
Communications in Applied Analysis 19 (2015), 543–552

A FOURTH-ORDER SEMIPOSITONE

BOUNDARY VALUE PROBLEM

NICKOLAI KOSMATOV

Department of Mathematics and Statistics, University of Arkansas at Little Rock

Little Rock, AR 72204-1099, USA

E-mail: nxkosmatov@ualr.edu

ABSTRACT. We apply Krasnosel’skĭı’s fixed point theorem [6] to study the semipositone eigen-

value problem

u(4)(t) + ω2u′′(t) = λf(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0.

We show that there exist at least two positive solutions for a sufficiently small value of λ > 0.
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1. INTRODUCTION

In this paper, we are interested in the fourth order nonlinear boundary-value

problem

u(4)(t) + ω2u′′(t) = λf(t, u(t)), 0 < t < 1, (1.1)

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1.2)

which serves as a nonlinear model describing deformations of elastic beams with axial

force effects.

Due to numerous applications [10], solvability of fourth order both local and non-

local boundary value problems has been discussed in many papers. Various methods

were applied in [5, 1, 3, 4, 11] to obtain the existence of a unique or multiple solu-

tions of fourth-order boundary value problems including the result for semipositone

problems [9, 12, 8, 7, 2].

In the next section we present the properties of Green’s function of the homoge-

neous analogue of (1.1) with (1.2), and state Krasnosel’skĭı’s fixed point theorem [6],

which will be used to show the existence of at least two positive solutions. The main

result is obtained in Section 3.
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2. GREEN’S FUNCTION

First, we state Green’s functions of

L1u(t) = −u′′(t) − ω2u(t) = 0, t ∈ (0, 1),

with 0 < ω < π, and

L2u(t) = −u′′(t) = 0, t ∈ (0, 1),

both satisfying u(0) = u(1) = 0. These functions are well-known and are given,

respectively, by

G(t, s) =
1

ω sin ω







sin ωs sin ω(1 − t), 0 ≤ s ≤ t ≤ 1,

sin ωt sin ω(1 − s), 0 ≤ t ≤ s ≤ 1,

and

H(t, s) =







s(1 − t), 0 ≤ s ≤ t ≤ 1,

t(1 − s), 0 ≤ t ≤ s ≤ 1.

In particular,

p(t)H0(s) ≤ H(t, s) ≤ H0(s), H0(s) = s(1 − s), p(t) = min{t, 1 − t}. (2.1)

Using the Green functions G and H, we can see that Green’s function of

L1L2u(t) = u(4)(t) + ω2u′′(t) = 0

satisfying (1.2) is

G(t, s) =

∫ 1

0

H(t, τ)G(τ, s) dτ

=
1

ω3 sin ω







sin ωs sin ω(1 − t) − s(1 − t)ω sin ω, 0 ≤ s ≤ t ≤ 1,

sin ωt sin ω(1 − s) − t(1 − s)ω sin ω, 0 ≤ t ≤ s ≤ 1.
(2.2)

It is clear that G(t, s) and G(t, s) are nonnegative valued in [0, 1] × [0, 1]. As a

result, G(t, s) ≥ 0 for (t, s) ∈ [0, 1] × [0, 1]. The next two lemmas concerning G(t, s)

are useful whenever one would like to apply a cone-theoretic result such as Theorem

2.5. The first lemma can be found in [11]. The second lemma is similar to Lemma

2.2 in [11], so we omit the proof.

Lemma 2.1. The Green function G(t, s), (t, s) ∈ [0, 1] × [0, 1], satisfies

Gi(s) ≥ G(t, s) ≥ qi(t)Gi(s),

where

q1(t) =
1

sin ω
min {sin ωt, sin ω(1 − t)} , G1(s) = G(s, s),

for 0 < ω ≤ π/2, and

q2(t) = min {sin ωt, sin ω(1 − t)} ,
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G2(s) =
1

sin ω



















sin ωs, 0 ≤ s ≤ 1 − π

2ω
,

sin ωs sin ω(1 − s), 1 − π

2ω
< s < π

2ω
,

sin ω(1 − s), π

2ω
≤ s < 1,

for π/2 < ω < π.

Since p(t) ≤ qi(t), we prefer to use p(t) to define the cone, which is done with the

help of the next lemma.

Lemma 2.2. The Green function G(t, s) satisfies

H(s) ≥ G(t, s) ≥ p(t)H(s), (t, s) ∈ [0, 1] × [0, 1],

where

H(s) =

∫ 1

0

H0(τ)G(τ, s) dτ.

In the Banach space X = C[0, 1] with the max-norm, we define a cone by

C = {v ∈ X : v(t) ≥ p(t)‖v‖, t ∈ [0, 1]}.

In particular, if 0 < α < 1/2,

u(t) ≥ γ‖u‖, t ∈ [α, 1 − α], (2.3)

where γ = mint∈[α,1−α] p(t) = α.

Lemma 2.3. If g0 ∈ C[0, 1], g0(t) ≥ 0 in [0, 1], g0(t0) > 0 for some t0 ∈ [0, 1], then

there exists µ > 0 such that the inequality

p(t) ≥ µu0(t), t ∈ [0, 1], (2.4)

holds where u0(t) =
∫ 1

0
G(t, s)g0(s)ds.

Proof. Consider first the case 0 < ω ≤ π/2. We have

u0(t) =

∫ 1

0

G(t, s)g0(s) ds

=
1

ω3 sin ω

(

∫ t

0

(sin ωs sin ω(1 − t) − s(1 − t)ω sin ω)g0(s) ds

+

∫ 1

t

(sin ωt sin ω(1 − s) − t(1 − s)ω sin ω)g0(s) ds)

)

≤
1

ω3 sin ω

(

∫ t

0

(sin ωs sin ω(1 − t)g0(s) ds +

∫ 1

t

sin ωt sin ω(1 − s)g0(s) ds)

)

(2.5)

≤
1

ω3 sin ω
sin ωt sin ω(1 − t)

∫ 1

0

g0(s) ds
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≤
1

ω3 sin ω
ωt sin ω

∫ 1

0

g0(s) ds

=
‖g0‖1

ω2
t

and at the same time

u0(t) ≤
‖g0‖1

ω2
(1 − t).

Thus,

p(t) ≥
ω2

‖g0‖1
u0(t).

If

µ ≤ µ1 =
ω2

‖g0‖1
, (2.6)

then the inequality (2.4) is fulfilled.

For π/2 < ω < π, we note that (2.5) still applies and obtain, for t ∈ [0, 1/2],

u0(t) ≤
1

ω3 sin ω

(

sin ω(1 − t)

∫ t

0

(sin ωsg0(s) ds + sin ωt

∫ 1

t

sin ω(1 − s)g0(s) ds)

)

≤
1

ω3 sin ω

(

∫ t

0

(sin ωsg0(s) ds + sin ωt

∫ 1

t

g0(s) ds)

)

≤
1

ω3 sin ω
sin ωt‖g0‖1

≤
‖g0‖1

ω2 sin ω
t

=
‖g0‖1

ω2 sin ω
p(t).

One can easily arrive at the same inequality for t ∈ [1/2, 1]. Again, the inequality

(2.4) holds provided

µ ≤ µ2 =
ω2 sin ω

‖g0‖1

. (2.7)

We will also need the constants

D = max
t∈[0,1]

∫ 1

0

G(t, s)p(s) ds

=
1

ω3 sin ω

(

sin
ω

2

(

2

ω2
sin

ω

2
−

1

ω
cos

ω

2

)

−
1

24
ω sin ω

)

, (2.8)

L = max
t∈[0,1]

∫ 1

0

G(t, s) ds

=
1

8ω4 sin ω

(

8(2 sin
ω

2
− sin ω) − ω2 sin ω

)

, (2.9)
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and, for 0 < α < 1/2,

C = max
t∈[0,1]

∫ 1−α

α

G(t, s) ds

=
1

8ω4 sin ω

(

8(2 cosωα sin
ω

2
− sin ω) − ω2 sin ω(1 − 4α2)

)

. (2.10)

Define

fp(t, z) =







f(t, z) + g0(t), (t, z) ∈ [0, 1] × [0,∞),

f(t, 0) + g0(t), (t, z) ∈ [0, 1] × (−∞, 0),

and consider the equation

v(4)(t) + ω2v′′(t) = λfp(t, v(t) − λu0(t)), t ∈ (0, 1), (2.11)

under the boundary conditions (1.2).

Lemma 2.4. The function u is a positive solution of the boundary value problem

(1.1), (1.2) if and only if the function v = u +λu0 is a solution of the boundary value

problem (2.11), (1.2) satisfying v(t) ≥ λu0(t) in [0, 1].

Suppose that the function f in (1.1) satisfies

(H1) f ∈ C([0, 1] × R+,R);

(H2) there exists a function g0 ∈ C[0, 1] such that g0(t) ≥ 0 in [0, 1], g(t0) > 0 for

some t0 ∈ [0, 1] and f(t, z) + g0(t) ≥ 0 in [0, 1] ×R+;

In the Banach space X = C[0, 1] endowed with usual max-norm, we consider the

operator

Tv(t) = λ

∫ 1

0

G(t, s)fp(s, v(s) − λu0(s)) ds, (2.12)

where G(t, s) is given by (2.2). By (H1), T : X → X is completely continuous.

Obviously, a fixed point of T : C → C is a positive solution of (2.11), (1.2). The

existence of the former will be shown using Krasnosel’skĭı’s fixed point theorem:

Theorem 2.5. Let B be a Banach space and let C ⊂ B be a cone in B. Assume that

Ω1, Ω2 are open with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

T : C ∩ (Ω2 \ Ω1) → C

be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω2.

Then, T has a fixed point in C ∩ (Ω2 \ Ω1).

Subsequently, (1.1), (1.2) has a positive solution provided the inequality of Lemma 2.4

holds.
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3. POSITIVE SOLUTIONS

We present our main result for 0 < ω < π since the only difference between the

cases 0 < ω ≤ π/2 and π/2 < ω < π is that between the constants µ1 and µ2 in

Lemma 2.3. The presence of the parameter λ > 0 provides an additional control on

the growth of the right side. We will need the following assumptions:

(M1) there exists an interval [α, 1 − α] ⊂ (0, 1) such that

lim
u→∞

f(t, u)

u
= ∞,

uniformly in [α, 1 − α].

(M2) f(t, 0) > 0, t ∈ [0, 1].

Our next result is a multiplicity criterion. We introduce

φ(r) = max{f(t, z − u0(t)) + g0(t) : t ∈ [0, 1], z ∈ [0, r]} (3.1)

Theorem 3.1. Assume that (H1), (H2), (M1), (M2) hold. Then, the boundary value

problem (1.1), (1.2) has at least two positive solutions provided λ > 0 is small enough.

Proof. We will construct open nonempty subsets Ωi = {v ∈ C : ‖v‖ < Ri}, i = 1, ..., 4.

Let the R1 > 0. Then, using (3.1),

‖Tv‖ = max
t∈[0,1]

λ

∫ 1

0

G(t, s)fp(s, v(s) − λu0(s)) ds ≤ λLφ(R1) ≤ R1

for all v ∈ C ∩ ∂Ω1, provided

λ ≤
R1

Lφ(R1)
. (3.2)

Let v ∈ C ∩ ∂Ω2, where R2 > R1. We choose µ = µi according to Lemma 2.3.

Note that the equation in (M2) holds with fp in place of f . Thus, given A > 0

satisfying
1

2
λCγA ≥ 1, (3.3)

where C is given by by (2.9), there exists h ≥ γ

2
R2 such that fp(t, z) > Az for all

z ≥ h and t ∈ [α, 1−α]. For every λ in (3.2), there exists a constant A > 0 such that

(3.3) is satisfied. Since p(s) ≥ µu0(s) in [0, 1], for all s ∈ [α, 1 − α], we have

λu0(s) ≤
λ

µ
p(s) ≤

λ

µR2
v(s).

So,

v(s) − λu0(s) ≥

(

1 −
λ

µR2

)

v(s) ≥

(

1 −
λ

µR2

)

γR2 ≥
1

2
γR2

provided

λ ≤
µR2

2
. (3.4)
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Hence,

fp(s, v(s) − u0(s)) ≥ A(v(s) − λu0(s)) ≥
γA

2
R2, s ∈ [α, 1 − α].

Then, by (3.3),

‖Tv‖ = max
t∈[0,1]

λ

∫ 1

0

G(t, s)fp(s, v(s) − λu0(s)) ds ≥ λ max
t∈[0,1]

∫ 1−α

α

G(t, s) ds
γA

2
R2

= λ max
t∈[0,1]

∫ 1−α

α

G(t, s) ds
γ

2
AR2

= λC
γ

2
AR2

≥ R2.

That is, ‖Tv‖ ≥ ‖v‖ for all v ∈ C ∩ ∂Ω2. By Theorem 2.5, we have a solution v1 such

that R1 ≤ ‖v1‖ ≤ R2 for every

0 < λ ≤ λ0 = min

{

R1

Lφ(R1)
,
µR2

2

}

.

In order to make use of the assumption (M2), we note that there exist a, b > 0

such that f(t, z) ≥ b for all t ∈ [0, 1] and z ∈ [0, a] and introduce a “truncation” of f

given by

ft(t, z) =







f(t, z), (t, z) ∈ [0, 1] × [0, a]),

f(t, a), (t, z) ∈ [0, 1] × (a,∞).

Consider now,

v(4)(t) + ω2v′′(t) = λft(t, v(t)), 0 < t < 1,

subject to (1.2). The operator, whose fixed point will be shown to be (a second)

solution of (1.1), (1.2), is

Tv(s) = λ

∫ 1

0

G(t, s)ft(s, v(s)) ds.

Choose R3 < min{R1, a}. Then, as in the first part of the proof,

‖Tv‖ ≤ λLφ(R3),

where φ(R3) = max{f(t, z) : t ∈ [0, 1], z ∈ [0, R3]}. Choose

λ < min

{

R3

Lφ(R3)
, λ0

}

, (3.5)

then ‖Tv‖ ≤ ‖v‖ for all v ∈ C ∩ ∂Ω3. Choose λ according to (3.5). Since

lim
z→0+

ft(t, z)

z
≥ lim

z→0+

b

z
= ∞

uniformly in [0, 1], there exists 0 < R4 < R3 such that

ft(t, z) ≥ Bz, t ∈ [0, 1], z ∈ [0, R4],
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where

λBD ≥ 1, D = max
t∈[0,1]

∫ 1

0

G(t, s)p(s) ds,

and D is defined by (2.8). Then, for all v ∈ C ∩ ∂Ω4,

‖Tv‖ = max
t∈[0,1]

λ

∫ 1

0

G(t, s)ft(s, v(s)) ds ≥ max
t∈[0,1]

λB

∫ 1

0

G(t, s)v(s) ds

≥ λB max
t∈[0,1]

∫ 1

0

G(t, s)p(s)R4 ds

= λBDR4

≥ ‖v‖.

Thus, there exists a positive solution v2 with R4 ≤ ‖v2‖ ≤ R3 < R1 ≤ ‖v1‖ ≤ R2 for

every λ > 0 satisfying (3.5).

ACKNOWLEDGMENTS

The paper was prepared while the author was on sabbatical leave at Baylor

University. He is grateful to Baylor University for its support and hospitality. The

author wishes also to think the anonymous referee for the remarks leading to its

improvement.

REFERENCES

[1] J. M. Davis and J. Henderson, Uniqueness implies existence for fourth-order Lidstone boundary

value problems, Panamer. Math. J. 8 (1998), no. 4, 23–35.

[2] W. Feng and J. Zhang, Existence of positive solution for fourth order superlinear singular

semipositone differential system, Pure and Appl. Math. J. 2 (2013), 179-183.

[3] J. R. Graef, J. Henderson, and B. Yang, Positive solutions to a fourth order three point bound-

ary value problem, Discrete Contin. Dyn. Syst. 2009 (2009), Dynamical Systems, Differential

Equations and Applications, 7th AIMS Conference, suppl., 269–275.

[4] C. P. Gupta, Existence and uniqueness results for bending of an elastic beam at resonance, J.

Math. Anal. Appl. 135 (1988), no. 1, 208-225.

[5] J. Henderson and R. W. McGwier, Jr., Uniqueness, existence, and optimality for fourth-order

Lipschitz equations, J. Differential Equations 67 (1987), no. 3, 414–440.
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