∫ t

t1

r
−1/α1

1 (s)∆s.
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Choose t2 ∈ [t1,∞)T such that for t ∈ [t2,∞)T

φγj
(xσ (gj (t))) ≥ φγj

(x (gj (t))) ≥ cγj/α1

∫ gi(t)

t1

r
−1/α1

1 (s)∆s ≥ C

∫ gi(t)

t1

r
−1/α1

1 (s)∆s,

(4.4)

where C := inf0≤j≤N

{

cγj/α1
}

> 0. It follows from (1.1) and (4.4) that

−
(

x[n−1] (t)
)∆

≥ C
N

∑

j=0

pj (t)

∫ gi(t)

t1

r
−1/α1

1 (s)∆s for t ∈ [t2,∞)T.

Integrating both sides of the last inequality from t2 to t, we have

−x[n−1] (t) + x[n−1] (t2) ≥ C
N

∑

j=0

∫ t

t2

pj (s)

∫ gi(s)

t1

r
−1/α1

1 (ζ)∆ζ∆s.

Hence by (4.2), we have limt→∞ x[n−1] (t) = −∞, which contradicts the fact that

x[n−1] (t) > 0 eventually. This completes the proof.

Theorem 4.3. Assume that (2.4), (2.1), (3.3) and (4.1) hold for sufficiently large

T ∈ [t0,∞)T and for every even integer m ∈ {2, . . . , n − 1}. Then every solution of

Eq. (1.1) is oscillatory or tends to zero eventually.

Theorem 4.4. The conclusions of Theorem 4.3 hold if the third condition in (3.3)

is replaced by (3.14) for sufficiently large T ∈ [t0,∞)T and for every even integer

m ∈ {2, . . . , n − 1}.

Theorem 4.5. Assume that (2.4), (2.1), (3.17) and (4.1) hold for sufficiently large

T ∈ [t0,∞)T and for every odd integer m ∈ {2, . . . , n − 1}. Then every bounded

solution of Eq. (1.1) is oscillatory or tends to zero eventually.

Theorem 4.6. Assume (2.4) and (2.1) hold and τ ◦ σ = σ ◦ τ on [t0,∞)T. Fur-

thermore, suppose that there exist functions δ ∈ C1
rd([t0,∞)T, (0,∞)) and H, h ∈

Crd (D, R), where D ≡ {(t, u) : t ≥ u ≥ t0} such that (3.21), (3.22)and (3.23) and

(4.1) hold for all sufficiently large T and for every even integer m ∈ {2, . . . , n − 1}.

Then every solution of Eq. (1.1) is oscillatory or tends to zero eventually.

Theorem 4.7. Assume (2.4) and (2.1) hold, α ≥ 1 and τ ◦ σ = σ ◦ τ on [t0,∞)T.

Furthermore, suppose that there exist functions δ ∈ C1
rd([t0,∞)T, (0,∞)) and H, h ∈

Crd (D, R), where D ≡ {(t, u) : t ≥ u ≥ t0} such that (3.21), (3.32) and (3.33) and

(4.1) hold for all sufficiently large T and for every even integer m ∈ {2, . . . , n − 1}.

Then every solution of Eq. (1.1) is oscillatory or tends to zero eventually.

Theorem 4.8. Assume (2.4) and (2.1) hold and that there exists

δ ∈ C1
rd([t0,∞)T, (0,∞)) such that (3.38) and (4.1) hold for all sufficiently large T

and for every even integer m ∈ {2, . . . , n − 1}. Then every solution of Eq. (1.1) is

oscillatory or tends to zero eventually.
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Proofs of Theorems 4.3–4.8. Assume Eq. (1.1) has a nonoscillatory solution x(t). Then

without loss of generality, assume x(t) > 0 and x (gj (t)) > 0, j = 0, 1, 2, . . . , N ,

on [t0,∞)T. It follows from Lemma 2.1 that there exists an even integer m ∈

{0, . . . , n − 1} such that (2.2) and (2.3) hold for t ≥ t1 ∈ [t0,∞)T.

(I) Assume m = 0. The same argument as in the proof of Theorem 4.2 and hence

is omitted.

(II) Assume m ≥ 2. The same argument as in the proof of Theorems 3.2–3.8

respectively and hence is omitted. This completes the proof.

Remark 4.9. (1) If the assumption (4.1) is not satisfied, we have some sufficient

conditions which ensure that every solution x(t) of (1.1) oscillates or limt→∞ x(t)

exists (finite).

(2) The conclusions of Theorem 4.2–4.8 remain intact if assumption (4.1)is re-

placed by one of the following conditions
∫ ∞

t0

P̄0(t)∆t = ∞,

∫ ∞

t0

P̄1(t)∆t = ∞, . . . ,

∫ ∞

t0

P̄n−2(t)∆t = ∞.

(3) The conclusions of Theorem 4.3–4.8 remain intact if assumption (4.1)is re-

placed by one of the following conditions either
∫ ∞

t0

P0(t)∆t = ∞,

∫ ∞

t0

P1(t)∆t = ∞, . . . ,

∫ ∞

t0

Pn−1(t)∆t = ∞.

In the following theorems we assume whether (3.42) or (3.52) holds.

Theorem 4.10. Assume that (2.4), (2.1), (3.42) and (3.43) hold for sufficiently

large T ∈ [t0,∞)T. Then every solution of Eq. (1.1) is oscillatory or tends to zero

eventually.

Theorem 4.11. The conclusions of Theorem 4.10 hold if the third condition in (3.43)

is replaced by (3.44) for sufficiently large T ∈ [t0,∞)T.

Theorem 4.12. Assume that (2.4), (2.1), (3.42) and (3.45) hold for sufficiently large

T ∈ [t0,∞)T. Then every bounded solution of Eq. (1.1) is oscillatory or tends to zero

eventually.

Theorem 4.13. Assume (2.4) and (2.1) hold and τ ◦ σ = σ ◦ τ on [t0,∞)T. Fur-

thermore, suppose that there exist functions δ ∈ C1
rd([t0,∞)T, (0,∞)) and H, h ∈

Crd (D, R), where D ≡ {(t, u) : t ≥ u ≥ t0} such that (3.21), (3.22)and (3.42) and

(3.46) hold for all sufficiently large T and for every even integer m ∈ {2, . . . , n − 1}.

Then every solution of Eq. (1.1) is oscillatory or tends to zero eventually.

Theorem 4.14. Assume (2.4) and (2.1) hold, α ≥ 1 and τ ◦ σ = σ ◦ τ on [t0,∞)T.

Furthermore, suppose that there exist functions δ ∈ C1
rd([t0,∞)T, (0,∞)) and H, h ∈
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Crd (D, R), where D ≡ {(t, u) : t ≥ u ≥ t0} such that (3.21), (3.32) and (3.42) and

(3.47) hold for all sufficiently large T . Then every solution of Eq. (1.1) is oscillatory

or tends to zero eventually.

Theorem 4.15. Assume (2.4) and (2.1) hold and that there exists

δ ∈ C1
rd([t0,∞)T, (0,∞)) such that (3.42) and (3.48)hold for all sufficiently large T

and for every even integer m ∈ {2, . . . , n − 1}. Then every solution of Eq. (1.1) is

oscillatory or tends to zero eventually.

Proofs of Theorems 4.10–4.15. Assume Eq. (1.1) has a nonoscillatory solution x(t).

Then without loss of generality, assume x(t) > 0 and x (gj (t)) > 0, j = 0, 1, 2, . . . , N ,

on [t0,∞)T. It follows from Lemma 2.1 that there exists an even integer m ∈

{0, . . . , n − 1} such that (2.2) and (2.3) hold for t ≥ t1 ∈ [t0,∞)T.

(I) Assume m = 0. In this case

(−1)k x[k] > 0 for k = 0, 1, . . . , n.

This implies that x(t) is strictly decreasing on [t1,∞)T. Then limt→∞ x(t) = l ≥ 0.

Assume l > 0. Then for sufficiently large t2 ∈ [t1,∞)T, we have xσ(gj(t)) ≥ l for

t ≥ t2. It follows that

φγj
(xσ (gj (t))) ≥ lγj ≥ L for t ∈ [t2,∞)T,

where L := inf0≤j≤N {lγj} > 0. Then from (1.1), we obtain

−
(

x[n−1] (t)
)∆

=

N
∑

j=0

pj (t) φγj
(xσ (gj (t))) ≥ L

N
∑

j=0

pj (t) = L P̄0(t).

The rest of the proof is similar to the proof of Theorems 3.12–3.17, which leads to a

contradiction to the assumption (3.42). This shows that if m = 0, then limt→∞ x(t) =

0. The same argument as in the proof of Theorem 4.2 can be used and hence is

omitted.

(II) Assume m ≥ 2. The same argument as in the proof of Theorems 3.12–3.17

and hence is omitted. This completes the proof.

Remark 4.16. (1) The results are more general than any of the results in the refer-

ences since, by different choices for γi, we can get that all terms are sublinear, or all

terms are superlinear, or a combination of sublinear and superlinear terms.

(2) The results in this paper are including the both cases and also we do not need

to assume gj(t) ≥ t or gj(t) ≤ t, for all sufficiently large t.

(3) The results in this paper are in a form with a high degree of generality, thus

with an appropriate choice of the functions δ(t)and H (t, s), we can get several suffi-

cient conditions for oscillation of equation (1.1). For instance, if we choose H(t, s) =

(t − s)n, n ≥ 2, or H(t, s) = (t − s)(n), where t(n) = t (t − 1) · · · (t − n + 1) , t(0) = 1,
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or H(t, s) = (A(t) − A(s))n, where A(t) =
∫ t

t0
∆s
r(s)

, for t ≥ s ≥ t0; we may choose δ(t)

by 1, or t, etc.
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Birkhäuser, Boston, 2003.

[8] D. Chen, Oscillation and asymptotic behavior of solutions of certain third-order nonlinear

delay dynamic equations, Theoretical Mathematics & Applications 3 (2013), 19–33.

[9] E. M. Elabbasy and T. S. Hassan, Oscillation criteria for third order functional dynamic

equations, Electron. J. Differential Equations 2010 (2010), 1–14.

[10] L. Erbe, J. Baoguo and A. Peterson, Oscillation of nth-order superlinear dynamic equations

on time scales, Rocky Mountain J. Math. 41 (2011), 471–491.

[11] L. Erbe and T. S. Hassan, New oscillation criteria for second order sublinear dynamic equa-

tions, Dynam. Syst. Appl. 22 (2013), 49–64.

[12] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for half-linear delay

dynamic equations on time scales, Nonlinear Dynam. Sys. Th. 9 (2009), 51–68.

[13] L. Erbe, T. S. Hassan, A. Peterson and S. H. Saker, Oscillation criteria for sublinear half-linear

delay dynamic equations on time scales, Int. J. Difference Equ. 3 (2008), 227–245.

[14] L. Erbe, A. Peterson and S. H. Saker, Hille-Kneser-type criteria for second-order dynamic

equations on time scales, Adv. Diff. Eq. 2006 (2006), 1–18.

[15] L. Erbe, A. Peterson and S. H. Saker, Hille and Nehari type criteria for third order dynamic

equations, J. Math. Anal. Appl. 329 (2007), 112–131.

[16] L. Erbe, A. Peterson and S. H. Saker, Asymptotic behavior of solutions of a third-order

nonlinear dynamic equation on time scales, J. Comp. Appl. Math. 181 (2005), 92–102.

[17] L. Erbe, A. Peterson and S. H. Saker, Oscillation and asymptotic behavior of a third-order

nonlinear dynamic equation, Canad. Appl. Math. Quarterly 14 (2006), 129–147.

[18] L. Erbe, T. S. Hassan and A. Peterson, Oscillation of third order nonlinear functional dynamic

equations on time scales, Differ. Equ. Dyn. Syst. 18 (2010), 199–227.

[19] L. Erbe, T. S. Hassan and A. Peterson, Oscillation criteria for nonlinear damped dynamic

equations on time scales, Appl. Math. Comput. 203 (2008), 343–357.

[20] L. Erbe, T. S. Hassan and A. Peterson, Oscillation of second order functional dynamic equa-

tions, Int. J. Difference Equ. 5 (2010), 1–19.



400 R. P. AGARWAL, S. R. GRACE, AND T. S. HASSAN

[21] L. Erbe, T. S. Hassan and A. Peterson, Oscillation of third order functional dynamic equations

with mixed arguments on time scales, J. Appl. Math Comput. 34 (2010), 353–371.

[22] L. Erbe, B. Karapuz and A. Peterson, Kamenev-type oscillation criteria for higher order neutral

delay dynamic equations, Int. J. Differ. Equ. Appl. 6 (2011), 1–16.

[23] L. Erbe, R. Mert, A. Peterson and A. Zafer, Oscillation of even order nonlinear delay dynamic

equations on time scales, Czech. Math. J. 63 (2013), 265–279.

[24] M. Gera, J. R. Graef, M. Gregus, On oscillatory and asymptotic properties of solutions of

certain nonlinear third order differential equations, Nonlinear Anal. 32 (1998) 417–425, 49–

56.

[25] S. R. Grace, R. P. Agarwal, M. Bohner and D. O’Regan, Oscillation of second order strongly

superlinear and strongly sublinear dynamic equations, Commun. Nonlin. Sci. Numer. Simul.

14 (2009), 3463–3471.

[26] S. R. Grace, R. P. Agarwal and A. Zafer, Oscillation of higher order nonlinear dynamic equa-

tions on time scale, Adv. Differ. Equ. 2012, 2012:67.

[27] S. R. Grace, J. Graef, S. Panigrahi and E. Tunc, On the oscillatory behavior of even order

neutral delay dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ. 2012

(2012), 1–12.

[28] S. R. Grace and T. S. Hassan, Oscillation criteria for higher order nonlinear dynamic equations,

Math. Nachr. (2014)/DOI 10.1002/mana.201300157, 1–15.

[29] S. R. Grace, On the oscillation of nth-order dynamic equations on time scale, Mediterr. J.

Math. 10 (2013), 147–156.

[30] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, second ed., Cambridge University Press,

Cambridge, 1988.

[31] Z. Han, T. Li, S. Sun and M. Zhang, Oscillation behavior of solutions of third-order nonlinear

delay dynamic equations on time scales, Commun. Korean Math. Soc. 26 (2011), 499–513.

[32] T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales,

Math. Comput. Modelling 49 (2009), 1573–1586.

[33] T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math.

Anal. Appl. 345 (2008), 176–185.

[34] T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations

on time scales, Appl. Math. Comput. 217 (2011), 5285–5297.

[35] T. S. Hassan, L. Erbe, and A. Peterson, Forced oscillation of second order functional differential

equations with mixed nonlinearities, Acta Math. Sci. 31B (2011), 613–626.

[36] T. S. Hassan and Q. Kong, Oscillation criteria for second order nonlinear dynamic equations

with p-laplacian and damping, Acta Math. Sci. 33 (2013), 975–988.

[37] T. S. Hassan and Q. Kong, Interval criteria for forced oscillation of differential equations with

p-Laplacian, damping, and mixed nonlinearities, Dynam. Syst. Appl. 20 (2011), 279–294.

[38] S. Hilger, Analysis on measure chains — a unified approach to continuous and discrete calculus,

Results Math. 18 (1990), 18–56.

[39] V. Kac and P. Chueng, Quantum Calculus, Universitext, 2002.

[40] B. Karapuz, Unbounded oscillation of higher-order nonlinear delay dynamic equations of neu-

tral type with oscillating coefficients, Electron. J. Qual. Theory Differ. Equ. 34 (2009), 1–14.

[41] I. T. Kiguradze, On oscillatory solutions of some ordinary differential equations, Soviet Math.

Dokl. 144 (1962) 33–36.

[42] J. V. Manojlovic, Oscillation criteria for second-order half-linear differential equations, Math.

Comp. Mod. 30 (1999), 109–119.



OSCILLATION CRITERIA 401

[43] R. Mert, Oscillation of higher order neutral dynamic equations on time scales, Adv. Differ.

Equ. (2012) 2012:68.

[44] A. Ozbekler and A. Zafer, Oscillation of solutions of second order mixed nonlinear differential

equations under impulsive perturbations, Comput. Math. Appl. 61 (2011), no. 4, 933–940.

[45] S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales,

J. Comp. Appl. Math. 177 (2005), 375–387.

[46] Y. G. Sun and J. S. Wong, Oscillation criteria for second order forced ordinary differential

equations with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007), 549–560.

[47] T. Sun, W. Yu and H. Xi, Oscillatory behavior and comparison for higher order nonlinear

dynamic equations on time scales, J. Appl. Math. & Informatics 30 (2012), 289–304.

[48] A. Wintner, On the nonexistence of conjugate points, Amer. J. Math. 73 (1951), 368–380.

[49] Z. Yu and Q. Wang, Asymptotic behavior of solutions of third-order nonlinear dynamic equa-

tions, J. Comp. Appl. Math. 225 (2009), 531–540.


