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ABSTRACT. In this paper, we establish the existence and uniqueness of solutions for a class of

initial value problems for implicit fractional differential equations with impulse and Caputo fractional

derivative. The arguments are based upon the Banach contraction principle, and Schaefer’s fixed

point theorem. As applications, two examples are included to show the applicability of our results.

AMS (MOS) Subject Classifications: 26A33, 34A08, 34A37

1. Introduction

In this paper, we establish existence and uniqueness results to the following im-

plicit fractional-order differential equation with impulse

cDα
tk

y(t) = f(t, y,c Dα
tk

y(t)), for each t ∈ (tk, tk+1], k = 0, . . . , m, 0 < α ≤ 1, (1.1)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . , m, (1.2)

y(0) = y0, (1.3)

where cDα
tk

is the Caputo fractional derivative, f : J ×R×R → R is a given function,

Ik : R → R, and y0 ∈ R, 0 = t0 < t1 < · · · < tm < tm+1 = T , ∆y|t=tk = y(t+k )− y(t−k ),

y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h) represent the right and left

limits of y(t) at t = tk.

Fractional calculus is a generalization of ordinary differentiation and integration

to arbitrary order (non-integer). Fractional derivatives provide an excellent instru-

ment for the description of memory and hereditary properties of various materials

and processes (see [1, 5, 6, 21, 24, 28, 30]). On the other hand, impulsive fractional

differential equations are a very important class of fractional differential equations

because many phenomena from physics, chemistry, engineering, biology, etc., can be

represented by the impulsive fractional differential equations. The theory of impulsive
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differential equations describes the process subject to abrupt change in their states

at times. Impulsive differential equations have received much attention, we refer the

reader to books [4, 7, 19, 23, 26, 29], and the papers [2, 3, 9, 10, 12, 11, 16, 20, 31],

the references therein.

In [12], Benchohra and Slimani considered the existence and uniqueness of solu-

tions for the initial value problems with impulses,

cDαy(t) = f(t, y(t)), t ∈ J = [0, T ], t 6= tk, 0 < α ≤ 1,

∆y
∣∣
t=tk

= Ik(y(t−k )),

y(0) = y0,

where k = 1, . . . , m, cDα is the Caputo fractional derivative, f : J × R → R is a

given function, Ik : R → R, and y0 ∈ R, 0 = t0 < t1 < · · · < tm < tm+1 = T ,

∆y|t=tk = y(t+k ) − y(t−k ), y(t+k ) = limh→0+ y(tk + h) and y(t−k ) = limh→0− y(tk + h)

represent the right and left limits of y(t) at t = tk.

In [11], Benchohra and Seba, using Mönch’s fixed point theorem combined with

the technique of measures of noncompactness, considered the existence and uniqueness

of solutions for the initial value problems with impulses,

cDαy(t) = f(t, y(t)), t ∈ J = [0, T ], t 6= tk, 0 < α ≤ 1,

∆y
∣∣
t=tk

= Ik(y(t−k )),

y(0) = y0,

where k = 1, . . . , m, cDα is the Caputo fractional derivative, f : J ×E → E is a given

function, Ik : E → E, y0 ∈ E, E is a Banach space, and 0 = t0 < t1 < · · · < tm <

tm+1 = T , ∆y|t=tk = y(t+k ) − y(t−k ).

In [2], Agarwal et al. studied the existence and uniqueness of solutions for the

initial value problems, for fractional order differential equations with impulses

cDαy(t) = f(t, y(t)), t ∈ J = [0, T ], t 6= tk, k = 1, . . . , m, 1 < α ≤ 2,

∆y|t=tk = Ik(y(t−k )), k = 1, . . . , m,

∆y′|t=tk = Ik(y(t−k )), k = 1, . . . , m,

y(0) = y0, y′(0) = y1,

where k = 1, . . . , m, cDα is the Caputo fractional derivative, f : J × R → R is a

given function, Ik : R → R, y0 ∈ R and y1 ∈ R, 0 = t0 < t1 < · · · < tm < tm+1 = T ,

∆y|t=tk = y(t+k ) − y(t−k ).

In [8], Benchohra et al. discussed the existence of solutions for the initial value

problems, for fractional order differential inclusions,

cDαy(t) ∈ F (t, y(t)), t ∈ J = [0, T ], t 6= tk, k = 1, . . . , m, 1 < α ≤ 2,
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∆y|t=tk = Ik(y(t−k )), k = 1, . . . , m,

∆y′|t=tk = Ik(y(t−k )), k = 1, . . . , m,

y(0) = y0, y′(0) = y1,

where cDα is the Caputo fractional derivative, F : J×R → P(R) is a multivalued map,

(P(R) is the family of all nonempty subsets of R), Ik and Ik : R → R, k = 1, . . . , m,

and y0, y1 ∈ R, 0 = t0 < t1 < · · · < tm < tm+1 = T , ∆y|t=tk = y(t+k ) − y(t−k ),

∆y′|t=tk = y′(t+k ) − y′(t−k ).

Motivated by the works mentioned above, we present, in this paper, two results

for the problem (1.1)–(1.3). The first one is based on the Banach contraction prin-

ciple, the second one on Schaefer’s fixed point theorem. In Section 4 we indicate

a generalization to problems (1.1)–(1.3). Finally, in the last Section, we give two

examples to demonstrate our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which

are used throughout this paper. By C(J, R) we denote the Banach space of all con-

tinuous functions from J into R with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.

Definition 2.1 ([22, 27]). The fractional (arbitrary) order integral of the function

h ∈ L1([0, T ], R+) of order α ∈ R+ is defined by

Iαh(t) =
1

Γ(α)

∫ t

0

(t − s)α−1h(s)ds,

where Γ is the Euler gamma function defined by Γ(α) =

∫
∞

0

tα−1e−tdt, α > 0.

Definition 2.2 ([25, 27]). For a function h given on the interval [0, T ], the Caputo

fractional-order derivative of order α of h, is defined by

(cDα
0 h)(t) =

1

Γ(n − α)

∫ t

0

(t − s)n−α−1h(n)(s)ds,

where n = [α] + 1. Here [α] denotes the integer part of α.

Lemma 2.3 ([25, 27]). Let α ≥ 0 and n = [α] + 1. Then

Iα(cDα
0 f(t)) = f(t) −

n−1∑

k=0

fk(0)

k!
tk.

We need the following auxiliary lemmas.
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Lemma 2.4 ([32]). Let α > 0, then the differential equation

cDα
0 k(t) = 0

has solutions k(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n − 1,

n = [α] + 1.

Lemma 2.5 ([32]). Let α > 0, then

IαcDα
0 k(t) = k(t) + c0 + c1t + c2t

2 + · · · + cn−1t
n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n − 1, n = [α] + 1.

Theorem 2.6 (Banach’s fixed point theorem [18]). Let C be a non-empty closed

subset of a Banach space X, then any contraction mapping T of C into itself has a

unique fixed point.

Theorem 2.7 (Schaefer’s fixed point theorem [18]). Let X be a Banach space, and

N : X −→ X a completely continuous operator. If the set

E = {y ∈ X : y = λNy, for some λ ∈ (0, 1)}

is bounded, then N has fixed points.

3. Existence of Solutions

Denote by C(J, R) the Banach space of continuous functions J → R, with the

usual supremum norm

‖y‖∞ = sup{|y(t)|, t ∈ J}.
Consider the set of functions

PC(J, R) = {y : J → R : y ∈ C((tk, tk+1], R), k = 0, . . . , m and there exist y(t−k )

and y(t+k ), k = 1, . . . , m with y(t−k ) = y(tk)}.
PC(J, R) is a Banach space with the norm

‖y‖PC = sup
t∈J

|y(t)|.

Let J0 = [t0, t1] and Jk = (tk, tk+1] where k = 1, . . . , m.

Definition 3.1. A function y ∈ PC(J, R) whose α-derivative exists on Jk is said to

be a solution of (1.1)–(1.3) if y satisfies the equation cDα
tk

y(t) = f(t, y(t),c Dα
tk

y(t))

on Jk, and satisfies the conditions

∆y|t=tk = Ik(y(t−k )), k = 0, . . . , m,

y(0) = y0.

To prove the existence of solutions of (1.1)–(1.3), we need the following auxiliary

lemmas.
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Lemma 3.2 ([12]). Let 0 < α ≤ 1 and let σ : J → R be continuous. A function y is

a solution of the fractional integral equation

y(t) =






y0 + 1
Γ(α)

∫ t

0
(t − s)α−1σ(s)ds if t ∈ [0, t1],

y0 + 1
Γ(α)

∑k

i=1

∫ ti

ti−1
(ti − s)α−1σ(s)ds

+ 1
Γ(α)

∫ t

tk
(t − s)α−1σ(s)ds +

∑k

i=1 Ii(y(t−i )), if t ∈ Jk := (tk, tk+1],

(3.1)

where k = 1, . . . , m, if and only if, y is a solution of the fractional IVP

cDα
tk

y(t) = σ(t), t ∈ Jk, (3.2)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . , m, (3.3)

y(0) = y0. (3.4)

We are now in a position to state and prove our existence result for the problem

(1.1)–(1.3) based on Banach’s fixed point theorem.

Theorem 3.3. Assume

(H1) The function f : J × R × R → R is continuous.

(H2) There exist constants K > 0 and 0 < L < 1 such that

|f(t, u, v)− f(t, ū, v̄)| ≤ K|u − ū| + L|v − v̄|

for any u, v, ū, v̄ ∈ R and t ∈ J .

(H3) There exists a constant ℓ > 0 such that

|Ik(u) − Ik(u)| ≤ ℓ|u − u|,

for each u, u ∈ R and k = 1, . . . , m.

If
KT α(m + 1)

(1 − L)Γ(α + 1)
+ mℓ < 1, (3.5)

then there exists a unique solution for IVP (1.1)–(1.3) on J .

Proof. Transform the problem (1.1)–(1.3) into a fixed point problem. Consider

the operator N : PC(J, R) → PC(J, R) defined by

N(y)(t) = y0 +
1

Γ(α)

∑

0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t − s)α−1g(s)ds +
∑

0<tk<t

Ik(y(t−k ), (3.6)

where g ∈ C(J, R) is such that

g(t) = f(t, y(t), g(t)).

Clearly, the fixed points of operator N are solutions of problem (1.1)–(1.3).
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Let u, w ∈ PC(J, R). Then for t ∈ J , we have

|N(u)(t) − N(w)(t)| ≤ 1

Γ(α)

∑

0<tk<t

∫ tk

tk−1

(tk − s)α−1|g(s) − h(s)|ds

+
1

Γ(α)

∫ t

tk

(t − s)α−1|g(s) − h(s)|ds

+
∑

0<tk<t

|Ik(u(t−k )) − Ik(w(t−k ))|,

where g, h ∈ C(J, R) are such that

g(t) = f(t, u(t), g(t)),

and

h(t) = f(t, w(t), h(t)).

By (H2) we have

|g(t) − h(t)| = |f(t, u(t), g(t))− f(t, w(t), h(t))|
≤ K|u(t) − w(t)| + L|g(t) − h(t)|.

Thus

|g(t) − h(t)| ≤ K

1 − L
|u(t) − w(t)|.

Then, for t ∈ J

|N(u)(t) − N(w)(t)| ≤ K

(1 − L)Γ(α)

m∑

k=1

∫ tk

tk−1

(tk − s)α−1|u(s) − w(s)|ds

+
K

(1 − L)Γ(α)

∫ t

tk

(t − s)α−1|u(s) − w(s)|ds

+
m∑

k=1

ℓ|u(t−k ) − w(t−k )|.

≤ mKT α

(1 − L)Γ(α + 1)
‖u − w‖PC +

T αK

(1 − L)Γ(α + 1)
‖u − w‖PC

+ mℓ‖u − w‖PC.

Thus

‖N(u) − N(w)‖PC ≤
[

KT α(m + 1)

(1 − L)Γ(α + 1)
+ mℓ

]
‖u − w‖PC.

By (3.5), the operator N is a contraction. Hence, by Banach’s contraction princi-

ple, N has a unique fixed point which is a unique solution of the problem (1.1)–(1.3).

Our second result is based on Schaefer’s fixed point theorem.

Theorem 3.4. Assume (H1), (H2) and
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(H4) There exist p, q, r ∈ C(J, R+) with r∗ = sup
t∈J

r(t) < 1 such that

|f(t, u, w)| ≤ p(t) + q(t)|u| + r(t)|w| for t ∈ J and u, w ∈ R.

(H5) The functions Ik : R → R are continuous and there exist constants M∗, N∗ > 0

such that

|Ik(u)| ≤ M∗|u| + N∗ for each u ∈ R, k = 1, . . . , m.

If

mM∗ +
(m + 1)T αq∗

(1 − r∗)Γ(α + 1)
< 1,

then the IVP (1.1)–(1.3) has at least one solution on J .

Proof. Consider the operator N defined in (3.6). We shall use Schaefer’s fixed point

theorem to prove that N has a fixed point. The proof will be given in several steps.

Step 1: N is continuous. Let {un} be a sequence such that un → u in PC(J, R).

Then for each t ∈ J ,

|N(un)(t) − N(u)(t)| ≤ 1

Γ(α)

∑

0<tk<t

∫ tk

tk−1

(tk − s)α−1|gn(s) − g(s)|ds

+
1

Γ(α)

∫ t

tk

(t − s)α−1|gn(s) − g(s)|ds

+
∑

0<tk<t

|Ik(un(t
−

k )) − Ik(u(t−k ))|,

where gn, g ∈ C(J, R) are such that

gn(t) = f(t, un(t), gn(t)),

and

g(t) = f(t, u(t), g(t)).

By (H2) we have

|gn(t) − g(t)| = |f(t, un(t), gn(t)) − f(t, u(t), g(t))|
≤ K|un(t) − u(t)| + L|gn(t) − g(t)|.

Then

|gn(t) − g(t)| ≤ K

1 − L
|un(t) − u(t)|.

Since un → u, then we get gn(t) → g(t) as n → ∞ for each t ∈ J . And let η > 0 be

such that, for each t ∈ J , we have |gn(t)| ≤ η and |g(t)| ≤ η. Then, we have

(t − s)α−1|gn(s) − g(s)| ≤ (t − s)α−1[|gn(s)| + |g(s)|]
≤ 2η(t − s)α−1,

and

(tk − s)α−1|gn(s) − g(s)| ≤ (tk − s)α−1[|gn(s)| + |g(s)|]
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≤ 2η(tk − s)α−1.

For each t ∈ J , the functions s → 2η(t − s)α−1 and s → 2η(tk − s)α−1 are integrable

on [0, t]; then the Lebesgue Dominated Convergence Theorem and (3.4) imply that

|N(un)(t) − N(u)(t)| → 0 as n → ∞,

and hence

‖N(un) − N(u)‖PC → 0 as n → ∞.

Consequently, N is continuous.

Step 2: F maps bounded sets into bounded sets in PC(J, R). Indeed, it is enough

to show that for any η∗ > 0, there exists a positive constant ℓ1 such that for each

u ∈ Bη∗ = {u ∈ PC(J, R) : ‖u‖PC ≤ η∗}, we have ‖N(u)‖PC ≤ ℓ1. We have for each

t ∈ J ,

N(u)(t) = y0 +
1

Γ(α)

∑

0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t − s)α−1g(s)ds +
∑

0<tk<t

Ik(u(t−k ), (3.7)

where g ∈ C(J, R) is such that

g(t) = f(t, u(t), g(t)).

By (H4) we have for each t ∈ J ,

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)| + r(t)|g(t)|
≤ p(t) + q(t)η∗ + r(t)|g(t)|
≤ p∗ + q∗η∗ + r∗|g(t)|,

where p∗ = sup
t∈J

p(t), and q∗ = sup
t∈J

q(t). Then

|g(t)| ≤ p∗ + q∗η∗

1 − r∗
:= M.

Thus (3.7) implies

|N(u)(t)| ≤ |y0| +
mMT α

Γ(α + 1)
+

MT α

Γ(α + 1)
+ m(M∗|u| + N∗)

≤ |y0| +
mMT α

Γ(α + 1)
+

MT α

Γ(α + 1)
+ m(M∗η∗ + N∗).

Then

‖N(u)‖PC ≤ |y0| +
(m + 1)MT α

Γ(α + 1)
+ m(M∗η∗ + N∗) := ℓ1.

Step 3: F maps bounded sets into equicontinuous sets of PC(J, R).
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Let τ1, τ2 ∈ J , τ1 < τ2, Bη∗ be a bounded set of PC(J, R) as in Step 2, and let

u ∈ Bη∗ . Then

|N(u)(τ2) − N(u)(τ1)|

≤ 1

Γ(α)

∫ τ1

0

|(τ2 − s)α−1 − (τ1 − s)α−1||g(s)|ds

+
1

Γ(α)

∫ τ2

τ1

|(τ2 − s)α−1||g(s)|ds +
∑

0<tk<τ2−τ1

|Ik(u(t−k ))|

≤ M

Γ(α + 1)
[2(τ2 − τ1)

α + (τα
2 − τα

1 )] + (τ2 − τ1)(M
∗|u| + N∗)

≤ M

Γ(α + 1)
[2(τ2 − τ1)

α + τα
2 − τα

1 ] + (τ2 − τ1)(M
∗η∗ + N∗).

As τ1 → τ2, the right-hand side of the above inequality tends to zero. As a consequence

of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we can conclude that N :

PC(J, R) → PC(J, R) is completely continuous.

Step 4: A priori bounds. Now it remains to show that the set

E = {u ∈ PC(J, R) : u = λN(u) for some 0 < λ < 1}

is bounded. Let u ∈ E, then u = λN(u) for some 0 < λ < 1. Thus, for each t ∈ J we

have

u(t) = λy0 +
λ

Γ(α)

∑

0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
λ

Γ(α)

∫ t

tk

(t − s)α−1g(s)ds + λ
∑

0<tk<t

Ik(u(t−k )).

And, by (H3) we have for each t ∈ J ,

|g(t)| = |f(t, u(t), g(t))|
≤ p(t) + q(t)|u(t)| + r(t)|g(t)|
≤ p∗ + q∗|u(t)| + r∗|g(t)|.

Thus

|g(t)| ≤ 1

1 − r∗
(p∗ + q∗|u(t)|).

This implies, by (H4) and (H5) (as in Step 2), that for each t ∈ J we have

|u(t)| ≤ |y0| +
m

(
1

1−r∗
(p∗ + q∗|u(t)|)

)
T α

Γ(α + 1)

+

(
1

1−r∗
(p∗ + q∗|u(t)|)

)
T α

Γ(α + 1)
+ m(M∗|u(t)| + N∗)

≤ |y0| +
m

(
1

1−r∗
(p∗ + q∗‖u‖PC)

)
T α

Γ(α + 1)
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+

(
1

1−r∗
(p∗ + q∗‖u‖PC)

)
T α

Γ(α + 1)
+ m(M∗‖u‖PC + N∗).

Then we have

‖u‖PC ≤ |y0| +
m

(
1

1−r∗
(p∗ + q∗‖u‖PC)

)
T α

Γ(α + 1)

+

(
1

1−r∗
(p∗ + q∗‖u‖PC)

)
T α

Γ(α + 1)
+ m(M∗‖u‖PC + N∗).

Thus

‖u‖PC ≤
|y0| + mN∗ + (m+1)p∗T α

(1−r∗)Γ(α+1)

1 − mM∗ − (m+1)q∗T α

(1−r∗)Γ(α+1)

:= R.

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point

theorem, we deduce that N has a fixed point which is a solution of the problem

(1.1)–(1.3).

4. Nonlocal Impulsive Differential Equations

This section is concerned with a generalization of the results presented in the

previous section to implicit nonlocal fractional differential equations with impulses.

More precisely, we shall present a result of existence and uniqueness for the following

implicit nonlocal problem

cDα
tk

y(t) = f(t, y,c Dα
tk

y(t)), for each t ∈ (tk, tk+1], k = 0, . . . , m, 0 < α ≤ 1, (4.1)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . , m, (4.2)

y(0) + ϕ(y) = y0, (4.3)

where f , y0, Ik, are as in Section 3 and ϕ : C(J, R) → R is a continuous function.

Nonlocal conditions were initiated by Byszewski [15] when he proved the existence

and uniqueness of mild and classical solutions of nonlocal Cauchy problems. As

remarked by Byszewski [13, 14], the nonlocal condition can be more useful than the

standard initial condition to describe some physical phenomena. For example, in [17],

the author used

ϕ(y) =

p∑

i=1

ciy(τi) (4.4)

where ci, i = 1, . . . , p, are given constants and 0 < τ1 < · · · < τp ≤ T , to describe the

diffusion phenomenon of a small amount of gas in a transparent tube. In this case,

(4.4) allows the additional measurements at τi, i = 1, . . . , p.

Theorem 4.1. Assume (H1)–(H3) and the following hypothesis holds:
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(H6) There exists a constant γ > 0 such that

|ϕ(u) − ϕ(u)| ≤ γ|u − u| for each u, u ∈ PC(J, R).

If [
KT α(m + 1)

(1 − L)Γ(α + 1)
+ mℓ + γ

]
< 1, (4.5)

then the nonlocal problem (4.1)–(4.3) has a unique solution on J .

Proof. We transform the problem (4.1)–(4.3) into a fixed point problem. Consider

the operator Ñ : PC(J, R) → PC(J, R) defined by

Ñ(y)(t) = y0 − ϕ(y) +
1

Γ(α)

∑

0<tk<t

∫ tk

tk−1

(tk − s)α−1g(s)ds

+
1

Γ(α)

∫ t

tk

(t − s)α−1g(s)ds +
∑

0<tk<t

Ik(y(t−k )),

where g ∈ C(J, R) be such that

g(t) = f(t, y(t), g(t)).

Clearly, the fixed points of the operator Ñ are solution of the problem (4.1)-(4.3).

We can easily show the Ñ is a contraction.

5. Examples

Example 1. Consider the following impulsive Cauchy problem

cD
1

2

tk
y(t) =

1

99et+2(1 + |y(t)| + |cD 1

2 y(t)|)
, for each t ∈ J0 ∪ J1, (5.1)

∆y|t= 1

2

=
|y(1

2

−

)|
55 + |y(1

2

−

)|
, (5.2)

y(0) = 1, (5.3)

where J0 =
[
0, 1

2

]
, J1 =

(
1
2
, 1

]
, t0 = 0, and t1 = 1

2
.

Set

f(t, u, v) =
1

99et+2(1 + |u| + |v|) , t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is jointly continuous.

For each u, v, ū, v̄ ∈ R and t ∈ [0, 1]:

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

99e2
(|u − ū| + |v − v̄|).

Hence condition (H2) is satisfied with K = L = 1
99e2 . And let

I1(u) =
u

55 + u
, u ∈ [0,∞).
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Let u, v ∈ [0,∞). Then we have

|I1(u) − I1(v)| =
∣∣ u

55 + u
− v

55 + v

∣∣ =
55|u − v|

(55 + u)(55 + v)
≤ 1

55
|u − v|.

Thus condition

KT α(m + 1)

(1 − L)Γ(α + 1)
+ mℓ =

2

(99e2 − 1)Γ(3
2
)

+
1

55
=

4

(99e2 − 1)
√

π
+

1

55
< 1,

is satisfied with T = 1, m = 1 and ℓ = 1
55

. It follows from Theorem 3.3 that the

problem (5.1)–(5.3) has a unique solution on J = [0, 1].

Example 2. Consider the following impulsive Cauchy problem

cD
1

2

tk
y(t) =

(2 + |y(t)|+ |cD 1

2 y(t)|)
102et+3(1 + |y(t)| + |cD 1

2 y(t)|)
, for each t ∈ J0 ∪ J1, (5.4)

∆y|t= 1

3

=
|y(1

3

−

)|
77 + |y(1

3

−

)|
, (5.5)

y(0) = 1, (5.6)

where J0 =
[
0, 1

3

]
, J1 =

(
1
3
, 1

]
, t0 = 0, and t1 = 1

3
. Set

f(t, u, v) =
(2 + |u| + |v|)

102et+3(1 + |u| + |v|) , t ∈ [0, 1], u, v ∈ R.

Clearly, the function f is jointly continuous.

For any u, v, ū, v̄ ∈ R and t ∈ [0, 1] :

|f(t, u, v)− f(t, ū, v̄)| ≤ 1

102e3
(|u − ū| + |v − v̄|).

Hence condition (H2) is satisfied with K = L = 1
102e3 . We have, for each t ∈ [0, 1],

|f(t, u, v)| ≤ 1

102et+3
(2 + |u| + |v|).

Thus condition (H4) is satisfied with p(t) = 1
51et+3 and q(t) = r(t) = 1

102et+3 . And let

I1(u) =
u

77 + u
, u ∈ [0,∞).

We have, for each u ∈ [0,∞),

|I1(u)| ≤ 1

77
u + 1

Thus condition (H5) is satisfied with M∗ = 1
77

and N∗ = 1. Thus condition

mM∗ +
(m + 1)T αq∗

(1 − r∗)Γ(α + 1)
=

1

77
+

2

(102e3 − 1)Γ(3
2
)

=
1

77
+

4

(102e3 − 1)
√

π
< 1,

is satisfied with T = 1, m = 1 and q∗(t) = r∗(t) = 1
102e3 . It follows from Theorem 3.4

that the problem (5.4)–(5.6) has at least one solution on J = [0, 1].
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