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ABSTRACT. We study sufficient conditions for existence and uniqueness of solutions to boundary

value problems for fractional order differential equations of the form

−cDqu(t) = f(t, u(t)); t ∈ J = [0, 1], 1 < q ≤ 2,

u(0) = g(u), u(1) −
m−2
∑

i=1

λiu(ηi) = h(u),

where λi, ηi ∈ (0, 1) with
∑m−2

i=1
λiηi < 1, g, h ∈ C(J, R) are boundary functions and f : J×R×R →

R is continuous. We use a fixed point theorem for condensing maps to establish sufficient conditions

for existence as well as uniqueness of solutions to the boundary value problem. We provide an

example to verify the applicability of our results.

AMS (MOS) Subject Classification. 26A33, 33C45.

1. Introduction

The theory of fractional order differential equations is growing rapidly and a

wide range of applications can be found in various scientific and engineering disci-

plines such as physics, mechanics, chemistry, biology, viscoelasticity, control theory,

signal processing, economics, optimization theory etc, we refer to [20, 24, 25, 17, 21].

The theory of existence and uniqueness of solutions to boundary value problems for

fractional order differential equations has also attracted some attentions; we refer the

readers to [7, 2, 4, 3, 5, 23, 6] and the references therein for the recent development

of the theory for boundary value problems. Existence and uniqueness results of solu-

tions or positive solutions to multi-point boundary value problems via classical fixed

point theorems such as the Banach contraction principle or the Schauder fixed point

theorem are studied in [13, 26, 30, 14, 11, 19, 15, 29].

The use of coincidence degree theory approach to study existence of solutions

of fractional order differential equations is quite recent and only few results can be
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found in the literature dealing with boundary value problems (BVPs) [16, 28, 10, 27].

Here we remark that Johnny Henderson has a significant contribution in the field

of fractional order differential equations. We refer to [8, 1] for the case of compact

operators, and to [9] for the case of noncompactness.

In [28], Wang et. al. studied existence and uniqueness of solutions to a class of

nonlocal Cauchy problems of the form

cDqu(t) = f(t, u(t)); t ∈ J = [0, T ],

u(0) + g(u) = u0,

where cDq is the Caputo fractional derivative of order q ∈ (0, 1), the function f :

J ×R → R is continuous and u0 ∈ R. Chen et al [10] studied sufficient conditions for

existence results for the following two point boundary value problem

Dα
0+φp(D

β
0+u(t)) = f(t, u(t), Dβ

0+u(t))

D
β
0+u(0) = D

β
0+u(1) = 0,

where Dα
0+ and D

β
0+ are Caputo fractional derivatives, 0 < α, β ≤ 1, 1 < α + β ≤ 2.

Tang et al [27] studied the following two point boundary value problem for fractional

differential equations

Dα
0+φp(D

β
0+u(t)) = f(t, u(t), Dβ

0+u(t))

u(0) = 0, D
β
0+u(0) = D

β
0+u(1),

where Dα
0+ and D

β
0+ are Caputo fractional derivatives, 0 < α, β ≤ 1, 1 < α + β ≤ 2.

Motivated by the above results, we use coincidence degree theory approach for

condensing maps to study sufficient conditions for existence and uniqueness of solu-

tions to some nonlinear multi-point boundary value problem with nonlinear boundary

conditions of the form

−cDqu(t) = f(t, u(t)); t ∈ J, 1 < q ≤ 2,

u(0) = g(u), u(1) −
m−2
∑

i=1

λiu(ηi) = h(u),
(1.1)

where λi, ηi ∈ (0, 1) with
m−2
∑

i=1

λiηi < 1, g, h : C(J, R) and f : J × R × R → R is

continuous.

2. Basic results

We provide some basic definitions and results and refer the reader to [24, 25, 17,

21, 22, 12, 18] for more insight to the theory. The Banach space of all continuous

functions from J → R with the norm ‖u‖ = sup{|u(t)| : t ∈ J} is denoted by

X = C(J, R) and B ∈ P (X) denotes the family of all its bounded sets.
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Definition 2.1. The fractional integral of order q ∈ R+ of a function y ∈ L1([a, b], R)

is defined as

I
q
a+y(t) =

1

Γ(q)

∫ t

a

(t − s)q−1y(s) ds. (2.1)

Definition 2.2. The Caputo fractional order derivative of a function y on the interval

[a, b] is defined by

cD
q
a+y(t) =

1

Γ(n − q)

∫ t

a

(t − s)n−q−1y(n)(s) ds,

where n = [q] + 1 and [q] represents the integer part of q.

Lemma 2.3. The fractional differential equation of order q > 0

cDqy(t) = 0, n − 1 < q ≤ n,

has a solution of the form y(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1, where ci ∈ R,

i = 0, 1, 2, . . . , n − 1.

Lemma 2.4. The following result holds for fractional differential equations

IqcDqy(t) = y(t) + c0 + c1t + c2t
2 + · · · + cn−1t

n−1,

for arbitrary ci ∈ R, i = 0, 1, 2, . . . , n − 1.

Definition 2.5. The Kuratowski measure of noncompactness α : B → R+ is defined

as

α(B) = inf{d > 0},

where B ∈ B admits a finite cover by sets of diameter ≤ d.

Proposition 2.6. The Kuratowski measure α satisfies the following properties:

(i) α(B) = 0 iff B is relatively compact.

(ii) α is a seminorm, that is, α(λB) = |λ|α(B), λ ∈ R and α(B1 + B2) ≤ α(B1) +

α(B2).

(iii) B1 ⊂ B2 implies α(B1) ≤ α(B2); α(B1 ∪ B2) = max{α(B1), α(B2)}.

(iv) α(convB) = α(B).

(v) α(B̄) = α(B).

Definition 2.7. Let the function F : Ω → X be a continuous bounded map, where

Ω ⊂ X. Then F is α-Lipschitz if there exists K ≥ 0 such that

α(F (B)) ≤ Kα(B), ∀ B ⊂ Ω bounded.

Further, F will be strict α-contraction if K < 1.

Definition 2.8. The function F is α-condensing if

α(F (B)) < α(B), ∀ B ⊂ Ω bounded with α(B) > 0.

In other words, α(F (B)) ≥ α(B) implies α(B) = 0.



518 R. A. KHAN AND K. SHAH

Recently, Isaia [18] developed the following results using the degree theory argu-

ments.

Theorem 2.9. Let F : X → X be α-condensing and

Θ = {x ∈ X : ∃ λ ∈ [0, 1] such that x = λFx}.

If Θ is a bounded set in X, so there exists r > 0 such that Θ ⊂ Br(0), then the degree

D(I − λF, Br(0), 0) = 1, ∀ λ ∈ [0, 1].

Consequently, F has at least one fixed point and the set of the fixed points of F lies

in Br(0).

We recall the following propositions from the book by K. Deimling [12].

Proposition 2.10. If F, G : Ω → X are α-Lipschitz maps with constants K and K
′

respectively, then F + G : Ω → X is α-Lipschitz with constant K + K
′

.

Proposition 2.11. If F : Ω → X is compact, then F is α-Lipschitz with constant

K = 0.

Proposition 2.12. If F : Ω → X is Lipschitz with constant K, then F is α-Lipschitz

with the same constant K.

3. Main Results

In this section, we discuss the existence and uniqueness of solutions to the BVP

(1.1). In view of the definition (2.1), we write

Iqf(t, u(t)) =
1

Γ(q)

∫ t

0

(t − s)q−1f(s, u(s)) ds (3.1)

and use the notations A = 1 −
∑m−2

i=1 λi, ∆ = 1 −
∑m−2

i=1 λiηi > 0 and

Iqf(1, u(1)) =
1

Γ(q)

∫ 1

0

(1 − s)q−1f(s, u(s)) ds,

Iqf(ηi, u(ηi)) =
1

Γ(q)

∫ ηi

0

(ηi − s)q−1f(s, u(s)) ds.

(3.2)

Lemma 3.1. If the BVP for the fractional differential equation (1.1) has a solution

u, then u has the form

u(t) =

(

1 −
tA

∆

)

g(u) +
t

∆
h(u) +

t

∆

[

Iqf(1, u(1))−

m−2
∑

i=1

λiI
qf(ηi, u(ηi))

]

− Iqf(t, u(t)) =

(

1 −
tA

∆

)

g(u) +
t

∆
h(u) +

∫ 1

0

G(t, s)f(s, u(s)) ds,

(3.3)
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where G(t, s) is the Green function and is given by

G(t, s) =
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t
∆Γ(q)

[

(1 − s)q−1 −
m−2
∑

i=1

λi(ηi − s)q−1

]

− (t−s)q−1

Γ(q)
, s ∈ [0, η1]

t
∆Γ(q)

[

(1 − s)q−1 −
m−2
∑

i=j

λi(ηi − s)q−1

]

− (t−s)q−1

Γ(q)
, s ∈ [ηj−1, ηj],

j = 2, 3, . . . , m − 2,
t

∆Γ(q)
(1 − s)q−1 − (t−s)q−1

Γ(q)
, s ∈ [ηm−2, 1]

t ≤ s











































t
∆Γ(q)

[

(1 − s)q−1 −
m−2
∑

i=1

λi(ηi − s)q−1

]

, s ∈ [0, η1]

t
∆Γ(q)

[

(1 − s)q−1 −
m−2
∑

i=j

λi(ηi − s)q−1

]

, s ∈ [ηj−1, ηj ],

j = 2, 3, . . . , m − 2,
t

∆Γ(q)
(1 − s)q−1, s ∈ [ηm−2, 1].

(3.4)

Proof. Applying Iq on the differential equation in (1.1) and using Lemma (2.4), we

obtain

u(t) = −Iqf(t, u(t)) + c0 + c1t, c0, c1 ∈ R (3.5)

The boundary conditions u(0) = g(u) and u(1) −
m−2
∑

i=1

λiu(ηi) = h(u) yield

c0 = g(u), c1 =
1

∆

[

h(u) + Iqf(1, u(1)) + Ag(u) −

m−2
∑

j=i

λiI
qf(ηi, u(ηi))

]

.

Hence, it follows that

u(t) = −Iqf(t, u(t)) + g(u) +
t

∆

[

h(u) + Iqf(1, u(1)) + Ag(u) (3.6)

−

m−2
∑

i=1

λiI
qf(ηi, u(ηi))

]

= −Iqf(t, u(t)) +

(

1 +
tA

∆

)

g(u) +
t

∆
h(u)

+
t

∆

[

Iqf(1, u(1))−
m−2
∑

i=1

λiI
qf(ηi, u(ηi))

]

=

(

1 +
tA

∆

)

g(u) +
t

∆
h(u) + U1(t),

where

U1(t) =
t

∆

[

Iqf(1, u(1)) −
m−2
∑

i=1

λiI
qf(ηi, u(ηi))

]

=
t

∆Γ(q)

[
∫ 1

0

(1 − s)q−1f(s, u(s))ds −

m−2
∑

i=1

λi

∫ ηi

0

(ηi − s)q−1f(s, u(s))ds

]

−
1

Γ(q)

∫ t

0

(t − s)q−1f(s, u(s))ds =

∫ 1

0

G(t, s)f(s, u(s))ds.
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Define the following operators F, G, T : C(J, R) → C(J, R) by

(Fu)(t) = g(u) −
tA

∆
g(u) +

t

∆
h(u) =

(

1 −
tA

∆

)

g(u) +
t

∆
h(u),

(Gu)(t) =
t

∆Γ(q)

[

∫ 1

0

(1 − s)q−1f(s, u(s)) ds−

m−2
∑

j=i

λi

∫ ηi

0

(ηi − s)q−1f(s, u(s)) ds

]

−
1

Γ(q)

∫ t

0

(t − s)q−1f(s, u(s)) ds, and Tu = Fu + Gu

The operator T is well defined as g, h, f are continuous functions. We can write (3.6)

as an operator equation

u = Tu = Fu + Gu, (3.7)

and solutions of the BVP (1.1) mean solutions of the operator equation, that is, fixed

points of T .

Assume that the following hold.

(A1) There exist constants Kg, Cg, Mg, q1 ∈ [0, 1) such that

|g(u)− g(v)| ≤ Kg‖u − v‖, |g(u)| ≤ Cg‖u‖
q1 + Mg for u, v ∈ C(J, R).

(A2) There exist constants Kh, Ch, q1, Mh ∈ [0, 1) such that

|h(u) − h(v)| ≤ Kh‖u − v‖, |h(u)| ≤ Ch‖u‖
q1 + Mh, for u, v ∈ C(J, R).

(A3) There exist constants Cf , Mf , q2 ∈ [0, 1) such that

|f(t, u(s)| ≤ Cf‖u‖
q2 + Mf for (t, u) ∈ J × C(J, R).

Lemma 3.2. Under the assumptions (A1), (A2), the operator F : C(J, R) → C(J, R)

satisfies the Lipschitz conditions with constant K and the growth condition

‖Fu‖ ≤ Cg‖u‖
q1 + Ch‖u‖

q1, for every u ∈ C(J, R). (3.8)

Proof. Using the assumptions (A1) and (A2), we obtain

|Fu(t) − Fv(t)| =

∣

∣

∣

∣

(

1 −
tA

∆

)

(g(u) − g(v)) +
t

∆
(h(u) − h(v))

∣

∣

∣

∣

≤ Kg‖u − v‖ + Kh‖u − v‖ = K‖u − v‖, where K = Kg + Kh.

By Proposition 2.12, F is also α-Lipschitz with constant K. For a growth condition,

we get

‖Fu‖ ≤ Cg‖u‖
q1 + Ch‖u‖

q1.
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Lemma 3.3. The operator G : C(J, R) → C(J, R) is continuous and under the

assumption (A3) satisfies the growth condition

‖Gu‖ ≤
2(Cf‖u‖

q2 + Mf )

∆Γ(q + 1)
, u ∈ C(J, R). (3.9)

Proof. Let {un} be a sequence of a bounded set Bk = {‖u‖ ≤ r: u ∈ C(J, R)} such

that un → u in Bk. Since f is continuous and un → u as n → ∞, it follows that

f(s, un(s)) → f(s, u(s)) as n → ∞. Now consider

|(Gun)(t) − (Gu)(t)| ≤
1

Γ(q)

∫ t

0

(t − s)q−1|f(s, un(s)) − f(s, u(s))|ds

+
t

∆Γ(q)

m−2
∑

i=1

λi

∫ ηi

0

(ηi − s)q−1|f(s, un(s)) − f(s, u(s))|ds

+
1

Γ(q)

∫ t

0

(t − s)q−1|f(s, un(s)) − f(s, u(s))|ds,

which in view of the Lebesgue Dominated Convergence theorem implies that

‖(Gun)(t) − (Gu)(t)‖ → 0 as n → ∞.

For growth conditions on G, using the triangle inequality and (A3), we obtain

|(Gu)(t)| = |
t

∆Γ(q)

(

∫ 1

0

(1 − s)q−1f(s, u(s)) ds−

m−2
∑

i=1

λi

∫ ηi

0

(ηi − s)q−1f(s, u(s)) ds

)

−
1

Γ(q)

∫ t

0

(t − s)q−1f(s, u(s)) ds|

≤ |
t

∆Γ(q)

(

∫ 1

0

(1 − s)q−1f(s, u(s)) ds−
m−2
∑

i=1

λi

∫ ηi

0

(ηi − s)q−1f(s, u(s)) ds

)

|

+ |
1

Γ(q)

∫ t

0

(t − s)q−1f(s, u(s)) ds|≤
1

∆Γ(q)

∫ 1

0

(1 − s)q−1|f(s, u(s))| ds

+
1

Γ(q)

∫ t

0

(t − s)q−1|f(s, u(s))| ds

≤
1

∆Γ(q + 1)
(Cf |u(t)|q2 + Mf ) +

1

Γ(q + 1)
(Cf |u(t)|q2 + Mf).

Using the choice of ∆ < 1, we obtain

‖(Gu)(t)‖ ≤
2

∆Γ(q + 1)
(Cf‖u‖

q2 + Mf ).

Lemma 3.4. The operator G : C(J, R) → C(J, R) is compact. Consequently, G is

α-Lipschitz with zero constant.
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Proof. Take a bounded set D ⊂ Bk ⊆ C(J, R) and a sequence {un} in D, then using

(3.9), we have

‖Gun‖ ≤
2(Cf ||u||

q2 + Mf )

∆Γ(q + 1)
,

which implies that G(D) is bounded. Now, for 0 ≤ t1 < t2 ≤ 1, consider

|Gun(t1) − Gun(t2)| = |
1

Γ(q)

∫ t1

0

((t2 − s)q−1 − (t1 − s)q−1)f(s, un(s))ds

+
(t1 − t2)

∆Γ(q)

∫ 1

0

(1 − s)q−1f(s, un(s))ds −
(t1 − t2)

∆Γ(q)

m−2
∑

i=1

λi

∫ ηi

0

(ηi − s)q−1f(s, un(s))ds|

≤
|t2 − t1|

∆Γ(q + 1)
(Cf ||un||

q2 + Mf) +
|t2 − t1|

∆Γ(q + 1)
(Cf ||un||

q2 + Mf )

+
1

Γ(q + 1)
(tq2 − t

q
1)(Cf ||un||

q2 + Mf)

where we have used the assumption
∑m−2

i=1 λiη
q
i < 1 in the second term. Hence it

follows that

|(Gun)(t1) − (Gun)(t2)| ≤
3

∆Γ(q + 1)
(Cf ||un||

q2 + Mf ) [(tq2 − t
q
1) + (t2 − t1)] .

The right side of the above inequality tends to zero as t2 → t1. Hence, {Gun} is

equicontinuous. Therefore, G(D) is relatively compact in C(J, R) by Arzela-Ascoli

theorem. Furthermore, by Proposition 2.11, G is α-Lipschitz with constant zero.

Theorem 3.5. Under the assumptions (A1)–(A3), the BVP (1.1) has at least one

solution u ∈ C(J, R). Moreover, the set of solutions of (1.1) is bounded in C(J, R).

Proof. From Proposition 2.10, the operator T is a strict α-contraction with constant

K. Now set

S0 = {u ∈ C(J, R) : ∃ λ ∈ [0, 1] such that u = λTu}.

We need to prove that S0 is bounded in C(J, R). For this, consider

||u|| = ||λTu|| = λ||Tu|| ≤ λ(‖Fu‖ + ‖Gu‖)

which in view of (3.8) and (3.9) together with q1 < 1, q2 < 1, implies that S0 is

bounded in C(J, R). Therefore, by Theorem 2.9, T has at least one fixed point and

the set of fixed points is bounded in C(J, R).

Assume that the following holds:

(A4) There exists a constant Lf > 0 such that

|f(t, u)− f(t, v)| ≤ Lf |u − v|, for each t ∈ J, and ∀u, v ∈ R.
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Theorem 3.6. In addition to the assumption (A1)–(A4), assume that there exists a

constant M > 0 such that

M =

(

Kg + Kh +
3Lf

∆Γ(q + 1)

)

< 1. (3.10)

Then the BVP (1.1) has a unique solution.

Proof. We use the Banach contraction principle. For u, v ∈ C(J, R), using the as-

sumptions (A1)–(A4), we have

|(Tu)(t) − (Tv)(t)| =
∣

∣

(

1 −
tA

∆

)

(g(u) − g(v)) +
t

∆
(h(u) − h(v))

+
t

∆Γ(q)

∫ 1

0

(1 − s)q−1(f(s, u(s)) − f(s, v(s)))ds

−

t
m−2
∑

i=1

λi

∆Γ(q)

∫ ηi

0

(ηi − s)q−1(f(s, u(s)) − f(s, v(s)))ds

+
1

Γ(q)

∫ t

0

(t − s)q−1(f(s, u(s))− f(s, v(s)))ds
∣

∣

≤

(

1 +
A

∆

)

|g(u) − g(v)| +
1

∆

∣

∣h(u) − h(v)| +
1

∆Γ(q + 1)
Lf |u(t)) − v(t)|

+
1

∆Γ(q + 1)
Lf |u(t)) − v(t)| +

1

Γ(q + 1)
Lf |u(t)) − v(t)|.

Hence, it follows that

|(Tu)(t) − (Tv)(t)| ≤ Kg‖u − v‖ + Kh‖u − v‖ +
3Lf

∆Γ(q + 1)
‖u − v‖,

which implies that

|(Tu)(t) − (Tv)(t)| ≤

(

Kg + Kh +
3Lf

∆Γ(q + 1)

)

‖u − v‖ = M‖u − v‖.

Hence, the BVP (1.1) has a unique solution.

4. Example

Example 4.1. Consider the following multi-point BVP

cD
2

3 u(t) =
|u(t)|

1

2

(1 + 12e2t)(1 + |u(t)|
1

2 )
= y(t, u(t)), t ∈ [0, 1],

u(0) = g(u)

u(1) =
m−2
∑

i=1

λiu(ηi) + h(u),
m−2
∑

i=1

λiu(ηi) =
1

5
.

(4.1)
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Take q = 2
3
, q1 = 1, q2 = λ = 1

2
, r = 2 ∈ (1, 3), λ = 1

2
∈ [0, 1

2
], Lf = Cf = 1

10
, mf = 0,

Kg = Kh = 1
4
; the assumptions (A1)–(A4) are satisfied. The solution of the BVP

(4.1) is given by

u(t) = g(u)[1− t] + t

(

2

5
+ h(u)

)

− I
2

3 y(t, u(t)) + I
2

3 y(1, u(1)).

Here

Fu(t) = (1 − t)g(u) + t

(

2

5
+ h(u)

)

and Gu(t) = −I
2

3 y(t, u(t)) + I
2

3 y(1, u(1)).

Since F, G are continuous and bounded so also T = F +G is continuous and bounded.

Further

||Fu − Fv|| ≤
1

2
||u − v||,

that is F is α Lipschitz and G is α Lipschitz with zero constant implies that T is

strict-α- contraction with constant 1
2
. By Theorem 2.9 the BVP has a solution u in

C[J, R].
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