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ABSTRACT. We study singular discrete higher order boundary value problems with mixed bound-

ary conditions of the form

u∆n

(ti−(n−1)) + f(ti, u(ti), . . . , u
∆n−1

(ti−(n−1))) = 0,

u∆n−1

(t0) = u∆n−2

(tN+1) = u∆n−3

(tN+2) = · · · = u∆(tN+n−2) = u(tN+n−1) = 0,

over a finite discrete interval T = {t0, t1, . . . , tN+n−2, tN+n−1}. We prove the existence of a positive

solution by means of the lower and upper solutions method and the Brouwer fixed point theorem in

conjunction with perturbation methods to approximate regular problems.
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1. PRELIMINARIES

This paper is somewhat of an extension of the work done by Rachu̇nková and

Rachu̇nek [23] and the works done by Kunkel [17], [18]. Rachu̇nková and Rachu̇nek

studied a second order singular boundary value problem for the discrete p-Laplacian,

φp(x) = |x|p−2x, p > 1. In particular, Rachu̇nková and Rachu̇nek dealt with the

discrete boundary value problem

∆ (φp(∆u(t − 1))) + f(t, u(t), ∆u(t− 1)) = 0, t ∈ [1, T + 1],

∆u(0) = u(T + 2) = 0,

in which f(t, x1, x2) is singular in x1. Kunkel’s results extended theirs to the third

order case, but only for p = 2, i.e. φ2(x) = x. That is, Kunkel’s extension focused on

the boundary value problem

−∆3u(t − 2) + f(t, u(t), ∆u(t− 1), ∆2u(t − 2)) = 0, t ∈ [2, T + 1],

∆2u(0) = ∆u(T + 2) = u(T + 3) = 0.
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Kunkel’s other work entails an extension to a second order singular discrete boundary

value problem with non-uniform step size (what we are calling a purely discrete time

scale)

u∆∆(ti−1) + f(ti, u(ti), u
∆(ti−1)) = 0, ti ∈ T

◦,

u∆(t0) = u(tn+1) = 0.

The methods of this paper rely heavily on upper and lower solutions methods in

conjunction with an application of the Brouwer fixed point theorem [26]. We consider

only the singular third order boundary value problem, while letting our function range

over a discrete interval with non-uniform step size. We will provide definitions of

appropriate upper and lower solutions. The upper and lower solutions will be applied

to nonsingular perturbations of our nonlinear problem, ultimately giving rise to our

boundary value problem by passing to the limit.

Upper and lower solutions have been used extensively in establishing solutions of

boundary value problems for finite difference equations. In addition to [11], [17], [23],

we mention especially the paper by Jiang, et al. [13] in which they dealt with singular

discrete boundary value problems using upper and lower solutions methods. For other

outstanding results in which upper and lower solutions methods were employed to

obtain solutions of boundary value problems for finite difference equations, we refer

to [1], [2], [4], [5], [6], [10], [12], [16], [20], [21], [22], [27].

Singular discrete boundary value problems also have received a good deal of

attention. For a list of a few representative works, we suggest the references [3], [7],

[8], [14], [15], [19], [22], [24], [25], [27],[28].

In this section, we will state the definitions that are used in the remainder of the

paper.

Definition 1.1. For 0 ≤ i ≤ N + n − 1, let ti ∈ R, where t0 < t1 < · · · < tN+n−2 <

tN+n−1. Define the discrete intervals

T := [t0, tN+n−1] = {t0, t1, . . . , tN+n−2, tN+n−1},

and

T
◦ := [tn−1, tN ] = {tn−1, tn, . . . , tN−1, tN}.

Definition 1.2. For the function u : T → R, define the delta derivative [9], u∆, by

u∆(ti) :=
u(ti+1) − u(ti)

ti+1 − ti
, ti ∈ T\tN+n−1.

We make note that u∆2
(ti) = u∆∆(ti) = u∆∆

(ti).

Consider the higher order nonlinear discrete dynamic

u∆n

(ti−(n−1)) + f(ti, u(ti), . . . , u
∆n−1

(ti−(n−1))) = 0, ti ∈ T
◦, (1.1)
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with mixed boundary conditions

u∆n−1

(t0) = u∆n−2

(tN+1) = u∆n−3

(tN+2) = · · · = u∆(tN+n−2) = u(tN+n−1) = 0. (1.2)

Our goal is to prove the existence of a positive solution of problem (1.1), (1.2).

Definition 1.3. By a solution of problem (1.1), (1.2), we mean a function u : T → R

such that u satisfies the discrete dynamic (1.1) on T
◦ and the boundary conditions

(1.2). If u(t) > 0 for t ∈ T
◦, we say u is a positive solution of the problem (1.1), (1.2).

Definition 1.4. Let D ⊆ R
n. We say that f is continuous on T×D if f(ti, x1, . . . , xn)

is defined on T for each (x1, . . . , xn) ∈ D, and if f(ti, x1, . . . , xn) is continuous on D

for each ti ∈ T.

Definition 1.5. Let f : T × D → R, where D ⊆ R
n. If D = R

n, problem (1.1),

(1.2) is called regular. If D 6= R
n and f has singularities on the boundary of D, then

problem (1.1), (1.2) is called singular.

We will assume throughout this paper that the following hold:

(A): D = (0,∞) × R
n−1.

(B): f is continuous on T ×D.

(C): f(ti, x1, . . . , xn) has a singularity at x1 = 0, i.e. lim sup
x1→0+

|f(ti, x1, . . . , xn)| = ∞

for each ti ∈ T and for some (x2, . . . , xn) ∈ R
n−1.

2. LOWER AND UPPER SOLUTIONS METHOD FOR REGULAR

PROBLEMS

Let us first consider the regular dynamic equation

u∆n

(ti−(n−1)) + h(ti, u(ti), . . . , u
∆n−1

(ti−(n−1))) = 0, ti ∈ T
◦, (2.1)

where h is continuous on T
◦ × R

n satisfying the boundary conditions (1.2). We

establish a lower and upper solutions method for this regular problem (2.1), (1.2).

Definition 2.1. α : T → R is called a lower solution of (2.1), (1.2) if

α∆n

(ti−(n−1)) + h(ti, α(ti), . . . , α
∆n−1

(ti−(n−1))) ≤ 0, ti ∈ T
◦, (2.2)

satisfying boundary conditions

(−1)n−1α∆n−1
(t0) ≤ 0,

(−1)n−2α∆n−2
(tN+1) ≤ 0,

...

α∆2
(tN+n−3) ≤ 0

α∆(tN+n−2) ≥ 0

α(tN+n−1) ≤ 0.

(2.3)
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Definition 2.2. β : T → R is called an upper solution of (2.1), (1.2) if

β∆n

(ti−(n−1)) + h(ti, β(ti), . . . , β
∆n−1

(ti−(n−1))) ≥ 0, ti ∈ T
◦, (2.4)

satisfying boundary conditions

(−1)n−1β∆n−1
(t0) ≥ 0,

(−1)n−2β∆n−2
(tN+1) ≥ 0,

...

β∆2
(tN+n−3) ≥ 0

β∆(tN+n−2) ≤ 0

β(tN+n−1) ≥ 0.

(2.5)

Theorem 2.3 (Lower and Upper Solutions Method). Let α and β be lower and

upper solutions of (2.1), (1.2), respectively, and α ≤ β on T. Let h(ti, x1, . . . , xn) be

continuous on T × R
n and nonincreasing in its xn variable. Then (2.1), (1.2) has a

solution u satisfying

α(t) ≤ u(t) ≤ β(t), t ∈ T.

Proof. We proceed through a sequence of steps involving modifications of h.

Step 1. For ti ∈ T
◦, (x1, . . . , xn) ∈ R

n, define

eh
„

ti, x1, . . . , xn−1,
xn − xn−1

ti−(n−1) − ti−(n−2)

«
=

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

h

„
ti, β(ti), . . . , β

∆n−1

(ti−(n−2)),
β∆n

(ti−(n−1))−σ(ti−(n−1),xn)

ti−(n−1)−ti−(n−2)

«
−

β∆n

(ti−(n−1))−xn

β∆n
(ti−(n−1))−xn+1

,

xn > β∆n

(ti−(n−1)),

h
“
ti, x1 . . . , xn−1,

xn−σ(ti−(n−1),xn)

ti−(n−1)−ti−(n−2)

”
, α∆n

(ti−(n−1)) ≤ xn ≤ β∆n

(ti−(n−1)),

h

„
ti, α(ti) . . . , α∆n−1

(ti−(n−2)),
α∆n

(ti−(n−1))−σ(ti−(n−1),xn)

ti−(n−1)−ti−(n−2)

«
+

xn−α∆n

(ti−(n−1))

xn−α∆n
(ti−(n−1))+1

,

xn < α∆n

(ti−(n−1)),

where

σ(ti−(n−1), xn) =

8
><
>:

α∆n

(ti−(n−2)), xn > (−1)nα∆n

(ti−(n−1)),

xn, (−1)nβ∆n

(ti−(n−1)) ≤ xn ≤ (−1)nα∆n

(ti−(n−1)),

β∆n

(ti−(n−2)), xn < (−1)nβ∆n

(ti−(n−1)).

By its construction, h̃ is continuous on T
◦ × R

n, and there exists M > 0 so that,

|h̃(ti, x1, . . . , xn)| ≤ M, ti ∈ T
◦, (x1, . . . , xn) ∈ R

n.

We now study the auxiliary equation,

u∆n

(ti−(n−1)) + h̃(ti, u(ti), . . . , u
∆n−1

(ti−(n−1))) = 0, ti ∈ T
◦, (2.6)

satisfying boundary conditions (1.2). Our immediate goal is to prove the existence of

a solution of (2.6), (1.2).
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Step 2. We lay the foundation to use the Brouwer fixed point theorem. To this end,

define the Banach space E by

E = {u : T → R : u∆n−1

(t0) = u∆n−2

(tN+1) = u∆n−3

(tN+2) = · · ·

= u∆(tN+n−2) = u(tN+n−1) = 0},

and also define

‖u‖ = max{|u(ti)| : ti ∈ T}.

Further, we define an operator T : E → E by

(T u)(tz) = (−1)n

N+n−2∑

zn−2=z

(tzn−2+1 − tzn−2)

· · ·

z0+n−1∑

i=n−1

(ti−n+1 − ti−n)h̃
(
ti, u(ti), . . . , u

∆n−1

(ti−(n−1))
)

.

(2.7)

By its construction, T is a continuous operator.

Moreover, from the bounds placed on h̃ in Step 1 and from (2.7), if

r > (tN+n−1 − t0)
nM,

then T
(
B(r)

)
⊂ B(r), where B(r) = {u ∈ E : ‖u‖ < r}. Therefore, by the Brouwer

fixed point theorem [26], there exists u ∈ B(r) such that u = T u.

Step 3. We now show that u is a fixed point of T iff u is a solution of (2.6), (1.2).

First, assume u = T u. Then, u ∈ E, and thus, satisfies (1.2). Furthermore,

u∆(tz) =
u(tz+1) − u(tz)

tz+1 − tz

=
1

tz+1 − tz
·

[
(−1)n

N+n−2∑

zn−2=z+1

(tzn−2+1 − tzn−2) · · · h̃ (ti, . . . )

− (−1)n

N+n−2∑

zn−2=z

(tzn−2+1 − tzn−2) · · · h̃ (ti, . . . )

]

=
1

tz+1 − tz
·

[
−(−1)n(tz+1 − tz)

N+n−3∑

zn−3=z

(tzn−3+1 − tzn−3) · · · h̃ (ti, . . . )

]

= (−1)n−1

N+n−3∑

zn−3=z

(tzn−3+1 − tzn−3) · · · h̃ (ti, . . . ) ,

and we see that

u∆(tz) = (−1)n−1

N+n−3∑

zn−3=z

(tzn−3+1 − tzn−3) · · · h̃ (ti, . . . ) .
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Continuing in this manner,

u∆n

(tz) =
u∆n−1

(tz+1) − u∆n−1
(tz)

tz+1 − tz

=
1

tz+1 − tz
·

[
−

z+n∑

i=n−1

(ti−n+1 − ti−n)h̃ (ti, . . . )

−
z+n−1∑

i=n−1

(ti−n+1 − ti−n)h̃ (ti, . . . )

]

=
−(tz+1 − tz)h̃ (tz+n, . . . )

tz+1 − tz

= −h̃ (tz+n, . . . ) .

Thus, we see that u∆n

(tz) + h̃ (tz+n, . . . ) = 0.

On the other hand, let u(t) solve (2.6), (1.2). Then,

u∆n

(t0) =
u∆n−1

(t1) − u∆n−1
(t0)

t1 − t0

=
u∆n−1

(t1)

t1 − t0

= −h̃
(
tn−1, u(tn−1), . . . , u

∆n−1

(t0)
)

.

This implies that

u∆n−1

(t1) = −(t1 − t0)h̃
(
tn−1, u(tn−1), . . . , u

∆n−1

(t0)
)

.

Also,

u∆n

(t1) =
u∆n−1

(t2) − u∆n−1
(t1)

t2 − t1

=
u∆n−1

(t2) −−(t1 − t0)h̃
(
tn−1, u(tn−1), . . . , u

∆n−1
(t0)
)

t2 − t1

= −h̃
(
tn, u(tn), . . . , u∆(t1)

)
.

This implies that

u∆n−1

(t2) = − (t2 − t1)h̃
(
tn, u(tn), . . . , u

∆n−1

(t1)
)

+ −(t1 − t0)h̃
(
tn−1, u(tn−1), . . . , u

∆n−1

(t0)
)

.

Continuing inductively, we see that

u∆n−1

(tz) = −
z∑

i=1

(ti − ti−1)h̃
(
ti+(n−2), u(ti+(n−2)), . . . , u

∆n−1

(ti−1)
)

, 1 ≤ z ≤ N.
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Now, we use similar techniques to see that

u∆n−1

(tN ) =
u∆n−2

(tN+1) − u∆n−2
(tN)

tN+1 − tN

=
−u∆n−2

(tN)

tN+1 − tN

= −
N∑

i=1

(ti − ti−1)h̃
(
ti+(n−2), u(ti+(n−2)), . . . , u

∆n−1

(ti−1)
)

.

and that

u∆n−2

(tN) = (tN+1 − tN)

N∑

i=1

(ti − ti−1)h̃
(
ti+(n−2), u(ti+(n−2)), . . . , u

∆n−1

(ti−1)
)

.

Proceeding through the interval, we see that

u∆n−2

(tz) =
N∑

z0=z

(tz0+1 − tz0)

z0∑

i=1

(ti − ti−1)h̃
(
ti+(n−2), u(ti+(n−2)), . . . , u

∆n−1

(ti−1)
)

.

In a similar fashion for j = 3, 4, . . . , n, we see that

u∆n−(j−1)

(tN+j−2) =
u∆n−j

(tN+j−1) − u∆n−j

(tN+j−2)

tN+j−1 − tN+j−2

= −
u∆n−j

(tN+j−2)

tN+j−1 − tN+j−2

= (−1)j−1

N+j−1∑

zj−1=N+j−2

· · · h̃ (ti, . . . ) .

and that

u∆n−j

(tN+j−2) = (−1)j(tN+j−1 − tN+j−2)

N+j−1∑

zj−1=N+j−2

· · · h̃ (ti, . . . ) .

Proceeding through the interval, similar to before, we conclude that

u∆n−j

(tz) = (−1)j

N+j−2∑

zj−2=z

(tzj−2+1 − tzj−2
) · · · h̃ (ti, . . . ) .

And specifically, for j = n,

u(tz) = (−1)n

N+n−2∑

zn−2=z

(tzn−2+1 − tzn−2)

· · ·

z0+n−1∑

i=n−1

(ti−n+1 − ti−n)h̃
(
ti, u(ti), . . . , u

∆n−1

(ti−(n−1))
)

.
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We therefore can conclude that u = T u, and this step of the proof is complete.

Step 4. We now show that solutions u(t) of (2.6), (1.2) satisfy

α(t) ≤ u(t) ≤ β(t), t ∈ T.

Consider the case of obtaining u(t) ≤ β(t). Let v(t) = u(t) − β(t). For the sake

of establishing a contradiction, assume that

max{v(t) : t ∈ T} := v(tl) > 0.

From the boundary conditions (1.2) and (2.5), we see that tl ∈ T
◦. Thus,

v(tl−1) ≤ v(tl) and v(tl+1) ≤ v(tl). Consequently, v∆(tl) ≤ 0 and v∆(tl−1) ≥ 0.

This in turn implies that v∆∆(tl−1) ≤ 0. Continuing in this manner we see that

v∆n

(tl) ≤ 0.

On the other hand, since h is nonincreasing in its xn variable, we have from (2.1)

that

v∆n

(tl) = u∆n

(tl) − β∆n

(tl)

≥− h̃
(
tl+n, u(tl+n), . . . , u

∆n−1

(tl)
)
− (−)h̃

(
tl+n, β(tl+n), . . . , β

∆n−1

(tl)
)

= −h̃(tl+n, β(tl+n), . . . , β
∆n−1

(tl)) +
β∆n

(tl) − u∆n

(tl)

β∆n(tl) − u∆n(tl) + 1

+ h̃(tl+n, β(tl+n), . . . , β
∆n−1

(tl))

=
β∆n

(tl) − u∆n

(tl)

β∆n(tl) − u∆n(tl) + 1

> 0.

But this is a contradiction. Therefore, v(l) ≤ 0. Which means that u(t) ≤ β(t)

for all t ∈ T. A similar argument shows that α(t) ≤ u(t) for all t ∈ T.

Thus, the conclusion of the theorem holds and our proof is complete.

3. EXISTENCE RESULT

In this section, we make use of Theorem 2.3 to obtain positive solutions of the

singular problem (1.1), (1.2). In particular, in applying Theorem 2.3, we deal with

a sequence of regular perturbations of (1.1), (1.2). Ultimately, we obtain a desired

solution of (1.1), (1.2) by passing to the limit on a sequence of solutions for the

perturbations.

Theorem 3.1. Assume conditions (A), (B), and (C) hold, along with the following:

(D): There exists c ∈ (0,∞) so that f(ti, c, 0, · · · , 0) ≤ 0 for all t ∈ T
◦.

(E): f(ti, x1, x2, x3, . . . , xn) is nonincreasing in its xn variable for ti ∈ T and x1 ∈

(0, c].
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(F): lim
x1→0+

f(ti, x1, . . . , xn) = ∞ for ti ∈ T.

Then, (1.1), (1.2) has a solution u satisfying

0 < u(t) ≤ c, t ∈ T
◦.

Proof. Again for the proof, we proceed through a sequence of steps. Step 1. For

k ∈ N, t ∈ T
◦, (x1, . . . , xn) ∈ R

n, define

fk(ti, x1, . . . , xn) =





f (ti, |x1|, x2, . . . , xn) , |x1| ≥
1
k

f
(
ti,

1
k
, x2, . . . , xn

)
, |x1| < 1

k

Then, fk is continuous on T
◦ × R

n and nonincreasing for ti ∈ T
◦, x1 ∈ [−c, c].

Assumption (F) implies that there exists k0 such that for all k ≥ k0,

fk(ti, 0, . . . , 0) = f

(
ti,

1

k
, 0, . . . , 0

)
> 0, ti ∈ T

◦.

Consider, for each k ≥ k0,

u∆n

(ti−(n−1)) + fk(ti, u(ti), . . . , u
∆n−1

(ti−(n−1))) = 0, ti ∈ T
◦. (3.1k)

Define α(t) = 0 and β(t) = c. Then, α and β are lower and upper solutions for

(3.1k), (1.2), and α(t) ≤ β(t) on T
◦. Thus, by Theorem 2.3, there exists uk a solution

of (3.1k), (1.2) satisfying 0 ≤ uk(ti) ≤ c, ti ∈ T, k ≥ k0. Consequently,

|u∆
k (ti)| ≤

c

(ti+1 − ti)
, ti ∈ T

◦. (3.2)

Step 2. Let k ∈ N, k ≥ k0. Since uk(t) solves (3.1k), we get from work similar to that

exhibited in Theorem 2.3,

u∆
k (tz) = (−1)n−1

N+n−3∑

zn−3=z

(tzn−3+1 − tzn−3) · · ·fk (ti, . . . ) , tz ∈ T
◦. (3.3)

By assumption (F), there exists ε1 ∈
(
0, 1

k0

)
such that if k ≥ 1

ε1
,

fk(t1, x1, . . . , xn) >
c

(t2 − t1)n
, x1 ∈ (0, ε1]. (3.4)
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For the sake of establishing a contradiction, assume that for k ≥ 1
ε1

, we have

uk(t1) < ε1. Then, by (3.3) and (3.4),

u∆
k (t1) = (−1)n−1

N+n−3∑

zn−3=1

(tzn−3+1 − tzn−3) · · ·fk (ti, . . . )

= (−1)n−1

(
(t2 − t1)

n−1fk(ti, . . . ) +

N+n−3∑

zn−3=2

(tzn−3+1 − tzn−3) · · ·fk (ti, . . . )

)

≥ (t2 − t1)
n−1fk(ti, . . . )

>
c

(t2 − t1)
.

But this contradicts (3.2). Hence uk(t1) ≥ ε1 for all k ≥ 1
ε1

.

Proceeding across the interval, we get a sequence of epsilons where 0 < εN+n−1 <

· · · < ε2 < ε1 such that uk(ti) ≥ εN+n−1 for ti ∈ T. Hence uk(tN+n−1) ≥ εN+n−1 for

all k ≥ 1
εN+n−1

. Therefore, by letting ε = εN+n−1

2
, we get

0 < ε ≤ uk(ti) ≤ c, ti ∈ T
◦, k ≥

1

ε
. (3.5)

Since uk(ti) satisfies (3.5) and (1.2), we can choose a subsequence {ukl
(t)} ⊂ {uk(t)}

such that lim
l→∞

ukl
(t) = u(t), t ∈ T

◦, u(t) ∈ E, where E is the Banach space as defined

in Step 2 of Theorem 2.3.

Moreover, (3.3) yields for each sufficiently large l,

u∆
kl

(tz) = (−1)n−1
N+n−3∑

zn−3=z

(tzn−3+1 − tzn−3) · · ·fk (ti, . . . ) ,

and so by letting l → ∞ and from the continuity of f , we get that

u∆(tz) = (−1)n−1
N+n−3∑

zn−3=z

(tzn−3+1 − tzn−3) · · ·f (ti, . . . ) .

Consequently, we also get, via similar methods exhibited in Step 3 of Theorem 2.3,

u∆n

(tz) = −f
(
tz+n, u(tz+n), . . . , u

∆n−1

(tz)
)

.

Therefore, u solves (1.1), (1.2), and by (3.5), our theorem holds.
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