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ABSTRACT. We are concerned with the existence and uniqueness of solutions to boundary value

problems on an interval [a, c] for the nth order ordinary differential equation y(n) = f(x, y, y′, . . . ,

y(n−1)), for n ≥ 3, by matching solutions on [a, b] with solutions on [b, c] to extend the interval

of existence for solutions. In this paper, we consider a general case where the gap in boundary

conditions at b is odd. Different from the literature, we use Liapunov theory to deal with the case.
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1. INTRODUCTION

Matching of solutions of boundary value problems is intimately involved with

interface problems for which an intermediate boundary point corresponds (BVPs) to

a point of interface [1, 24, 28, 31]. For such problems, smooth as possible interfacing is

desired. Otherwise, leakage or impulses in transfer rates occur. Most matching results

deal with smoothing one possible break in some order derivative. This paper deals

with smoothing by solution matching, when gaps in the derivatives at the interface

point involve several successive derivatives.

In this paper, we are concerned with the existence and uniqueness of solutions

to boundary value problems on an interval [a, c] for the following nth order ordinary

differential equation,

y(n)(x) = f(x, y(x), y′(x), . . . , y(n−1)(x)), n ≥ 3, x ∈ [a, c], (1.1)

satisfying the three-point boundary conditions,

y(a) = y1, y(i)(b) = yi+2, 0 ≤ i ≤ k1 − 1,

y(i)(b) = yi+1, k1 + 1 ≤ i ≤ k2 − 1,

y(i)(b) = yi, k2 + 1 ≤ i ≤ n − 1, y(c) = yn,

(1.2)
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where a < b < c, y1, y2, . . . , yn ∈ R, and k1, k2 ∈ Z such that 0 ≤ k1 < k2 ≤ n− 1 and

k2 − k1 is odd, which is called an odd gap in this paper.

Also, it is assumed throughout that f : [a, c] × R
n → R is continuous and that

solutions to initial value problems (IVPs) for (1.1) are unique and exist on the entire

interval [a, c]. Moreover, k1 and k2 are fixed.

To apply the solution-matching technique, we consider the following sets of

boundary conditions,

y(a) = y1, y(i)(b) = yi+2, 0 ≤ i ≤ k1 − 1, y(k1)(b) = m,

y(i)(b) = yi+1, k1 + 1 ≤ i ≤ k2 − 1, y(i)(b) = yi, k2 + 1 ≤ i ≤ n − 1,
(1.3)

y(a) = y1, y(i)(b) = yi+2, 0 ≤ i ≤ k1 − 1, y(k2)(b) = m,

y(i)(b) = yi+1, k1 + 1 ≤ i ≤ k2 − 1, y(i)(b) = yi, k2 + 1 ≤ i ≤ n − 1,
(1.4)

y(i)(b) = yi+2, 0 ≤ i ≤ k1 − 1, y(i)(b) = yi+1, k1 + 1 ≤ i ≤ k2 − 1,

y(k1)(b) = m, y(i)(b) = yi, k2 + 1 ≤ i ≤ n − 1, y(c) = yn,
(1.5)

y(i)(b) = yi+2, 0 ≤ i ≤ k1 − 1, y(i)(b) = yi+1, k1 + 1 ≤ i ≤ k2 − 1,

y(k2)(b) = m, y(i)(b) = yi, k2 + 1 ≤ i ≤ n − 1, y(c) = yn,
(1.6)

where m ∈ R. We will match solutions of the BVPs (1.1), (1.3) on [a, b] with solutions

of the BVPs (1.1), (1.5) on [b, c], or solutions of (1.1), (1.4) on [a, b] with solutions of

(1.1), (1.6) on [b, c], to obtain a desired unique solution of (1.1), (1.2). The condition

that k2 − k1 is odd is key here.

The solution-matching technique was introduced by Bailey et al. [2]. They ob-

tained the existence and uniqueness of solutions to two-point BVPs for the second

order differential equation y′′ = f(x, y, y′) by matching solutions of initial value prob-

lems. Then, in 1973, Barr and Sherman [3] assumed monotonicity conditions on f

and applied the solution-matching technique to third order equations and generalized

to equations of arbitrary order. Since then, much work has been done on existence

and uniqueness of certain BVPs for third order or higher order differential equations,

differential systems or differential equations on time scales by matching solutions. We

refer the readers to [4, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27, 29].

Concerning three-point BVPs for nth order differential equations (1.1), (1.2), the

special cases of k2 = n − 1 and k1 = n − 2 were discussed in [7, 19]. Recently,

Henderson and Liu [16] studied more general cases where k2 − k1 is only required

to be an odd number. In that paper, monotonicity conditions on f are essentially

important. Monotonicity conditions on f guarantee that the postulation of the value

of the k1st or k2nd derivative at b of a solution to (1.1) presupposes a knowledge of the

values of all derivatives at b. The parity of the order n of the differential equation also

plays a role since the odd or even property of n−k1 will invoke different monotonicity
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conditions on f . In 2014, Liu [17] studied the even case of BVPs for third order

differential equations, that is, n = 3, k1 = 0, k2 = 2 such that k2 − k1 is even.

The Liapunov theory has been used for the existence and uniqueness of solutions

of differential equations in the solution matching technique in many works, see [4, 12,

13, 21, 22]. In this paper we will use proper Liapunov functions as control functions

to substitute for the monotonicity conditions on f . The Liapunov functions used in

this paper is different from the literature since the present paper studies BVPs with

odd gaps in the boundary conditions.

In Section 2, we present definition and basic properties of Liapunov functions;

In Section 3, we show the fundamental lemmas on the relation between the values

of the k1st order derivative and the k2nd order derivative at b of two solutions to

(1.1) that satisfy the boundary conditions (1.2), respectively, on the interval [a, b]

and the interval [b, c]; In Section 4, the main results on the existence and uniqueness

of solutions to (1.1), (1.2) are given.

2. LIAPUNOV FUNCTIONS

In this paper, we define a Liapunov function as below:

Definition 2.1. A Liapunov function V (x, u0, u1, . . . , un−1) : [α, β] × R
n → R is

continuous in x and locally Lipschitzian with respect to (u0, u1, . . . , un−1) and satisfies:

(a) V (x, u0, u1, . . . , un−1) = 0 if uk2
= 0;

(b) V (x, u0, u1, . . . , un−1) > 0 if uk2
6= 0.

Suppose φ is a solution of (1.1). Consider the following differential equation:

w(n)(x) = Fφ(x, w(x), w′(x), . . . , w(n−1)(x))

:= f(x, φ(x), φ′(x), . . . , φ(n−1)(x))

− f(x, φ(x) − w(x), φ′(x) − w′(x), . . . , φ(n−1)(x) − w(n−1)(x)). (2.1)

Notice that if ϕ is another solution of (1.1), then, w := φ − ϕ is a solution of (2.1)φ.

Suppose φ is a solution of (1.1) and w is a solution of (2.1)φ. Then, we define

V ′

Fφ
:

V ′

Fφ
(x, w(x), w′(x), . . . , w(n−1)(x))

= lim
h→0

1

h

[

V (x + h, w + hw′, . . . , w(n−2) + hw(n−1), w(n−1) + hFφ)

−V (x, w(x), . . . , w(n−1)(x))
]

(2.2)
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and V ′:

V ′(x, w(x), w′(x), . . . , w(n−1)(x))

= lim
h→0

1

h

[

V (x + h, w(x + h), . . . , w(n−1)(x + h))

−V (x, w(x), . . . , w(n−1)(x))
]

(2.3)

As an extension of the case for n = 1, the proof to the following lemma is similar to

that in Yoshizawa[30] on page 4.

Lemma 2.1. Suppose φ is a solution of (1.1) and w is a solution of (2.1)φ and

V (x, u0, u1, . . . , un−1) : [α, β]×R
n → R is a Liapunov function. Then, V ′(x, w(x), . . . ,

w(n−1)(x))= V ′

Fφ
(x, w(x), . . . , w(n−1)(x)) and V (x, w(x), . . . , w(n−1)(x)) is nonincreas-

ing (nondecreasing) along the solution w if and only if V ′

Fφ
(x, w(x), . . . , w(n−1)(x)) ≤ 0

(V ′

Fφ
(x, w(x), . . . , w(n−1)(x)) ≥ 0).

3. FUNDAMENTAL LEMMAS

This section presents two fundamental lemmas showing the relation between the

values of the k1st order derivative and the k2nd order derivative at b of solutions to

(1.1) that satisfy the boundary conditions (1.2), respectively, on the interval [a, b] and

the interval [b, c].

Lemma 3.1. Assume φ, ϕ are solutions of (1.1) satisfying (1.2) on the interval [a, b].

Let w = φ − ϕ. Then, w is a solution to (2.1)φ on [a, b] satisfying

w(a) = 0, w(i)(b) = 0, i 6= k1, k2.

Suppose there is a Liapunov function V (x, u0, u1, . . . , un−1) : [a, b]×R
n → R such that

along the solution w, V ′

Fφ
(x, w(x), . . . , w(n−1)(x)) ≥ 0 on [a, b]. Then, w(k1)(b) = 0 if

and only if w(k2)(b) = 0. Also, w(k1)(b) > 0 if and only if w(k2)(b) > 0.

Proof. (⇒) The necessity of the equalities.

Suppose w(k1)(b) = 0 and w(k2)(b) 6= 0. Without loss of generality, we assume

w(k2)(b) > 0. Since w(a) = 0, w(i)(b) = 0 for i = 0, 1, . . . , k2 − 1, by repeated ap-

plications of Rolle’s theorem, there is some r1 ∈ (a, b) such that w(k2−1)(r1) = 0,

w(k2−1)(x) < 0, for x ∈ (r1, b). By the Mean Value Theorem and w(k2−1)(b) = 0, there

are some r1 < r2 < r3 < r4 < b such that w(k2)(r2) < 0, w(k2)(r3) = 0, w(k2)(r4) > 0,

which imply that V (r2, w(r2), . . . , w
(n−1)(r2)) > 0, V (r3, w(r3), . . . , w

(n−1)(r3)) = 0,

V (r4, w(r4), . . . , w(n−1)(r4)) > 0, which contradicts the fact that V (x, w(x), . . . ,

w(n−1)(x)) is nondecreasing on [a, b] by Lemma 2.1. Therefore, w(k2)(b) = 0 if

w(k1)(b) = 0.

(⇐) The sufficiency of equalities.
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Suppose w(k2)(b) = 0 and w(k1)(b) 6= 0. Without loss of generality, we assume

w(k1)(b) > 0.

By w(i)(b) = 0, for 0 ≤ i ≤ n − 1, i 6= k1, w(k1)(b) > 0 and repeated applications

of Rolle’s Theorem, we have some s1 ∈ [a, b) such that w(k1)(s1) = 0, w(k1)(x) > 0

on (s1, b], and (−1)k1−iw(i)(x) > 0 on [s1, b) for 0 ≤ i ≤ k1 − 1, and so by the Mean

Value Theorem, there is some s2 ∈ (s1, b) such that w(k1+1)(s2) > 0.

From w(i)(b) = 0, for k1+1 ≤ i ≤ k2−1, and the fact that k2−k1 is odd, we repeat-

edly use the Mean Value Theorem to see there is some s3 ∈ [s2, b) such that w(k2)(s3) >

0. Then, we have V (s3, w(s3), . . . , w
(n−1)(s3)) > 0 and V (b, w(b), . . . , w(n−1)(b)) = 0,

which contradict the fact that V (x, w(x), . . . , w(n−1)(x)) is nondecreasing on [a, b] by

Lemma 2.1. Therefore, w(k1)(b) = 0 if w(k2)(b) = 0.

(⇒) The necessity of inequalities.

Suppose w(k1)(b) > 0 and w(k2)(b) < 0.

From w(a) = 0, w(i)(b) = 0, 0 ≤ i ≤ k1 − 1, and w(k1)(b) > 0, and by repeated

applications of Rolle’s Theorem, there is some t1 ∈ [a, b) such that (−1)k1−iw(i)(x) >

0, for x ∈ [t1, b) and 0 ≤ i ≤ k1 − 1, w(k1)(t1) = 0 and w(k1)(x) > 0, for x ∈

(t1, b]. Therefore, by the Mean Value Theorem, there is some t2 ∈ (t1, b) such that

w(k1+1)(t2) > 0.

By w(i)(b) = 0 for k1+1 ≤ i ≤ k2−1 and repeated applications of the Mean Value

Theorem, there is some t3 ∈ [t2, b) such that w(k2)(t3) > 0. Notice w(k2)(b) < 0. There-

fore, w(k2)(t4) = 0 for some t4 ∈ (t3, b). Then, we have the signs of Liapunov func-

tion at t3, t4, b: V (t3, w(t3), . . . , w
(n−1)(t3)) > 0, V (t4, w(t4), . . . , w

(n−1)(t4)) = 0 and

V (b, w(b), . . . , w(n−1)(b)) > 0, which is against the assumption that V (x, w(x), . . . ,

w(n−1)(x)) is nondecreasing.

(⇐) The sufficiency of inequalities.

We assume that w(k1)(b) < 0 and w(k2)(b) > 0. Then, we are in the similar

situation to the proof for necessity of inequalities, which also leads to a contradiction.

Hence, the sufficiency is true.

Lemma 3.2. Assume φ, ϕ are solutions of (1.1) satisfying (1.2) on the interval [b, c].

Let w = φ − ϕ. Then, w is a solution to (2.1)φ on [b, c] satisfying

w(i)(b) = 0, i 6= k1, k2, w(c) = 0.

Suppose there is a Liapunov function U(x, u0, u1, . . . , un−1) : [b, c]×R
n → R such that

along the solution w, U ′

Fφ
(x, w(x), . . . , w(n−1)(x)) ≤ 0 on [b, c]. Then, w(k1)(b) = 0 if

and only if w(k2)(b) = 0. Also, w(k1)(b) > 0 if and only if w(k2)(b) < 0.

Proof. (⇒) The necessity of the equalities.
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Suppose w(k1)(b) = 0 and w(k2)(b) 6= 0. Without loss of generality, we assume

w(k2)(b) > 0. Since w(i)(b) = 0 for i = 0, 1, . . . , k2 − 1, w(c) = 0 by repeated ap-

plications of Rolle’s theorem, there is some r1 ∈ (a, b) such that w(k2−1)(r1) = 0,

w(k2−1)(x) > 0, for x ∈ (b, r1). By the Mean Value Theorem, there are some b < r2 <

r3 < r4 < r1 such that w(k2)(r2) > 0, w(k2)(r3) = 0, w(k2)(r4) < 0, which imply that

U(r2, w(r2), . . . , w
(n−1)(r2)) > 0, U(r3, w(r3), . . . , w

(n−1)(r3)) = 0, U(r4, w(r4), . . . ,

w(n−1)(r4)) > 0, which contradicts the fact that U(x, w(x), . . . , w(n−1)(x)) is nonin-

creasing on [b, c] by Lemma 2.1. Therefore, w(k2)(b) = 0 if w(k1)(b) = 0.

(⇐) The sufficiency of equalities.

Suppose w(k2)(b) = 0 and w(k1)(b) 6= 0. Without loss of generality, we assume

w(k1)(b) > 0.

By w(i)(b) = 0, for 0 ≤ i ≤ n − 1, i 6= k1, w(k1)(b) > 0 and repeated applications

of Rolle’s Theorem, we have some s1 ∈ [b, c) such that w(k1)(s1) = 0, w(k1)(x) > 0

on [b, s1), and w(i)(x) > 0 on (b, s1] for 0 ≤ i ≤ k1 − 1, and so by the Mean Value

Theorem, there is some s2 ∈ (b, s1) such that w(k1+1)(s2) < 0.

From w(i)(b) = 0, for k1 + 1 ≤ i ≤ k2 − 1, we repeatedly use the Mean Value

Theorem to see there is some s3 ∈ (b, s2] such that w(k2)(s3) < 0. Then, we have

U(b, w(b), . . . , w(n−1)(b)) = 0 and U(s3, w(s3), . . . , w
(n−1)(s3)) > 0, which contradicts

the assumption that U(x, w(x), . . . , w(n−1)(x)) is nonincreasing on [b, c] by Lemma

2.1. Therefore, w(k1)(b) = 0 if w(k2)(b) = 0.

(⇒) The necessity of inequalities.

Suppose w(k1)(b) > 0 and w(k2)(b) > 0. From w(i)(b) = 0, 0 ≤ i ≤ k1 − 1,

w(k1)(b) > 0, and w(c) = 0, by repeated applications of Rolle’s Theorem, there is

some t1 ∈ (b, c] such that w(i)(x) > 0, for x ∈ (b, t1] and 0 ≤ i ≤ k1 − 1, w(k1)(t1) = 0

and w(k1)(x) > 0, for x ∈ [b, t1). Therefore, by the Mean Value Theorem, there is

some t2 ∈ (b, t1) such that w(k1+1)(t2) < 0.

By w(i)(b) = 0 for k1 + 1 ≤ i ≤ k2 − 1 and repeated applications of Mean Value

Theorem, there is some t3 ∈ (b, t2] such that w(k2)(t3) < 0. Notice w(k2)(b) > 0.

Therefore, w(k2)(t4) = 0 for some t4 ∈ (b, t3). Then, we have the signs of Liapunov

function at t3, t4, b: U(b, w(b), . . . , w(n−1)(b)) > 0, U(t4, w(t4), . . . , w
(n−1)(t4)) = 0 and

U(t3, w(t3), . . . , w
(n−1)(t3)) > 0, which is against the assumption that U(x, w(x), . . . ,

w(n−1)(x)) is nonincreasing.

Therefore, w(k2)(b) > 0 if w(k1)(b) > 0

(⇐) The sufficiency of inequalities.

Assume the conclusion is not true, that is, w(k2)(b) < 0 and w(k1)(b) < 0. Then,

by a very similar proof to that for necessity of inequalities, we can arrive at a contra-

diction. Hence, the sufficiency is also true.
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3. UNIQUENESS AND EXISTENCE OF SOLUTIONS FOR (1.1), (1.2)

This section presents the uniqueness and existence of solutions for (1.1), (1.2).

First, we show the uniqueness of solutions to each of the BVPs for (1.1) satisfying

any of (1.3), (1.4), (1.5), or (1.6), respectively.

Lemma 4.1. Suppose for any solution φ of (1.1), (1.2) and any solution w of (2.1)φ

on [a, b] satisfying w(a) = 0, w(i)(b) = 0, for i 6= k1, k2, there exists a Liapunov

function V (x, u0, u1, . . . , un−1) : [a, b] × R
n → R such that along the solution w,

V ′

Fφ
(x, w(x), . . . , w(n−1)(x)) ≥ 0 on [a, b]. Then, for every m ∈ R, each of the BVPs

for (1.1) satisfying one of (1.3) and (1.4) has at most one solution.

Proof. We show the proof for (1.1), (1.3). The proof for (1.1), (1.4) is similar and

will be omitted.

Suppose for some m ∈ R, there are two solutions φ, ϕ satisfying (1.1), (1.3). Let

w := φ−ϕ. Then, w is a solution of (2.1)φ on [a, b] satisfying w(a) = 0, w(i)(b) = 0, for

i 6= k2. Then by w(k1)(b) = 0 and Lemma 3.1, we have w(k2)(b) = 0. The uniqueness

of solutions of initial value problems for (1.1) implies that φ ≡ ϕ on [a, b].

Lemma 4.2. Suppose for any solution φ of (1.1), (1.2) and any solution w of (2.1)φ

on [b, c] satisfying w(i)(b) = 0, for i 6= k1, k2, w(c) = 0, there exists a Liapunov

function U(x, u0, u1, . . . , un−1) : [b, c] × R
n → R such that along the solution w,

U ′

Fφ
(x, w(x), . . . , w(n−1)(x)) ≤ 0 on [b, c]. Then, for every m ∈ R, each of the BVPs

for (1.1) satisfying one of (1.5) and (1.6) has at most one solution.

Proof. The proof is similar to Lemma 4.1.

Lemma 4.3. With the same assumptions as Lemma 4.1 and Lemma 4.2, we have

that the BVP (1.1), (1.2) has at most one solution.

Proof. Suppose the BVP (1.1), (1.2) has two solutions φ, ϕ. Let w := φ − ϕ. Then,

w is a solution of (2.1)φ on [a, b] satisfying w(a) = 0, w(i)(b) = 0, for i 6= k1, k2,

w(c) = 0. Then, by Lemma 3.1 or Lemma 3.2, we have that w(k1)(b) 6= 0 and

w(k2)(b) 6= 0. Suppose w(k1)(b) > 0. By Lemma 3.1, w(k2)(b) > 0; however, by Lemma

3.2, w(k2)(b) < 0. The contradiction and the uniqueness of solutions of BVP (1.1),

(1.2) imply that φ ≡ ϕ on [a, c].

For notation purposes, given any m ∈ R, let α(x, m), u(x, m), β(x, m), v(x, m)

denote the solutions, when they exist, of the BVPs of (1.1) satisfying (1.3), (1.4),

(1.5), or (1.6), respectively. Next, we show that α(k2)(b, m), u(k1)(b, m), β(k2)(b, m),

v(k1)(b, m), respectively, are strictly monotone functions of m.

Lemma 4.4. We assume the same assumptions as in Lemma 4.1 and Lemma 4.2, and

for each m ∈ R, there exist solutions of (1.1) satisfying each of the conditions (1.3),



586 X. LIU

(1.4), (1.5), (1.6), respectively. Then, α(k2)(b, m) and β(k2)(b, m) are, respectively,

strictly increasing and strictly decreasing functions of m with ranges all of R.

Proof. The monotonicity of α(k2)(b, m) and β(k2)(b, m) is from Lemma 3.1 and Lemma

3.2.

The proof that {α(k2)(b, m)|m ∈ R} = R is the same as that in [7, Theorem

2.4].

The next lemma states the monotonicity of u(k1)(b, m) and v(k1)(b, m) with respect

to m. Its proof follows much along the lines of Lemma 4.4, and so is omitted.

Lemma 4.5. Assume the same hypotheses of Lemma 4.4. Then, u(k1)(b, m) and

v(k1)(b, m) are, respectively, strictly increasing and strictly decreasing functions of m

with ranges all of R.

Now, we establish our existence and uniqueness result for (1.1), (1.2), which is

obtained by matching solutions.

Theorem 4.6. Assume the same hypotheses of Lemma 4.4. Then, (1.1), (1.2) has a

unique solution.

Proof. We can get the conclusion by either Lemma 4.4 or Lemma 4.5. Here we use

Lemma 4.5.

By Lemma 4.5, u(k1)(b, m) and v(k1)(b, m) are, respectively, strictly increasing and

strictly decreasing functions of m with ranges all of R. Then there is a unique m0 ∈ R

such that u(k1)(b, m0) = v(k1)(b, m0). Then, we define

y(x) =

{

u(x, m0), a ≤ x ≤ b,

v(x, m0), b ≤ x ≤ c,

which is the unique solution of (1.1), (1.2) by Lemma 4.3.
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