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ABSTRACT. This paper presents a corollary of the omitted ray fixed point theorem with an

example that utilizes a non-standard existence of solutions argument, in conjunction with the mean

value theorem, to prove the existence of a solution to a conjugate boundary value problem.
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1. INTRODUCTION

The Krasnosel’skii [13] fixed point theorem, as well as functional generalizations

of Krasnosel’skii’s fixed point theorem, rely on conditions of the form

(K1) if x ∈ P with α(x) = a, then α(Tx) < a;

(K2) if x ∈ P with β(x) = b, then β(Tx) > b.

In this paper, we show how to use a homogeneous function, in conjunction with

the omitted ray fixed point theorem [8], to arrive at conditions of the form

(D2) if x ∈ P with β(x) = b, then γ(Tx− x0) < γ(x− x0) + γ(Tx− x);

(D4) if x ∈ P with κ(x) = c then ψ(Tx− x1) < ψ(x− x1) + ψ(Tx− x).

These conditions have a natural triangle inequality flavor as compared to the corre-

sponding conditions of the omitted ray fixed point theorem [8], which take the form

(A2) if x ∈ P with β(x) = b, then γ(Tx− x0) < γ(x− x0) + γ(Tx− x);
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(A6) if x ∈ P with κ(x) = c, then ψ(Tx− x1) > ψ(x− x1) + ψ(Tx− x).

As an application, we show how one can apply Corollary 2.6 to the operator

By(t) = f

(
∫ 1

0

G(t, s)y(s)ds

)

,

whose fixed points can be used to construct solutions of our conjugate boundary value

problem. By using a function y0 of the form

y0 = f

(

bt(1 − t)

4

)

,

in conjunction with this alternative inversion technique involving the operator B,

we introduce a new method that utilizes the mean value theorem to show that the

conditions of Corollary 2.6 are satisfied; hence, our conjugate boundary value problem

has a solution.

2. PRELIMINARIES

In this section we will state the definitions that are used in the remainder of the

paper.

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set P ⊂ E

is called a cone if for all x ∈ P and λ ≥ 0 it follows that λx ∈ P ; if both x,−x ∈ P ,

then x = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if

y − x ∈ P .

Definition 2.2. An operator is called completely continuous if it is continuous and

maps bounded sets into precompact sets.

Definition 2.3. A map α is said to be a nonnegative continuous concave functional

on a cone P of a real Banach space E if α : P → [0,∞) is continuous, and

α(tx+ (1 − t)y) ≥ tα(x) + (1 − t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map β is a nonnegative contin-

uous convex functional on a cone P of a real Banach space E if β : P → [0,∞) is

continuous, and

β(tx+ (1 − t)y) ≤ tβ(x) + (1 − t)β(y)

for all x, y ∈ P and t ∈ [0, 1]. We say the map γ is a continuous sub-homogeneous

functional on a real Banach space E if γ : E → R is continuous, and

γ(tx) ≤ tγ(x) for all x ∈ E, t ∈ [0, 1] and γ(0) = 0.
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Similarly we say the map ρ is a continuous super-homogeneous functional on a real

Banach space E if ρ : E → R is continuous, and

ρ(tx) ≥ tρ(x) for all x ∈ E, t ∈ [0, 1] and ρ(0) = 0.

Let ψ and δ be nonnegative continuous functionals on P . Then, for positive real

numbers a and b, we define the following sets:

P (ψ, b) := {x ∈ P : ψ(x) < b}

and

P (δ, ψ, b, a) := P (δ, b) − P (ψ, a) = {x ∈ P : a < ψ(x) and δ(x) < b}.

The following theorem is the omitted ray fixed point theorem [8]. This theorem

utilizes a functional version of Altman’s condition [2], applying the techniques found

in the Leggett-Williams fixed point theorem [14] and generalizations of the Leggett-

Williams fixed point theorem [3, 4, 5].

Theorem 2.4. Suppose P is a cone in a real Banach space E, α and κ are non-

negative continuous concave functionals on P , β and θ are nonnegative continuous

convex functionals on P , γ and δ are continuous sub-homogeneous functionals on E,

ρ and ψ are continuous super-homogeneous functionals on E, and T : P → P is a

completely continuous operator. Furthermore, suppose that there exist nonnegative

numbers a, b, c and d, and functions x0, x1 ∈ P , such that

(A1) x0 ∈ {x ∈ P : a ≤ α(x) and β(x) < b};

(A2) if x ∈ P with β(x) = b and α(x) ≥ a, then γ(Tx− x0) < γ(x− x0) + γ(Tx− x);

(A3) if x ∈ P with β(x) = b and α(Tx) < a, then δ(Tx−x0) < δ(x−x0)+ δ(Tx−x);

(A4) x1 ∈ {x ∈ P : c < κ(x) and θ(x) ≤ d} and P (κ, c) 6= ∅;

(A5) if x ∈ P with κ(x) = c and θ(x) ≤ d, then ρ(Tx− x1) > ρ(x− x1) + ρ(Tx− x);

(A6) if x ∈ P with κ(x) = c and θ(Tx) > d, then ψ(Tx−x1) > ψ(x−x1)+ψ(Tx−x).

If

(H1) P (κ, c) ( P (β, b), then T has a fixed point x ∈ P (β, κ, b, c),

whereas, if

(H2) P (β, b) ( P (κ, c), then T has a fixed point x ∈ P (κ, β, c, b).

Note that if ρ is a continuous homogeneous functional on E, then both ρ and −ρ

are continuous super-homogeneous and sub-homogeneous functionals on E. Using

−ρ in property (A5) of Theorem 2.4

−ρ(Tx− x1) > −ρ(x− x1) − ρ(Tx− x),

we have

ρ(Tx− x1) < ρ(x− x1) + ρ(Tx− x);
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this is the justification of the following Corollary of the omitted ray fixed point the-

orem.

Corollary 2.5. Suppose P is a cone in a real Banach space E, α and κ are nonnega-

tive continuous concave functionals on P , β and θ are nonnegative continuous convex

functionals on P , γ and δ are continuous sub-homogeneous functionals on E, ρ and

ψ are continuous homogeneous functionals on E, and T : P → P is a completely con-

tinuous operator. Furthermore, suppose that there exist nonnegative numbers a, b, c

and d, and functions x0, x1 ∈ P , such that

(A1) x0 ∈ {x ∈ P : a ≤ α(x) and β(x) < b};

(A2) if x ∈ P with β(x) = b and α(x) ≥ a, then γ(Tx− x0) < γ(x− x0) + γ(Tx− x);

(A3) if x ∈ P with β(x) = b and α(Tx) < a, then δ(Tx−x0) < δ(x−x0)+ δ(Tx−x);

(A4) x1 ∈ {x ∈ P : c < κ(x) and θ(x) ≤ d} and P (κ, c) 6= ∅;

(A5) if x ∈ P with κ(x) = c and θ(x) ≤ d, then ρ(Tx− x1) < ρ(x− x1) + ρ(Tx− x);

(A6) if x ∈ P with κ(x) = c and θ(Tx) > d, then ψ(Tx−x1) < ψ(x−x1)+ψ(Tx−x).

If

(H1) P (κ, c) ( P (β, b), then T has a fixed point x ∈ P (β, κ, b, c),

whereas, if

(H2) P (β, b) ( P (κ, c), then T has a fixed point x ∈ P (κ, β, c, b).

In the event that γ(Tx−x0) < γ(x−x0)+γ(Tx−x) for all x ∈ P with β(x) = b,

as is done in standard Krasnosel’skii-type arguments, one can combine conditions

(A2) and (A3), as well as a similar argument for (A5) and (A6). This results in slight

modifications of conditions (A1) and (A4) as stated in the following Corollary.

Corollary 2.6. Suppose P is a cone in a real Banach space E, κ is a nonnegative

continuous concave functional on P , β is a nonnegative continuous convex functional

on P , γ is a continuous sub-homogeneous functional on E, ψ is a continuous ho-

mogeneous functional on E, and T : P → P is a completely continuous operator.

Furthermore, suppose that there exist nonnegative numbers b and c, and functions

x0, x1 ∈ P , such that

(D1) x0 ∈ {x ∈ P : β(x) < b};

(D2) if x ∈ P with β(x) = b then γ(Tx− x0) < γ(x− x0) + γ(Tx− x);

(D3) x1 ∈ {x ∈ P : c < κ(x)} and P (κ, c) 6= ∅;

(D4) if x ∈ P with κ(x) = c then ψ(Tx− x1) < ψ(x− x1) + ψ(Tx− x).

If

(H1) P (κ, c) ( P (β, b), then T has a fixed point x ∈ P (β, κ, b, c),

whereas, if
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(H2) P (β, b) ( P (κ, c), then T has a fixed point x ∈ P (κ, β, c, b).

3. APPLICATION

In this section, as an application of Corollary 2.6, we are concerned with the

existence of at least one positive solution for the second-order boundary value problem

given by the nonlinear equation

x′′ + f(x) = 0, 0 ≤ t ≤ 1, (3.1)

where f : R → [0,∞) is continuous, together with the conjugate boundary conditions

x(0) = 0 = x(1). (3.2)

We will also assume that f is increasing and concave (f ′′(x) < 0 for all x ≥ 0)

to illustrate a new technique for existence of solutions arguments that utilizes the

omitted ray fixed point theorem. We look for solutions x ∈ C(2)[0, 1] which are both

nonnegative and concave on [0, 1]. We will impose growth conditions on f which

ensure the existence of at least one nonnegative, symmetric solution. See Henderson

et al in [9, 12] for a more complete consideration of symmetric arguments that arise

in the study of conjugate boundary value problems, and see [1, 16] for other types of

problems with similar properties. The Green’s function for

−x′′ = 0 (3.3)

satisfying the boundary conditions is given by

G(t, s) =







t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.
(3.4)

Let the Banach space E = C[0, 1] be endowed with the maximum norm given by

‖x‖ = max
0≤t≤1

|x(t)| ,

and define the cone P ⊂ E by

P = {x ∈ E |x is nonnegative, concave and symmetric on [0, 1]} .

Define the completely continuous operator A by

Ax(t) =

∫ 1

0

G(t, s)f(x(s))ds.

We have that P is a cone in the Banach space E with the sup norm, and

A : P → P

since G(t, s) is nonnegative on its domain and f(x) ≥ 0 on [0,∞). In the literature

concerning the existence of positive solutions of various boundary value problems,

the common procedure is to apply fixed point theorems to operators analogous to the
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operator A above. Rather, in this paper we will apply the omitted ray fixed point

theorem to the operator B, with

B : P → P

defined by

By(t) = f

(
∫ 1

0

G(t, s)y(s)ds

)

for t ∈ [0, 1]. We now show that if y ∈ P is a fixed point of B, then

x(t) :=

∫ 1

0

G(t, s)y(s)ds (3.5)

is a fixed point of A (and hence is a solution of the BVP (3.1), (3.2)). To see this,

assume y ∈ P is a fixed point of B, and define x by (3.5). Then, for t ∈ [0, 1],

Ax(t) =

∫ 1

0

G(t, s)f(x(s))ds

=

∫ 1

0

G(t, s)f

(
∫ 1

0

G(s, r)y(r)dr

)

ds

=

∫ 1

0

G(t, s)B(y(s))ds

=

∫ 1

0

G(t, s)y(s)ds

= x(t).

Conversely, if we assume x is a fixed point of A, then

y(t) := f(x(t)) (3.6)

is a fixed point of B (in many applications f(0) = 0). Suppose x ∈ P is a fixed point

of A, and define y by (3.6). Then, for t ∈ [0, 1], we see that

By(t) = f

(
∫ 1

0

G(t, s)y(s)ds

)

= f

(
∫ 1

0

G(t, s)f(x(s))ds

)

= f(x(t))

= y(t).

This alternative inversion technique can be traced back to Avery-Peterson and

Burton-Zhang in the late nineties. For more details, see [6, 7, 10, 11], as well as the

more recent work by Muresan-Nica [15]. In the following application we demonstrate

how one can use the nonstandard operator B with the mean value theorem to show

the existence of solutions to our boundary value problem using Corollary 2.6 of the

omitted ray fixed point theorem.
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Theorem 3.1. If b and c are positive real numbers with b < c, and f ∈ C2[0,∞) is

a non-negative, increasing and concave function such that

(a) f
(

b
16

)

< b
2
,

(b) min
y∈[ c

12
, 3c

16
] f(y) ≥ 19c

16
,

(c) max
y∈[ c

12
, 3c

16
] f

′(y) < 2 , and

(d) max
y∈[ b

16
, b

8
] f

′(y) < 8,

then the conjugate problem (3.1), (3.2) has at least one positive solution x∗.

Proof. For y ∈ P let

β(y) = κ(y) = y

(

1

2

)

,

and for y ∈ E let

γ(y) = ψ(y) =

∣

∣

∣

∣

y

(

1

2

)
∣

∣

∣

∣

.

By the properties of G and f , for any y ∈ P we have

(By)(t) = f

(
∫ 1

0

G(t, s)y(s)ds

)

≥ 0,

(By)′(t) = f ′

(
∫ 1

0

G(t, s)y(s)ds

)(
∫ 1

t

y(s)ds−

∫ 1

0

sy(s)ds

)

,

(By)′′(t) = f ′′

(
∫ 1

0

G(t, s)y(s)ds

)(
∫ 1

t

y(s)ds−

∫ 1

0

sy(s)ds

)2

+ f ′

(
∫ 1

0

G(t, s)y(s)ds

)

(−y(t)) ≤ 0.

Since y is symmetric, for any t ∈ [0, 1] we have

(By)(1 − t) = f

(
∫ 1

0

G(1 − t, s)y(s)ds

)

= f

(
∫ 1

0

G(1 − t, s)y(1 − s)ds

)

= f

(

−

∫ 0

1

G(1 − t, 1 − u)y(u)du

)

= f

(

−

∫ 0

1

G(t, u)y(u)du

)

= f

(
∫ 1

0

G(t, s)y(s)ds

)

= (By)(t).

Thus, B : P → P . By the Arzela-Ascoli Theorem it is a standard exercise to show

that B is a completely continuous operator using the properties of G and f . Clearly

P (κ, c) is a bounded subset of the cone P , since if x ∈ P (κ, c), then

‖x‖ = x

(

1

2

)

< c,

and if x ∈ P (β, b), then

c > b ≥ β(x) = κ(x).
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Consequently we have κ(x) < c, that is,

P (β, b) ⊂ P (κ, c).

Moreover, b+ c ∈ P (κ, c) − P (β, b), so that P (β, b) ( P (κ, c).

Let y0 and y1 be defined by

y0(t) = f

(
∫ 1

0

G(t, s)
b

2
ds

)

= f

(

bt(1 − t)

4

)

and

y1(t) = f

(
∫ 1

0

G(t, s)
3c

2
ds

)

= f

(

3ct(1 − t)

4

)

,

respectively. Then by (a) we have that

y0 ∈ {y ∈ P : β(y) < b},

and by (b) we have that

y1 ∈ {y ∈ P : c < κ(y)}.

Also, 0 ∈ P (κ, c). Thus, P (κ, c) 6= ∅, and we have verified (D1) and (D3) of Corol-

lary 2.6.

Claim 1: If β(y) = b, then γ(By − y0) < γ(y − y0) + γ(By − y).

Let y ∈ P with β(y) = y
(

1
2

)

= b. Since y is concave and symmetric with

y(0) = y(1) ≥ 0 and y
(

1
2

)

= b, we have

y(t) ≥

{

2bt : 0 ≤ t ≤ 1
2
,

2b(1 − t) : 1
2
≤ t ≤ 1.

In particular we have that

∫ 1

0

G

(

1

2
, s

)

y(s)ds ≥

∫ 1

2

0

G(1/2, s)2bsds+

∫ 1

1

2

G(1/2, s)2b(1 − s)ds

=

∫ 1

2

0

bs2ds+

∫ 1

1

2

b(1 − s)2ds =
b

12

and
∫ 1

0

G

(

1

2
, s

)

y(s)ds ≤

∫ 1

0

G(1/2, s)bds =
b

8
,

respectively. We also have that

∫ 1

0

G

(

1

2
, s

)

b

2
ds =

b

16
.
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Therefore, by the mean value theorem there exists a w ∈
[

b
16
, b

8

]

such that

γ(By − y0) =

∣

∣

∣

∣

f

(
∫ 1

0

G(1/2, s)y(s)ds

)

− f

(
∫ 1

0

G(1/2, s)
b

2
ds

)
∣

∣

∣

∣

= f ′(w)

∣

∣

∣

∣

(
∫ 1

0

G(1/2, s)y(s)ds

)

−

(
∫ 1

0

G(1/2, s)
b

2
ds

)
∣

∣

∣

∣

< 8

(

max
t∈[0,1]

∣

∣

∣

∣

y(t) −
b

2

∣

∣

∣

∣

) (
∫ 1

0

G(1/2, s)ds

)

=
b

2
≤ y

(

1

2

)

− f

(

b

16

)

= γ(y − y0),

since by (a) we have that

f

(

b

16

)

<
b

2
.

Claim 2: If y ∈ P with κ(y) = c, then ψ(By − y1) < ψ(y − y1) + ψ(By − y).

Let y ∈ P with κ(y) = y
(

1
2

)

= c. Since y is concave and symmetric with

y(0) = y(1) ≥ 0 and y
(

1
2

)

= c, just like in Claim 1, we have

y(t) ≥

{

2ct 0 ≤ t ≤ 1
2
,

2c(1 − t) 1
2
≤ t ≤ 1.

In particular we have that

c

8
≥

∫ 1

0

G

(

1

2
, s

)

y(s)ds ≥
c

12
;

also, we have that
∫ 1

0

G

(

1

2
, s

)(

3c

2

)

ds =
3c

16
.

Therefore, by the mean value theorem there exists a z ∈
[

c
12
, 3c

16

]

such that

ψ(By − y1) =

∣

∣

∣

∣

f

(
∫ 1

0

G(1/2, s)y(s)ds

)

− f

(
∫ 1

0

G(1/2, s)

(

3c

2

)

ds

)
∣

∣

∣

∣

= f ′(z)

∣

∣

∣

∣

(
∫ 1

0

G(1/2, s)y(s)ds

)

−

(
∫ 1

0

G(1/2, s)

(

3c

2

)

ds

)
∣

∣

∣

∣

< 2

(

max
t∈[0,1]

∣

∣

∣

∣

y(t) −
3c

2

∣

∣

∣

∣

) (
∫ 1

0

G(1/2, s)ds

)

= 2

(

3c

2

) (

1

8

)

≤

∣

∣

∣

∣

c− f

(

3c

16

)
∣

∣

∣

∣

+

∣

∣

∣

∣

f

(
∫ 1

0

G(1/2, s)y(s)ds

)

− c

∣

∣

∣

∣

= γ(y − y1) + γ(By − y),

since by (b) we have that

min
y∈[ c

12
, 3c

16
]
f (y) ≥

19c

16
.
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Therefore, the conditions of Theorem 2.6 are satisfied and the operator B has at

least one fixed point y∗ with

b < y∗
(

1

2

)

< c.

Thus, the operatorA has at least one fixed point x∗ which is a solution of the conjugate

problem (3.1), (3.2) with

x∗ =

∫ 1

0

G(t, s)y∗(s)ds.
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