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ABSTRACT. In this paper some fundamental results concerning the global existence, convergence

theorem and continuous dependence on the initial data are proved for the nonlinear hybrid differential

equations with a linear perturbation of second type via applications of differential inequalities with

a comparison principle. The results of this paper are complementary to the work presented in a

recent papers of Dhage and Jadhav (2013) and Dhage (2014).
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1. INTRODUCTION

Given a closed but unbounded interval J∞ = [t0,∞) in R, R the real line, for some

fixed t0 ∈ R, let C(J∞,R) denote a class of continuous real-valued functions defined

on J∞. Consider an initial value problem of ordinary hybrid differential equations (in

short HDE)
d

dt

[

x(t) − f(t, x(t))
]

= g(t, x(t)), t ∈ J∞,

x(t0) = x0 ∈ R,







(1.1)

where, f, g ∈ C(J∞ × R,R).

By a solution of the HDE (1.1) we mean a function x ∈ C(J∞,R) such that

(i) the function t 7→ x− f(t, x) is continuous for each x ∈ R, and

(ii) x satisfies the equations in (1.1).

Again, a function r ∈ C(J∞,R) is called a maximal solution of the HDE (1.1)

if for any other solution x defined on J∞, we have that x(t) ≤ r(t) for all t ∈ J∞.

The HDE (1.1) has been discussed in Dhage and Jadhav [4] for the existence

and comparison principle and in Dhage [3] for the existence via monotone iterative

technique. However, several other qualitative aspects of the problem such as stability,

boundedness of the solutions etc. are still open. In this paper, we shall continue the

study of the HDE (1.1) and prove the global existence and convergence theorems

under some suitable conditions along the lines of Dhage and Lakshmikantham [5] and
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Lakshmikantham and Leela [8]. The following hypotheses concerning the function f

are crucial in the study of HDE (1.1) on J∞.

(A0) The function x 7→ x− f(t, x) is increasing in R for each t ∈ J∞.

(A1) There exists a continuous and nondecreasing function ψ : R+ → R+ such that

|f(t, x) − f(t, y)| ≤ ψ(|x− y|)

for all t ∈ J∞ and x, y ∈ R. Moreover, ψ(r) < r.

There do exist functions f satisfying the hypotheses (A0)-(A1) mentioned above.

In fact, the function

f(t, x) = x− tan−1 x

satisfies (A0) and the function

f(t, x) = tan−1 x

satisfies (A1) with the ψ function given by ψ(r) =
r

1 + ξ2
for 0 < ξ < r. We note that

if f(t, x) = 0 on J∞ ×R, then the HDE (1.1) reduces to the usual nonlinear ordinary

differential equation,
x′(t) = g(t, x(t)), t ∈ J∞,

x(t0) = x0 ∈ R.

}

(1.2)

We shall also make use of the following result in what follows.

Lemma 1.1. Assume that hypothesis (A0) holds. Further, if g(·, x(·)) ∈ L1(J∞,R)

for some x ∈ C(J∞,R), then the HDE (1.1) is equivalent to the hybrid integral

equation (HIE),

x(t) = x0 − f(t0, x0) + f(t, x(t)) +

∫ t

t0

g(s, x(s)) ds, t ∈ J∞. (1.3)

Proof. Let g(·, x(·)) ∈ L1(J,R+) for some x ∈ C(J∞,R). Assume first that x is a

solution of the HDE (1.1). By definition, the function t 7→ x(t)− f(t, x(t)) is contin-

uous, and so, differentiable there, whence
d

dt
[x(t) − f(t, x(t))] is Lebesgue integrable

on J∞. Applying integration to (1.1) from t0 to t, we obtain the HIE (1.3) on J∞.

Conversely, assume that the function x ∈ C(J∞,R) satisfies the HIE (1.2) on J∞.

Then, by direct differentiation we obtain the HDE (1.1). Again, substituting t = t0

in (1.3) yields

x(t0) − f(t0, x(t0)) = x0 − f(t0, x0).

Since the mapping x 7→ x − f(t, x) is increasing in R for all t ∈ J∞, the mapping

x 7→ x− f(t0, x) is injective in R, whence x(t0) = x0. Hence, the proof of the lemma

is complete. �

In the following section, we prove a global existence result for the HDE (1.1) via

the comparison method.
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2. GLOBAL EXISTENCE RESULT

We place and seek the solutions of the HDE (1.1) in the space C(J∞,R) of

continuous real-valued functions on unbounded interval J∞. Define a norm ‖ · ‖ in

C(J∞,R) by

‖x‖ = sup
t∈J∞

|x(t)|.

Clearly, BC(J∞,R) is a Banach space with respect to the above supremum norm.

The study of hybrid fixed point theorems in Banach space involving the addition of

two operators is initiated by Krasnoselskii [7] and some interesting applicable hybrid

fixed point theorems may be found in Dhage [1, 2]. We need the following fixed point

theorem for proving a main existence result of this paper.

Definition 2.1. A mapping ψ : R+ → R+ is called a dominating function or,

in short, D-function if it is an upper semi-continuous and nondecreasing function

satisfying ψ(0) = 0. A mapping Q : E → E is called D-Lipschitz if there is a

D-function ψ : R+ → R+ satisfying

‖Qφ−Qξ‖ ≤ ψ(‖φ− ξ‖) (2.1)

for all φ, ξ ∈ E. If ψ(r) = k r, k > 0, then Q is called Lipschitz with the Lipschitz

constant k. In particular, if k < 1, then Q is called a contraction on X with the

contraction constant k. Further, if ψ(r) < r for r > 0, then Q is called a nonlinear

D-contraction and the function ψ is called a D-function of Q on X.

The details of different types of contractions appear in the monographs of Dhage

[1] and Granas and Dugundji [6]. There do exist D-functions and the commonly used

D-functions are

ψ(r) = k r, for some constant k > 0,

ψ(r) =
L r

K + r
, for some constants L > 0, K > 0 with L ≤ K,

ψ(r) = tan−1 r,

ψ(r) = log(1 + r),

ψ(r) = er − 1.

These D-functions have been widely used in the theory of nonlinear differential

and integral equations for proving the existence results via fixed point methods. The

class of D-functions on R+ is denoted by D.

Remark 2.2. If φ, ψ R+ → R+ are two D-functions, then i) φ + ψ, ii) λφ, λ > 0,

and iii) φ ◦ ψ are also D-functions on R+.

Another notion that we need in the sequel is the following definition.
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Definition 2.3. An operator Q on a Banach space E into itself is called compact

if Q(E) is a relatively compact subset of E. Q is called totally bounded if for any

bounded subset S of E, Q(S) is a relatively compact subset of E. If Q is continuous

and totally bounded, then it is called completely continuous on E.

Theorem 2.4 (Dhage [1]). Let S be a closed convex and bounded subset of the Banach

algebra E and let A : E → E and B : S → E be two operators such that

(a) A is nonlinear D-contraction,

(b) B is compact and continuous, and

(c) x = Ax+By for all y ∈ S =⇒ x ∈ S.

Then the operator equation Ax+Bx = x has a solution in S.

Now, consider a scaler HDE,

d

dt
[p(t) − F (t, p(t))] = G(t, p(t)), t ∈ J∞,

p(t0) = p0 ∈ R+







(2.2)

where, F ∈ C(J∞ × R+,R+) and G ∈ C(J∞ × R+,R+).

We consider the following set of assumptions:

(B0) The assumption (A0) holds with f replaced by F .

(B1) The functions F (t, p) and G(t, p) are nondecreasing in r for each t ∈ J∞.

(B2) The HDE (2.2) has a solution p(t) on J∞ and Gp(·) = G(·, p(·)) ∈ C(J∞,R+).

(B3) There exists a continuous function h : J∞ → R such that

|G(t, x)| ≤ h(t), t ∈ J∞,

for all x ∈ R.

Theorem 2.5. Assume that hypotheses (A0)-(A1) and (B0)-(B2) hold. Suppose also

that the functions f, g and F,G involved respectively in (1.1) and (2.1) satisfy

|f(t, x)| = F (t, |x|),

and |g(t, x)| ≤ G(t, |x|),

}

(2.3)

for all (t, x) ∈ J∞ × R. Then for every initial value x0 with

|x0 − f(t0, x0)| ≤ p0 − F (t0, p0),

the HDE (1.1) has a global solution defined on J∞ satisfying

|x(t)| ≤ r(t), t ∈ J∞. (2.4)

Proof. Set E = BC(J∞,R) and define a subset E0 of E by

E0 =
{

x ∈ E | |x(t)| ≤ p(t)
}

(2.5)
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where, p(t) is a solution of the HDE (2.2) existing on J∞. Clearly, E0 is a closed,

convex and bounded subset of the Banach algebra E. By hypothesis (B2) and the

condition (2.3) for every x ∈ E0, the HDE (1.1) is equivalent to the hybrid integral

equation,

x(t) = x0 − f(t0, x0) + f(t, x(t)) +

∫ t

t0

g(s, x(s)) ds (2.6)

for all t ∈ J∞.

Define two operators A,B : E0 → E by

Ax(t) = f(t, x(t)), t ∈ J∞, (2.7)

and

Bx(t) = x0 − f(t0, x0) +

∫ t

t0

g(s, x(s)) ds, t ∈ J∞. (2.8)

Then, the HIE (2.6) is transformed into an operator equation as

Ax(t) +Bx(t) = x(t), t ∈ J∞. (2.9)

A solution of the operator equation (2.9) is a solution of the HIE (2.6) and vice

versa. We show that the operators A and B satisfy all the conditions of Theorem 2.4.

Now, it can be shown as in Dhage and Jadhav [4] that A is a nonlinear D-contraction

operator on E into itself and B is a compact and continuous operator on E0 into E.

Next, we show that hypothesis (c) of Theorem 2.4 is satisfied. Let x ∈ E0 be

arbitrary. Then, by hypotheses (B0)–(B2), we obtain

|x(t)| = |Ax(t) +By(t)|

≤ |Ax(t)| + |Bx(t)|

≤ |x0 − f(t0, x0)| +
∣

∣f(t, x(t))
∣

∣ +
∣

∣

∣

∫ t

t0

|g(s, x(s))| ds
∣

∣

∣

≤ |x0 − f(t0, x0)| + F (t, |x(t)|) +

∫ t

t0

G(s, |x(s)|)| ds

≤ p0 − F (t0, p0) + F (t, p(t)) +

∫ t

t0

G(s, p(s)) ds

= p(t)

for all t ∈ J∞. It then follows that x ∈ E0 for all y ∈ E0.

Finally, by hypothesis (A1), the operator A is a nonlinear D-contraction with

D-function ψ(r) = Lr
M+r

and so, hypothesis (a) of Theorem 2.4 is satisfied. Now, we

apply Theorem 2.4 to yield that the operator equation Ax + Bx = x has a solution

in E0. As a result the HDE (1.1) has a solution defined on J∞. This completes the

proof. �
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Remark 2.6. Note that first equality in the condition (2.3) holds, in particular if

the function f(t, x) is positive and even in x, i.e., f(t,−x) = f(t, x) for all t ∈ J∞.

Then, in this case we identify the function F with f on J∞ × R+.

Below we give a direct proof of the global existence result by assuming the local

existence of solution for the HDE (1.1). We need the following result proved in Dhage

and Jadhav [4] in what follows.

Lemma 2.7 (Dhage and Jadhav [4]). Let J = [t0, t1] be a closed and bounded interval

in R for some t0 ≤ t1 < ∞. Assume that hypotheses (A0)–(A1) hold with f replaced

by F . Suppose also that hypothesis (B3) holds. If there exists a function m ∈ C(J,R)

such that
d

dt
[m(t) − F (t,m(t))] ≤ G(t,m(t)), t ∈ J,

m(t0) ≤ r0 ∈ R+,







(2.10)

then,

m(t) ≤ r(t), t ∈ J, (2.11)

where r is a maximal solution of the HDE (2.2) defined on J .

Theorem 2.8. Assume that all the hypotheses of Theorem 2.5 and condition (2.3)

hold. Then for any solution x of the HDE (1.1) one has

|x(t)| ≤ r(t), (2.12)

for all t ∈ J , where r is a maximal solution of the HDE (2.2) on J .

Proof. Let x be any solution of the HDE (1.1) on J . Take

m(t) = |x(t)|, t ∈ J.

Then,

d

dt
[m(t) − F (t,m(t))] =

d

dt
[|x(t) − f(t, x(t))|]

≤

∣

∣

∣

∣

d

dt
[x(t) − f(t, x(t))]

∣

∣

∣

∣

= |g(t, x(t))|

≤ G(t, |x(t)|)

= G(t,m(t))

for all t ∈ J and

m(t0) = |x(t0)| ≤ p0.

Now, a direct application of Lemma 2.7 yields the desired inequality (2.12) on J

and the proof is complete. �
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Theorem 2.9. Assume that hypothesis (A0) holds and the function g is smooth

enough that the HDE (1.1) has a local solution. Assume further that the functions f, g

and F,G involved in (1.1) and satisfy (2.3) on J∞. Suppose further that the maximal

solution of the HDE (2.1) exists on J∞. Then the solution of the HDE (1.1) exists

on J∞.

Proof. Let x(t) be any local solution of the HDE (1.1) existing on the bounded interval

[t0, t1) for some t0 < t1 <∞ such that the value of t1 cannot be increased.

Now, by Theorem 2.8, we have |x(t)| ≤ r(t) for all t ∈ J , where r is a maximal

solution of the HDE (2.2) defined on J .

Then, for any t0 ≤ η < τ < t1, one has

∣

∣

∣

(

x(τ) − f(τ, x(τ))
)

−
(

x(η) − f(η, x(η))
)

∣

∣

∣
=

∣

∣

∣

∣

∫ τ

η

g(s, x(s)) ds

∣

∣

∣

∣

≤

∫ τ

η

|g(s, x(s))| ds

≤

∫ τ

η

G(t, |x(s)|) ds

≤

∫ τ

η

G(t, r(s)) ds

=
(

r(τ) − F (τ, r(τ))
)

−
(

r(η) − F (η, r(η))
)

. (2.13)

Since limt→t−
1

r(t) exists and is finite, taking the limit as τ, η → t−1 in the in-

equality (2.13) and using the Cauchy criterion for convergence, it follows that the

limt→t−
1

(

x(t) − f(t, x(t))
)

exists and

lim
t→t−

1

[

x(t) − f(t, x(t)
]

=
(

x(t1) − f(t1, x(t1))
)

.

Since (A0) holds, limt→t−
1

x(t) = x(t1) and we define x(t1) = x1. Now, consider

the HDE
d

dt
[x(t) − f(t, x(t))] = g(t, x(t)), t ≥ t1,

x(t1) = x1 ∈ R.







(2.14)

By assumed local existence, we find that x(t) can be continued beyond t1, con-

tradicting to our assumption about its interval of existence. Hence, a solution of the

HDE (1.1) with |x0| ≤ r0 exists on J∞ and the proof is complete. �

3. CONVERGENCE THEOREM

In this section we develop a convergence theorem for the HDE (1.1) and show

that the sequence of successive approximations defined in a certain way converges to
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the unique solution of the HDE (1.1) on a closed and bounded interval J = [t0, t0 +a].

Consider the scalar ODE

u′(t) = G(t, u(t)), t ∈ J,

u(t0) = u0 ∈ R+,

}

(3.1)

where G ∈ C(J × R+,R+).

We list the following set of assumptions:

(C1) There exists a constantM1 > 0 such that 0 ≤ G(t, u) ≤ M1 for all (t, u) ∈ J×R+.

(C2) G(t, 0) = 0 for all t ∈ J and G(t, u) is nondecreasing in u for each t ∈ J .

(C3) u(t) ≡ 0 is the unique solution of the ODE (3.1) on J with u(t0) = 0.

(C4) The functions g and G involved in (1.1) and (3.1) satisfy

|g(t, x) − g(t, y)| ≤ G
(

t,
∣

∣

∣
(x− f(t, x)) − (y − f(t, y))

∣

∣

∣

)

,

for all , t ∈ J, and x, y ∈ R.

The following result is well-known in the literature.

Lemma 3.1. Assume that the hypothesis (C1) holds. If there exists a function m ∈

C(J,R+) such that

m′(t) ≤ G(t,m(t)), t ∈ J,

m(t0) ≤ u0 ∈ R+,

}

(3.2)

then,

m(t) ≤ r(t) (3.3)

for all t ∈ J , where r(t) is a maximal solution of the HDE (3.1) defined on J .

Theorem 3.2. Assume that the hypotheses (A0) and (C1)–(C4) hold. Then the HDE

(1.1) has a unique solution x∗ and the sequence of successive approximations {xn}

defined by

xn+1(t) = x0 − f(t0, x0) + f(t, xn+1(t)) +

∫ t

t0

g(s, xn(s)) ds, t ∈ J, (3.4)

converges to the unique solution x∗ defined on J .

Proof. It is easy to see, by induction that the successive approximations {xn} given

by (3.4) are well defined and continuous on J .

Now, set

Xn(t) = xn(t) − f(t, xn(t)), t ∈ J. (3.5)

Then, the functions Xn are well defined and continuous real-valued functions

defined on J for each n = 0, . . .. Moreover,

‖Xn‖ ≤ |x0 − f(t0, x0)| + ‖h‖L1 = M
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for all n ∈ N. Therefore, Xn ∈ BM(0), where BM(0) is a closed ball in the Banach

space C(J,R) centered at origin 0 of radius M .

We shall now define the successive approximations for IVP (3.1) as follows:

u0 = M(t− t0),

un+1(t) =

∫ t

t0

G(s, un(s))ds, t ∈ J.







(3.6)

An easy induction proves that the successive approximations (3.6) are well defined

and satisfy

0 ≤ un+1(t) ≤ un(t) on J

for all n = 0, 1, . . . . Since |u′n(t)| ≤ M1, we conclude by Ascoli-Arzelá Theorem and

the monotonicity of the sequence {un(t)} that

lim
n→∞

un(t) = u(t)

uniformly for t ∈ J . It is clear that u(t) satisfies (3.3) and hence by (C3), u(t) ≡ 0

on J by Lemma 3.1. Now,

|X1(t) −X0| ≤

∫ t

t0

G(s, x0) ds ≤M(t− t0) = u0(t).

Assume that for some fixed integer k,

|Xk(t) −Xk−1(t)| ≤ uk−1(t).

Since

|Xk+1(t) −Xk(t)| ≤

∫ t

t0

|g(s, xk)(s) − g(s, xk−1)| |ds,

using the nondecreasing nature of G(t, u) in u and the assumption (C3), we get

|Xk+1(t) −Xk(t)| ≤

∫ t

t0

G(s, uk−1(s))ds = uk(t),

in view of (3.6). Thus, by principle of induction, the inequality

|Xn+1(t) −Xn(t)| ≤ un(t), t ∈ [t0, t0 + α] (3.7)

is true for all n. Also, we have

|X ′

n+1(t) −X ′

n(t)| ≤ |g(s, xn(s)) − g(s, xn−1(s))|

≤ G(t, |Xn(t) −Xn−1(t)|)

≤ G(t, un−1(t)), (3.8)
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because of (3.7) and the nondecreasing character of G(t, u). Let m ≥ n. Then, one

can easily obtain using (3.8),

|X ′

n(t) −X ′

m(t)| = |g(t, xn−1(t)) − g(t, xm−1(t))|

≤ |g(t, xn(t)) − g(t, xn−1(t))| + |g(t, xm(t)) − g(t, xm−1(t))|

+ |g(t, xn(t)) − g(t, xm(t))|

≤ G(t, un−1(t)) +G(t, um−1(t)) +G(t, |Xn(t) −Xm(t)|). (3.9)

Since un+1(t) ≤ un(t), it follows that

d

dt

[

|Xn(t) −Xm(t)|
]

≤ G(t, |Xn(t) −Xm(t)|) + 2G(t, un−1(t)). (3.10)

An application of the comparison theorem given in Lemma 3.1 yields

|Xn(t) −Xm(t)| ≤ rn(t), t ∈ J,

where rn(t) is the maximal solution of

v′n = G(t, vn) + 2G(t, un−1(t)), vn(t0) = 0,

for each n. Since G(t, un−1(t)) → 0, as n → ∞, uniformly on J , it follows by

Lemma 3.1 that rn(t) → 0 uniformly on J . This implies that Xn(t) converges uni-

formly to X(t) on J . Therefore, we obtain

lim
n→∞

(

xn(t) − f(t, xn(t))
)

= lim
n→∞

xn(t) − f
(

t, lim
n→∞

xn(t)
)

= x(t) − f(t, x(t))

uniformly on J . Since, (A0) holds, limn→∞ xn(t) = x(t). Now using the standard

arguments, it is proved that x(t) is a solution of the HDE (1.1). To show that the

solution is unique, let y(t) be another solution of HDE (1.1) existing on J . Define

m(t) = |(x(t) − f(t, x(t))) − (y(t) − f(t, y(t)))|. Note that m(t0) = 0. Then, by

hypothesis (C4),

m′(t) ≤
∣

∣

∣

d

dt
[x(t) − f(t, x(t))] −

d

dt
[y(t) − f(t, y(t))]

∣

∣

∣

= |g(t, x(t)) − g(t, y(t))|

≤ G
(

t, |(x(t) − f(t, x(t))) − (y(t) − f(t, y(t)))|
)

= G(t,m(t)),

whenever x, y ∈ C(J,R), using assumption C4). Again, applying Lemma 3.1, we get

m(t) ≤ r(t), t ∈ J,

where r(t) is the maximal solution of the HDE (3.1). But by assumption (C3), r(t) ≡ 0

and this proves that x(t) ≡ y(t). Hence, the limit of the successive approximations is

the unique solution of HDE (1.1) and the proof is complete. �
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4. CONTINUOUS DEPENDENCE

Finally, in this section, we discuss the continuity of solutions of the HDE (1.1)

with respect to initial data t0, x0. For this purpose, we need the following result.

Lemma 4.1. Let G : J × R+ → R+ be a function satisfying

|g(t, x)| ≤ G
(

t, |(x− f(t, x)) − (x0 − f(t0, x0))|
)

(4.1)

for all t ∈ J and x ∈ R. Assume that x(t) = x(t, t0, x0) be any solution of the HDE

(1.1) on J . Then,

|(x(t) − f(t, x(t))) − (x0 − f(t0, x0))| ≤ r∗(t, t0, 0) (4.2)

for all t ∈ J , where r∗(t, t0, 0) is the maximal solution of the differential equation

u′(t) = G(t, u(t)), t ∈ J,

u(t0) = 0.

}

(4.3)

Proof. Define a function m : J → R+ by

m(t) = |(x(t) − f(t, x(t))) − (x0 − f(t0, x0))| . (4.4)

Then,

m′(t) ≤

∣

∣

∣

∣

d

dt

[

x(t) − f(t, x(t)))
]

∣

∣

∣

∣

= |g(t, x(t))|

≤ G
(

t, |(x(t) − f(t, x(t))) − (x0 − f(t0, x0))|
)

= G(t,m(t))

for all t ∈ J and m(t0) = 0. Now an application of Lemma 3.1 yields that

|(x(t, t0, x0) − f(t, x(t, t0, x0))) − (x0 − f(t0, x0))| ≤ r∗(t, t0, 0).

�

Theorem 4.2. Assume that hypotheses (A0) and (C1)–(C4) hold. Further, if the

solutions of the differential equations (3.1) are continuous with respect to (t0, x0),

then the solutions of the HDE (1.1) are unique and continuous with respect to the

initial values (t0, x0).

Proof. Since the uniqueness of the solution follows from Theorem 3.2, we only prove

the continuity part of the theorem. To this end, let x(t) = x(t, t0, x0) and y(t) =

y(t, t0, y0) be two solutions of the HDE (1.1) through (t0, x0) and (t0, y0) respectively.

Define a function m : J → R+ by

m(t) = |(x(t) − f(t, x(t))) − (y(t) − f(t, y(t)))| . (4.5)
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Then,

m′(t) ≤ G(t,m(t)), t ∈ J,

and hence by the comparison theorem

m(t) ≤ r (t, t0, |(x0 − f(t0, x0)) − (y0 − f(t0, y0))|)

where, r(t, t0, u0) with u0 =
∣

∣(x0 − f(t0, x0)) − (y0 − f(t0, y0))
∣

∣ is a maximal solution

of the ODE (3.1) defined on J .

Since the solutions of ODE (3.1) are continuous with respect to initial values, it

follows that

lim
x0→y0

r(t, t0, u0) = r(t, t0, 0)

and by hypothesis r(t, t0, 0) = 0. This, in view of definition of m(t), it shows that

lim
x0→y0

x(t, t0, x0) = y(t, t0, y0)

whence the continuity of the solution relative to x0 follows.

Next, we shall prove the continuity of the solutions with respect to t0. If x(t, t0, x0)

and y(t, t1, x0), t1 > t0, are any two solutions of the HDE (1.1) through (t0, x0) and

(t1, x0) respectively, then, as before, we obtain the inequality

m′(t) ≤ G(t,m(t)), t ∈ [t1, t0 + a],

where,

m(t) = |(x(t, t0, x0) − f(t, x(t, t0, x0))) − (y(t, t1, x0) − f(t, y(t, t1, x0)))| .

Thus,

m(t1) = |(x(t1, t0, x0) − f(t1, x(t1, t0, x0))) − (x0 − f(t0, x0))| .

Hence, by Lemma 4.1,

m(t1) ≤ r∗(t1, t0, 0)

which further implies that

m(t) ≤ r̂(t), t > t1,

where r̂(t) = r(t, t1, r
∗(t1, t0, 0)) is a maximal solution of (4.3) through (t1, r

∗(t1, t0, 0)).

Since r∗(t1, t0, 0) = 0, we have

lim
t1→t0

= r̂(t, t1, r
∗(t1, t0, 0)) = r̂(t, t0, 0)

and by hypothesis, r̂(t, t0, 0) = 0. Now, from definition of m(t) and the hypothesis

(A0), it follows that

lim
t1→t0

x(t, t1, x0) = x(t, t0, x0).

This proves the desired continuity of the solutions x(t, t0, x0) of the HDE (1.1)

with respect to t0 and the proof of the theorem is complete. �
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Next, we shall now prove the continuous dependence of solutions with respect to

a parameter involved in the HDE (1.1). Consider the HDE,

d

dt
[x(t) − f(t, x(t))] = g(t, x(t), µ), t ∈ J,

x(t0) = x0 ∈ R,







(4.6)

where, g ∈ C(J × R × R+,R).

Let x0(t) = x(t, t0, x0, µ0) denote the solution of the HDE (4.6) corresponding to

the parameter µ = µ0. We consider the following hypotheses in what follows.

(D1) limµ→µ0
g(t, x, µ) = g(t, x, µ0) uniformly in (t, x) ∈ J × R.

(D2) There exists a function G ∈ C(J × R,R) such that

|g(t, x, µ) − g(t, y, µ)| ≤ G
(

t, |(x(t) − f(t, x(t))) − (y(t) − f(t, y(t)))|
)

, t ∈ J,

for all x, y ∈ R and µ ∈ R+.

Theorem 4.3. Assume that hypotheses (A0)–(A2), (C3) and (D1)–(D2) hold. Then,

for given ǫ > 0, there exists a δ(ǫ) > 0 such that the HDE (4.6) admits a unique

solution x(t) = x(t, t0, x0, µ) satisfying

|x(t) − x0(t)| < ǫ (4.7)

for all t ∈ J , whenever |µ− µ0| < δ(ǫ).

Proof. The uniqueness of the solutions is obvious from Theorem 3.2. From the as-

sumption that u(t) ≡ 0 is the only solution of the DE (4.3) existing on J , it follows

by Theorem 3.2 that for given ǫ > 0 there exists a number η = η(ǫ) > 0 such that

the maximal solution r(t, t0, x0, η) of

u′(t) = G(t, u(t)) + η, t ∈ J, (4.8)

exists on J and satisfies

r(t, t0, 0, η) < ǫ (4.9)

for all t ∈ J . Also, because of hypothesis (D1), there exists a δ = δ(η) > 0 such that

|g(t, x, µ) − g(t, x, µ0)| < η (4.10)

whenever |µ− µ0| < δ. Define a function m : J → R+ by

m(t) = |(x(t) − f(t, x(t))) − (x0(t) − f(t, x0(t)))|

where, x(t) and x0(t) are the solutions of the HDE (4.6) corresponding to the values

of parameter µ and µ0 respectively. Then, using hypothesis (D2), we get

m′(t) ≤ G(t,m(t)) + η, t ∈ J, (4.11)

and by a comparison result( Lemma 3.1),

m(t) ≤ r(t, t0, 0, η)
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for all t ∈ J . Hence, if |µ−µ0| < δ, then we have m(t) < ǫ for all t ∈ J . This further

in view of hypothesis (A0) together with continuity of the function x 7→ x − f(t, x)

for all t ∈ J implies that

|x(t, t0, x0, µ) − x(t, t0, x0, µ0)| < ǫ,

whenever |µ− µ0| < δ. This completes the proof. �
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