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ABSTRACT. We establish sufficient conditions for the existence of positive solutions to the mul-

tipoint boundary value

−u′′ = f(t, u(t)), t ∈ (0, 1),

u(0) = u(1),

u′(0) = u′(η).

Since the associated homogeneous boundary value problem is not invertible the problem is said to

be at resonance. The main tool employed is a variant of a fixed point index theorem due to Cremins

for A-proper semilinear operators defined on cones.
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1. INTRODUCTION

We consider the existence of positive solutions to the second-order boundary value

problem

−u′′(t) = f(t, u(t)), t ∈ (0, 1), (1.1)

u(0) = u(1), (1.2)

u′(0) = u′(η). (1.3)

Throughout we assume that f : [0, T ] × R → R is continuous. The boundary

conditions (1.2) and (1.3) are such that the homogeneous boundary value problem

−u′′ = 0, u(0) = u(1), u′(0) = u′(η), is not invertible. We say that the system is at

resonance.

Due to their significance in real world applications many authors have studied

the existence of positive solutions to boundary value problems; see [1, 2, 3, 4, 5, 9, 12,

13, 14, 15, 16, 17, 20, 26, 28, 29, 30, 31, 32] and references therein. Recently, several

authors have also studied boundary value problems at resonance, see for example

[2, 6, 7, 8, 10, 11, 18, 19, 21, 22, 23, 25, 26, 30].
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Of particular interest are the papers by O’Regan and Zima [26], Bai and Fang [2]

and Fang and Zhang [30]. The main result in [26] gives conditions in terms of norms

for the existence of solutions to equations of the form Lx = Nx. The authors use

their main result to show the existence of a positive solution to the periodic boundary

value problem x′(t) = f(t, x(t)), x(0) = x(1). Their results are extension of the work

done by Santanilla [29]. In [2] the authors consider the three point boundary value

problem

(p(t)x′(t))′ = f(t, x(t), x′(t)), t ∈ (0, 1),

x′(0) = 0, x(1) = x(η).

The boundary condition x(1) = x(η) ensures that the system is at resonance. Using

a Cremins’ type fixed point theorem the authors give sufficient conditions for the

existence of at least one positive solution. In [30], the authors give sufficient conditions

for the existence of at least one positive solution to the resonant multi-point boundary

value problem

−x′′ = f(t, x), t ∈ (0, 1),

x(0) =
m−2
∑

i=1

αix(ξi), x(1) =
m−2
∑

i=1

βix(ηi),

when
∑m−2

i=1 αi =
∑m−2

i=1 βi = 1. They state and prove an existence result based on

the theorems due to Cremins [3]. We will use the existence theorem found in [30] to

give sufficient conditions for the existence of positive solutions of the boundary value

problem (1.1)–(1.3). All of these papers employ Mawhin’s coincidence theory [24].

In Section 2 we give the necessary preliminary results from the theory of the fixed

point index for A-proper semilinear operators on cones. Also, we state a fixed point

theorem due to Wang and Zhang [30], which we employ to establish the existence to

a positive solutions to (1.1)–(1.3). We state and prove our main result in Section 3.

2. PRELIMINARIES

This section begins with some basic definitions and notation associated with fixed

point index theory for A-proper semilinear operators defined on a cone as outlined by

Cremins, see [3]. We also present the necessary background from Mawhin’s coinci-

dence theory, see [24]. At the end of this section we state a variant of the fixed point

theorem found in [30].

Let X and Z be Banach spaces and D a linear subspace of X. Let {Xn} ⊂ D and

{Zn} ⊂ Z be sequences of oriented finite dimensional subspaces such that Qnz → z

in Z for every z and dist(x, Xn) → 0 for every x ∈ D where Qn : Z → Zn and

Pn : X → Xn are sequences of continuous linear projections. The projection scheme

Γ = {Xn, Zn, Pn, Qn} is then said to be admissible for maps from D ⊂ X to Z.
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Definition 2.1. A map T : D ⊂ X → Y is called approximation-proper (abbreviated

A-proper) at a point z ∈ Z with respect to Γ if Tn ≡ PnT |D∩Xn
is continuous for each

n ∈ N and, whenever {xnj
: xnj

∈ D ∩ Xnj
} is bounded with Tnj

xnj
→ z, then there

exists a subsequence {xnjk
} such that xnjk

→ x ∈ D and Tx = z. T is said to be

A-proper on a set Ω if it is A-proper at all points in Ω.

Let C be a cone in the Banach space X. Let Ω ⊂ X be an open and bounded set

with Ω ∩ C = ΩC 6= ∅. Let T : ΩC → C be a continuous operator such that Tx 6= x

for all u ∈ ∂ΩC .

Our goal is to rewrite (1.1)-(1.3) in the form Lu = Nu where L is a Fredholm

mapping. With this objective in mind we define what is meant by a Fredholm mapping

on index zero and then state some needed properties.

Definition 2.2. A Fredholm mapping is a linear mapping L : dom L ⊂ X → Z that

satisfies the following two conditions:

(i) Ker L has a finite dimension, and

(ii) Im L is closed and has finite codimension.

If L is a Fredholm mapping, its (Fredholm) index is the integer Ind L = dim Ker L−

codim Im L.

Let L : dom L ⊂ X → Z be a Fredholm map of index zero. Then there exist

continuous projectors P : X → X and Q : Z → Z such that

Im P = Ker L, Ker Q = Im L, X = Ker L ⊕ Ker P, Z = Im L ⊕ Im Q (2.1)

and the mapping L|dom L∩Ker P : dom L∩Ker P → Im L is invertible. The inverse of

LP := L|dom L∩Ker P is denoted by L−1 : Im L → dom L ∩ Ker P. Since dim Im Q =

codim Im L there exists an isomorphism J : Im Q → Ker L. Let H = L + J−1P .

Then H : dom L ⊂ X → Z is a linear bijection with bounded inverse. Hence

C1 = H(C ∩ dom L) is a cone in the Banach space Z.

We assume that there is a continuous bilinear form [z, x] defined on Z × X such

that z ∈ Im L if and only if [z, x] = 0 for all x ∈ Ker L.

The following variant of Cremins’ fixed point theorem is found in Wang and

Zhang (see [30]) and is used to establish our main results.

Theorem 2.3. Let L : dom L → Z be a Fredholm operator of index zero, C ⊂ X

be a cone, Ω1 and Ω2 be open bounded sets such that θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and

Ω2 ∩ C ∩ dom L 6= ∅, where θ is the zero element in X. Suppose that L − λN is

A-proper for λ ∈ [0, 1] with N : Ω2 ∩ C → Z bounded. Assume that

(C1) (P + JQN)(C) ⊂ C and (P + JQN + L−1(I − Q)N)(C) ⊂ C;

(C2) Lu 6= λNu for all u ∈ ∂Ω2 ∩ C and λ ∈ (0, 1];
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(C3) QNu 6= 0 for u ∈ ∂Ω2 ∩ C ∩ Ker L;

(C4) [QNu, u] ≤ 0 for all u ∈ ∂Ω2 ∩ C ∩ Ker L;

(C5) there exists e ∈ C1 \ {θ} such that

Lu − Nu 6= µe for every µ ≥ 0, u ∈ ∂Ω1 ∩ C.

Then there exists an u ∈ dom L ∩ C ∩ (Ω2 \ Ω1) such that Lu = Nu.

3. MAIN RESULT

In order to use Theorem 2.3 we must first write (1.1) in the form Lu = Nu. To

this end, we use the Banach spaces X = Z = C[0, 1] with norm ‖u‖ = maxt∈[0,1] |u(t)|.

The operator L : dom L ⊂ X → Z is defined to be

Lu(t) = −u′′(t)

with

dom L = {u ∈ X : u′′ ∈ C[0, 1], u(0) = u(1), u′(0) = u′(η)} .

Define the mapping N : X → Z by

Nu(t) = f(t, u(t))

and the cone C ⊂ X by

C = {u ∈ X : u(t) ≥ 0}.

It is easy to verify that

Ker L = {u ∈ dom L ⊂ X : u(t) ≡ c, c ∈ R}

Im L =

{

g ∈ Z :

∫ η

0

g(s) ds = 0

}

, and

dim Ker L = codim Im L = 1.

The projectors P : X → X and Q : Z → Z that arise naturally for this problem

are

Qg(t) =
1

η

∫ η

0

g(s) ds,

and

Pu(t) =

∫ 1

0

u(s) ds,

respectively. It is easy to check that the projectors P and Q are exact; that is, they

satisfy (2.1). To simplify notation define the function h by

h(s) =

{

0, η < s ≤ 1,
1
η
, 0 ≤ s ≤ η.

Then we can rewrite Q as

Qg(t) =

∫ 1

0

h(s)g(s) ds.

Our first Lemma is easy to verify. See [23] for a typical proof.
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Lemma 3.1. The mapping L : dom L ⊂ X → Z is a Fredholm mapping of index

zero.

Define the isomorphism J := Im Q → Ker L by Jg = g. The inverse mapping

L−1 : Im L → dom L ∩ Ker P is given by

L−1g(t) =

∫ 1

0

G(t, s)g(s) ds (3.1)

where

G(t, s) =
1

2

{

s(1 − 2t + s), 0 ≤ s < t,

(1 − s)(2t − s), t ≤ s ≤ 1.

Also, define the function G̃(t, s) by

G̃(t, s) = h(s) + G(t, s) +
6t2 − 6t + 1

6
h(s).

In order to employ Theorem 2.3, L− λN must be A-proper for all λ ∈ [0, 1] and

N : Ω2 ∩ C → Z must be bounded.

Lemma 3.2. Suppose that

(H1) There exist constants α and β such that |f(t, u)| ≤ α + β|u| for all t ∈ [0, 1] and

all u ≥ 0.

Then the operator L−1 : Im L → dom L ∩ Ker P defined by (3.1) is compact, N :

Ω2 ∩ C → Z is bounded, where the set Ω2 is defined in (3.2), and the operators L−λN

are A-proper for λ ∈ [0, 1].

Proof. An application of the Arzelà-Ascoli can be used to show that L−1 : Im L →

dom L∩Ker P is compact. The boundedness of N follows trivially from (H1). Since

L−1 is compact, then by Lemma 2(a) [27] , the homotopy L − λN, λ ∈ [0, 1] is A-

proper.

We are now ready to state our main result.

Theorem 3.3. In addition to (H1), assume there exists 0 < a < b such that

(H2) f(t, u) ≥ −κu for all t ∈ [0, 1], u ≥ 0, where κ ≤ min{η, 1/ max(t,s)∈[0,1] G̃(t, s)},

(H3) f(t, v) > 0 for all (t, v) ∈ [0, 1] × [0, a],

(H4) max
t∈[0,1]

f(t, b) < 0.

Then there exists at least one positive solution u of (1.1)–(1.3) such that a ≤ ‖u‖ ≤ b.

Proof. We begin by defining the sets

Ω1 = {u ∈ X : ‖u‖ < a}

and

Ω2 = {u ∈ X : ‖u‖ < b}. (3.2)
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Note that both Ω1 and Ω2 are open and bounded in X and that

θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2.

We first show that condition (C1) of Theorem 2.3, (P + JQN)(C) ⊂ C and

(P + JQN + KP (I − Q)N)(C) ⊂ C, is satisfied. From assumption (H2) we have

Pu + JQNu =

∫ 1

0

u(s) ds +
1

η

∫ η

0

f(s, u(s)) ds

≥

∫ 1

0

u(s) ds −
κ

η

∫ η

0

u(s) ds

=

∫ 1

η

u(s) ds +

(

1 −
κ

η

)
∫ η

0

u(s) ds ≥ 0.

Also by (H1),

Pu + JQNu + L−1(I − Q)Nu

=

∫ 1

0

u(s) ds +
1

η

∫ η

0

f(s, u(s)) ds

+

∫ 1

0

G(t, s)

[

f(s, u(s)) −
1

η

∫ η

0

f(τ, u(τ)) dτ

]

ds

=

∫ 1

0

u(s) ds +
1

η

∫ η

0

f(s, u(s)) ds

+

∫ 1

0

G(t, s)f(s, u(s)) ds−
1

η

∫ η

0

f(τ, u(τ)) dτ

∫ 1

0

G(t, s) ds

≥

∫ 1

0

(

1 − κG̃(t, s)
)

u(s) ds ≥ 0.

Hence, condition (C1) of Theorem 2.3 is satisfied.

Now consider condition (C2), Lu 6= λNu, for all u ∈ ∂Ω2 ∩C, λ ∈ (0, 1]. Suppose

that the condition fails. Then there exists a u0 ∈ ∂Ω2 ∩C and a λ0 ∈ (0, 1] such that

Lu0 = λNu0. Since u0 ∈ ∂Ω2 ∩ C then there exists a t0 ∈ (0, 1) such that u(t0) = b.

Then u′(t0) = 0 and u′′(t0) < 0. We have Lu0(t0) = −u′′(t0) > 0. This produces the

contradiction to (H4)

0 < Lu0(t0) = Nu0(t0) = f(t0, b) < 0.

Hence condition (C2) is valid.

Next we show that condition (C3), QNu 6= 0 for all u ∈ ∂Ω2 ∩ C ∩ Ker L, is

valid. Note that

QNu =
1

η

∫ η

0

f(s, u(s)) ds.

Let u0 ∈ ∂Ω2 ∩ C ∩ Ker L. Then u0 ≡ b and so again by (H4)

QNu =
1

η

∫ η

0

f(s, b) ds < 0.
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Thus (C3) is satisfied.

To check that condition(C4), [QNu, U ] ≤ 0 for all u ∈ ∂Ω2∩C∩Ker L, we define

the bilinear form [·, ·] : Z × X → R by

[g, u] =

∫ η

0

g(s)u(s) ds.

The bilinear form is continuous and if u ∈ Ker L, i.e. u ≡ c for some c ∈ R, then

c

∫ η

0

g(s) ds = 0 ⇔ g ∈ Im L.

Let u ∈ ∂Ω2 ∩ C ∩ Ker L. By condition (H4) we have

[QNu, u] =

∫ η

0

1

η

∫ η

0

f(s, b) dsb dτ

=
b

η

∫ η

0

dτ

∫ η

0

f(s, b) ds

= b

∫ η

0

f(s, b) ds < 0.

Thus (C4) is satisfied.

Finally we show that (C5), there exists e ∈ C1 \ {θ} such that Lu − Nu 6= µe

for every µ ≥ 0, u ∈ ∂Ω1 ∩ C, is true. We may assume that Lu 6= Nu for all

u ∈ ∂Ω1 ∩C ∩dom L otherwise the proof is complete. Let e = 1 ∈ C1 \ {θ}. Suppose

that u1 ∈ ∂Ω1 ∩ C ∩ dom L and µ1 > 0 are such that

Lu1 − Nu1 = µ1e = µ1. (3.3)

Since Qg = 0 for all g ∈ Im L, then QLu1 = 0, and so after applying Q to both sides

of (3.3) we have

QNu1 + Qµ1 = 0. (3.4)

We have from (3.4) that
∫ η

0

f(s, u(s)) + µ1 ds = 0.

However, from condition (H3),
∫ η

0

f(s, u(s)) ds > 0

which is a contradiction since µ1 > 0 and η > 0. Thus (C5) is valid.

Since all conditions of Theorem 2.3 are satisfied then there exists a solution

u∗ ∈ dom L∩ (Ω2 \Ω1) such that Lu∗ = Nu∗. That is, u∗ is a solution of (1.1)–(1.3)

such that u∗(t) ≥ 0 and a ≤ ‖u∗‖ ≤ b. The proof is complete.
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