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ABSTRACT. Let 2 ≤ n denote an integer and let n−1 < α ≤ n. For each 0 < b, 0 ≤ β ≤ n−1, the

authors will construct the Green’s function, G(b, β; t, s), of the two-point boundary value problem

for the fractional differential equation

Dα
0+u + h(t) = 0, 0 < t < b,

u(i)(0) = 0, i = 0, . . . n − 2, D
β
0+u(b) = 0,

where Dα
0+ and D

β
0+ denote the standard Riemann-Liouville derivatives. The authors will compare

Green’s functions, G(b1, β; t, s) and G(b2, β; t, s) or G(b, β1; t, s) and G(b, β2; t, s), and the authors

will show the existence of a unique limiting function as b → ∞. An application to a nonlinear

problem will be given.

AMS (MOS) Subject Classification. 26A33, 34A08, 34A40.

1. INTRODUCTION

Let 2 ≤ n denote an integer and let n − 1 < α ≤ n. For each 0 < b, 0 ≤ β ≤
n − 1, we shall consider a boundary value problem (BVP) consisting of a fractional

differential equation of the form

Dα
0+u + h(t) = 0, 0 < t < b, (1.1)

with two-point boundary conditions of the form

u(i)(0) = 0, i = 0, . . . n − 2, D
β
0+u(b) = 0, (1.2)
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where Dα
0+ and D

β
0+ denote the standard Riemann-Liouville derivatives which are

defined in Section 2. As special cases, the boundary conditions (1.2) contain

u(i)(0) = 0, i = 0, . . . n − 2, u(j)(b) = 0, j ∈ {0, . . . , n − 1}, (1.3)

or

u(i)(0) = 0, i = 0, . . . n − 2, D
α−(n−1)+j
0+ u(b) = 0, j ∈ {0, . . . , n − 2}. (1.4)

For simplicity, h(t) is assumed to be continuous [0,∞).

We shall construct the corresponding Green’s function, G(b, β; t, s), of the BVP,

(1.1), (1.2). We shall show the Green’s functions are all positive on (0, b)× (0, b), and

we shall order the Green’s functions with respect to b1 < b2 or β1 < β2. Moreover,

we shall show the existence of a unique limiting function, a Green’s function, as

b → ∞. In the case of ordinary differential equations (α = n), with ordinary boundary

conditions (1.3), it is known that the right focal problem (β = n−1) is the dominating

BVP (see [6], [7], or [9]). It will be particularly interesting to note that for the

fractional differential equation, the dominating BVP for (1.1), (1.2) is in the case

β = α − 1.

Many researchers are currently applying fixed point theorems to study boundary

value problems for the fractional differential operator Dα
0+, and so, we assume the

construction we employ and the explicit Green’s functions we exhibit are not new.

See for example, [3], [12], or [17] . The ordering of the family of Green’s functions

and the exhibition of a limiting Green’s function represent the contributions of this

article.

In the case of ordinary differential equations, the concept and existence of unique

limiting Green’s functions is known. For one example, if the differential operator is of

limit-point type at a singular point, [4], then the existence of a unique limiting Green’s

function is well-known. More in line with the study in this paper, the inequalities

and properties obtained here are motivated by Elias’, [6] or [7], extensive work for

the two-term right disfocal differential operator with two point boundary conditions.

Disconjugacy theory or disfocality theory for fractional differential equations is almost

nonexistent (see [1] or [10]) and so, for now, we consider the very simple equation

(1.1). Because of this, we exhibit an analytic expression for G(b, β; t, s). The analytic

expression can be used to obtain many of the results we exhibit. We shall also develop

some qualitative arguments.

In the next section, we provide the fundamental definitions and remind the reader

of some basic results. We shall then construct the Green’s functions, obtain some

qualitative properties and show the existence of a unique limiting Green’s function. In

the third section, we shall provide an immediate application to a nonlinear boundary

value problem in which we employ monotone methods.
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2. CONSTRUCTIONS OF GREEN’S FUNCTIONS

Let 0 < ν and recall the Riemann-Liouville fractional integral of a function, [5],

u is defined by

Iν
0+u(t) =

1

Γ(ν)

∫ t

0

(t − s)ν−1u(s)ds, (2.1)

provided the right-hand side exists. Moreover, let n denote a positive integer and

assume n − 1 < α ≤ n. The α-th Riemann-Liouville fractional derivative of the

function u : [0,∞) → R, denoted Dα
0+u, is defined as

Dα
0+u(t) =

1

Γ(n − α)

dn

dtn

∫ t

0

(t − s)n−α−1u(s)ds = DnIn−α
0+ u(t),

provided the right-hand side exists. We shall employ a standard notation, Dα
0+, to

denote fractional derivatives and Dj to denote classical derivatives in the case j is a

nonnegative integer.

We only require a few well known properties in fractional calculus to construct

and analyze the family of Green’s functions. There are many good presentations on

fractional calculus, [13, 14, 15, 16], for example; we refer the reader to [5]. Recall

Iν1

0+Iν2

0+u(t) = Iν1+ν2

0+ u(t) = Iν2

0+Iν1

0+u(t), ν1, ν2 > 0, if u ∈ L1[0, b], (2.2)

Dν1

0+Iν2

0+u(t) = Iν2−ν1

0+ u(t), if 0 ≤ ν1 ≤ ν2, if u ∈ L1[0, b], (2.3)

Dα
0+Iα

0+u(t) = u(t), 0 < t, if u ∈ L1[0, b],

and

Iα
0+Dα

0+u(t) = u(t) +
n

∑

i=1

cit
α−n+(i−1), if Dα

0+u ∈ L1[0, b]. (2.4)

The property (2.2) is referred to as the semigroup property for the fractional integral.

We also require the power rule, and so, we recall [5]

Iν2

0+tν1 =
Γ(ν1 + 1)

Γ(ν2 + ν1 + 1)
tν2+ν1, ν1 > −1, ν2 ≥ 0,

and

Dν2

0+tν1 =
Γ(ν1 + 1)

Γ(ν1 + 1 − ν2)
tν1−ν2, ν1 > −1, ν2 ≥ 0, (2.5)

where it is assumed that ν2 − ν1 is not a positive integer. If ν2 − ν1 is a positive

integer, then the right hand side of (2.5) vanishes. To see this, one can appeal to the

convention that 1
Γ(ν1+1−ν2)

= 0 if ν2 − ν1 is a positive integer, or one can perform the

calculation on the left hand side and calculate

Dntn−(ν2−ν1) = 0.
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To construct the Green’s function, G(b, β; t, s), apply (2.4) to (1.1), and a solution

u of (1.1) has the form

u(t) +
n−1
∑

i=1

cit
α−n+(i−1) + cnt

α−1 +
1

Γ(α)

∫ t

0

(t − s)α−1h(s)ds = 0.

The boundary conditions, u(i)(0) = 0, i = 0, . . . n − 2, imply ci = 0, i = 1, . . . n − 1,

and now, the solution u of (1.1) has the form

u(t) + cnt
α−1 + Iα

0+(h)(t) = 0.

Apply the boundary condition D
β
0+u(b) = 0, (2.3), and (2.5); solve for cn to obtain

cn = −Γ(α − β)

Γ(α)

I
α−β
0+ (h)(b)

bα−1−β
.

Thus, the Green’s function for the BVP, (1.1), (1.2), has the form

G(b, β; t, s) =







tα−1(b−s)α−1−β

bα−1−βΓ(α)
− (t−s)α−1

Γ(α)
, 0 ≤ s ≤ t < b,

tα−1(b−s)α−1−β

bα−1−βΓ(α)
, 0 ≤ t ≤ s < b,

(2.6)

and the solution u of (1.1) has the form

u(t) =

∫ b

0

G(b, β; t, s)h(s)ds, 0 ≤ t ≤ b. (2.7)

Note that in the case α − 1 < β ≤ n − 1, the Green’s function does not extend to

[0, b]× [0, b]. The continuity of h is sufficient to imply that u, given by (2.7), is n− 2

times differentiable on [0, b].

Remark 2.1. If β = j is an integer, then (2.6) reduces to

G(b, j; t, s) =







tα−1(b−s)α−1−j

bα−1−jΓ(α)
− (t−s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ b,

tα−1(b−s)α−1−j

bα−1−jΓ(α)
, 0 ≤ t ≤ s ≤ b,

(2.8)

an expression that is known and employed in the literature, [3], [12]. If α − β is a

positive integer, the form is also known, [2].

Theorem 2.2. If 0 ≤ β1 < β2 ≤ n − 1,

0 < G(b, β1; t, s) < G(b, β2; t, s), (t, s) ∈ (0, b) × (0, b). (2.9)

Proof. To see that 0 < G(b, β1; t, s), note that the inequality is clear for t ≤ s. For

s ≤ t, write

tα−1(b − s)α−1−β

bα−1−β
− (t − s)α−1 = tα−1

(

1 − s

b

)α−1−β

− tα−1
(

1 − s

t

)α−1

. (2.10)

Note that for 0 ≤ s ≤ t ≤ b,
(

1 − s

b

)α−1−β

≥
(

1 − s

b

)α−1

≥
(

1 − s

t

)α−1

is valid in each case, 0 ≤ β ≤ α − 1, or α − 1 < β ≤ n − 1.
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To see that G(b, β1; t, s) < G(b, β2; t, s) on (0, b) × (0, b) if β1 < β2, note that

G(b, β2; t, s) − G(b, β1; t, s) =
tα−1

Γ(α)

[

(

1 − s

b

)α−1−β2

−
(

1 − s

b

)α−1−β1

]

(2.11)

and write
[

(

1 − s

b

)α−1−β2

−
(

1 − s

b

)α−1−β1

]

=
(

1 − s

b

)α−1−β2

[

1 −
(

1 − s

b

)β2−β1

]

.

The proof of Theorem (2.2) is easily modified to obtain a related result.

Theorem 2.3. Let j ∈ {0, . . . , n − 2}, i ∈ {0, . . . , j}. If j ≤ β1 < β2 ≤ n − 1,

0 <

(

∂i

∂ti

)

G(b, β1; t, s) <

(

∂i

∂ti

)

G(b, β2; t, s), (t, s) ∈ (0, b) × (0, b). (2.12)

Proof. Note that

(

∂i

∂ti

)

G(b, β; t, s) =







Γ(α)
Γ(α−i)

(

tα−1−i(b−s)α−1−β

bα−1−βΓ(α)
− (t−s)α−1−i

Γ(α)

)

, 0 ≤ s ≤ t < b,

Γ(α)
Γ(α−i)

tα−1−i(b−s)α−1−β

bα−1−βΓ(α)
, 0 ≤ t ≤ s < b.

Replace the right hand sides of (2.10) and (2.11) respectively by

tα−1−i
(

1 − s

b

)α−1−β

− tα−1−i
(

1 − s

t

)α−1−i

and
tα−1−i

Γ(α)

[

(

1 − s

b

)α−1−β2

−
(

1 − s

b

)α−1−β1

]

.

We shall use Theorem 2.3 in Section 3 for a straight-forward application to a

nonlinear problem.

Theorem 2.4. Assume 0 < b1 < b2. If 0 ≤ β < α − 1, then

0 < G(b1, β; t, s) < G(b2, β; t, s), (t, s) ∈ (0, b1) × (0, b1), (2.13)

and if α − 1 < β ≤ n − 1, then

G(b1, β; t, s) > G(b2, β; t, s) > 0, (t, s) ∈ (0, b1) × (0, b1). (2.14)

If β = α − 1, then G(b, α − 1; t, s) is independent of b on (0, b) × (0, b).

Proof. Note that

H(b, β; t, s) :=
∂

∂b
G(b, β; t, s) =

α − 1 − β

Γ(α)

(

1 − s

b

)α−2−β ( s

b2

)

tα−1.

So, H changes sign at α − 1 − β = 0.
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We point out one more property of G(b, β; t, s) that is analogous to properties

of Green’s functions for boundary value problems of ordinary differential equations,

[8, 10, 11]. H is the solution of the BVP,

Dα
0+u = 0, 0 < t < b,

u(i)(0) = 0, i = 0, . . . n − 2, D
β
0+u(b) = −D

β+1
0+ G(b, β; b, s).

This is shown with a direct calculation.

Finally, since G is given explicitly in (2.6), we can exhibit a uniquely determined

limiting function in the following sense. Extend, in any way, G(b, β; t, s) to G(b, β; t, s)

defined on [0,∞) × [0,∞) . The following observation is clear.

Theorem 2.5. Let 0 ≤ β ≤ α − 1. Then

lim
b→∞

G(b, β; t, s) = G(α − 1; t, s),

where

G(α − 1; t, s) =







tα−1

Γ(α)
− (t−s)α−1

Γ(α)
, 0 ≤ s ≤ t < ∞,

tα−1

Γ(α)
, 0 ≤ t ≤ s < ∞.

(2.15)

The convergence is monotone increasing and uniform on compact domains. If α−1 ≤
β ≤ n − 1, then

lim
b→∞

G(b, β; t, s) = G(α − 1; t, s),

where the convergence is monotone decreasing and uniform on compact domains.

In particular, G(b, α − 1; t, s) = G(α − 1; t, s) agree on [0, b] × [0, b].

3. AN APPLICATION TO A NONLINEAR PROBLEM

In this section, we consider a family of nonlinear BVPs for a specific set of bound-

ary conditions and apply the method of upper and lower solutions to obtain sufficient

conditions for existence of solutions. Moreover, monotone methods can be applied to

generate sequences of approximate solutions that converge uniformly to a solution of

the nonlinear problem.

Let 2 ≤ n, 0 ≤ j ≤ n − 2 denote integers and let n − 1 < α ≤ n. Let 0 < b,

0 ≤ j ≤ β ≤ n − 1 , and consider the boundary value problem

Dα
0+u + f(t, u(t), u′(t), . . . , u(j)(t)) = 0, 0 < t < b, (3.1)

with the boundary conditions conditions (1.2) where f : [0, b]×R
(j+1) → R is contin-

uous and

f(t, u0, . . . , uj) ≥ f(t, v0, . . . , vj) if ui ≥ vi, i = 0, . . . , j. (3.2)
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We shall say that w ∈ C(j)[0, b] is a lower solution of the BVP, (3.1), (1.2), if w

satisfies the boundary conditions (1.2) and

Dα
0+w + f(t, w(t), w′(t), . . . , w(j)(t)) ≥ 0, 0 < t < b, (3.3)

and that z ∈ C(j)[0, b] is an upper solution of the BVP, (3.1), (1.2), if z satisfies the

boundary conditions (1.2) and

Dα
0+z + f(t, z(t), z′(t), . . . , z(j)(t)) ≤ 0, 0 < t < b. (3.4)

Assume the existence of lower and upper solutions, w0 and z0 respectively such

that

w
(i)
0 (t) ≤ z

(i)
0 (t), 0 ≤ t ≤ b, i = 0, 1, . . . , j.

Define sequences, {wk+1}, {vk+1}, respectively, by

wk+1(t) = Twk(t), zk+1(t) = Tzk(t), 0 ≤ t ≤ b, (3.5)

where

Ty(t) =

∫ b

0

G(b, β; t, s)f(s, y(s), y′(s), . . . , y(j)(s))ds, 0 ≤ t ≤ b. (3.6)

Apply Theorem 2.3 and (3.2) to obtain

x(i)(t) ≤ y(i)(t), 0 ≤ t ≤ b, i = 0, 1, . . . , j,

implies

(Tx)(i)(t) ≤ (Ty)(i)(t), 0 ≤ t ≤ b, i = 0, 1, . . . , j. (3.7)

Also, note that Theorem 2.3, (3.3), and (3.4) imply for 0 ≤ t ≤ b, i = 0, 1, . . . , j,

w
(i)
0 (t) =

(
∫ b

0

G(b, β; t, s)(−Dα
0+w0(s))ds

)(i)

(t) ≤ (Tw0)
(i)(t) = w

(i)
1 (t),

and

z
(i)
0 (t) =

(
∫ b

0

G(b, β; t, s)(−Dα
0+z0(s))ds

)(i)

(t) ≥ (Tz0)
(i)(t) = z

(i)
1 (t).

In particular,

w
(i)
0 (t) ≤ w

(i)
1 (t) ≤ z

(i)
1 (t) ≤ z

(i)
0 (t), 0 ≤ t ≤ b. (3.8)

Apply T iteratively to (3.8), and it follows from (3.7) that

w
(i)
k (t) ≤ w

(i)
k+1(t) ≤ z

(i)
k+1(t) ≤ z

(i)
k (t), 0 ≤ t ≤ b, k = 0, 1, . . . .

Theorem 3.1. Let 2 ≤ n denote an integer, n−1 < α ≤ n, and let j ∈ {0, . . . , n−2}.
Assume f : [0, b] × R

(j+1) → R is continuous and satisfies

f(t, u0, . . . , uj) ≥ f(t, v0, . . . , vj) if ui ≥ vi, i = 0, . . . , j.
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Assume there exists a lower solution, w0(t) ∈ Cj [0, b] and an upper solution, z0(t) ∈
Cj[0, b] of the BVP, (3.1), (1.2), satisfying

w
(i)
0 (t) ≤ z

(i)
0 (t), 0 ≤ t ≤ b, i = 0, 1, . . . , j.

Define sequences, {wk+1}, {vk+1}, by

wk+1(t) = Twk(t), zk+1(t) = Tzk(t), 0 ≤ t ≤ b,

where

Ty(t) =

∫ b

0

G(b, β; t, s)f(s, y(s), y′(s), . . . , y(j)(s))ds, 0 ≤ t ≤ b.

Then there exists a solution u of the BVP, (3.1), (1.2), satisfying

w
(i)
k (t) ≤ w

(i)
k+1(t) ≤ u(i)(t) ≤ v

(i)
k+1(t) ≤ v

(i)
k (t), 0 ≤ t ≤ b, i = 0, 1, . . . , j,

for each k = 0, 1, . . . . Moreover, the sequences, {wk}, {vk}, converge in Cj[0, b] to

w, v, respectively, where each of w and v are solutions of the BVP, (3.1), (1.2), and

w(i)(t) ≤ u(i)(t) ≤ v(i)(t), 0 ≤ t ≤ b, i = 0, 1, . . . , j.

As a first example to illustrate the theorem, consider the BVP,

D
5

2

0+u(t) + 1 + u3(t) +
1

2
(u′)3(t) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) = 0.

Set w0 ≡ 0. Set z0(t) = t
3

2 − 3
5
t

5

2 . Each of w0, z0 satisfy the boundary conditions and

it is clear that w0 is a lower solution. Direct calculations give that

D
5

2

0+z0(t) = −3

5
Γ

(

7

2

)

= −9

8

√
π,

0 ≤ z0(t) ≤
2

5
, 0 ≤ z′0(t) ≤ 1, 0 ≤ t ≤ 1.

Thus, z0 is an upper solution. Since (3.2) is valid on all of [0, 1] × R
2, Theorem 3.1

applies, and there exists a solution u such that

0 ≤ u(i)(t) ≤ z
(i)
0 (t), i = 0, 1, 0 ≤ t ≤ 1.

As a second example, we note that (3.2) is too strong. If the lower and upper

solutions w0 and z0, respectively, exist satisfying

z
(i)
0 (t) ≥ w

(i)
0 (t), 0 ≤ t ≤ b,

then one only needs to assume

f(t, u0, . . . , uj) ≥ f(t, v0, . . . , vj), if z
(i)
0 (t) ≥ ui ≥ vi ≥ w

(i)
0 (t), (3.9)

and i = 0, . . . , j, 0 ≤ t ≤ b.

Consider the BVP,

D
5

2

0+u + 1 + u(t)u′(t) = 0, 0 < t < 1,
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u(0) = u′(0) = 0, u′(1) = 0.

Again w0 ≡ 0 and z0(t) = t
3

2 − 3
5
t

5

2 serve as lower and upper solutions, respectively,

and now, (3.9) is valid. Thus, there exists a solution u of this BVP satisfying

0 ≤ u(i)(t) ≤ z
(i)
0 (t), i = 0, 1, 0 ≤ t ≤ 1.
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