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1. INTRODUCTION

We consider the system of nonlinear higher-order ordinary differential equations

u™(t) + A f(t,u(t),v(t)) =0, te(0,7),
v () + pg(t,u(t), v(t) =0, te€(0,7),

with the integral boundary conditions

fo s)dHy(s), w'(0)=---=u®2(0)=0, wT)= [ u(s)dHs(s),
= [Jo(s)dKi(s), '(0)=---=vm2(0)=0, o(T)= [ v(s)dKs(s),
(BC)
where n,m € N n,m > 2. In the case n = 2 or m = 2 the above Conditions are
of the form u(0 fo s)dH,(s fo s)dHoy(s), or v( fo s)dKi(s
fo dK o respectlvely, that is, w1thout condltlons on the derlvatlves of U

and vin the pomt 0. The nonlinearities f and g are sign-changing continuous functions
(that is, we have a so called system of semipositone boundary value problems), and
the integrals from (BC') are Riemann-Stieltjes integrals. These boundary conditions
include multi-point and integral boundary conditions and sum of these in a single
framework. Integral boundary conditions arise in the thermal conduction problems

2], semiconductor problems [9] and hydrodynamic problems [4].
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By using a nonlinear alternative of Leray-Schauder type, we present intervals for
parameters A and p such that the above problem (S)—(BC') has at least one positive
solution. By a positive solution of problem (S)-(BC) we mean a pair of functions
(u,v) € C™([0,T]) x C™([0,T]) satistying (S) and (BC') with u(t) > 0, v(t) > 0 for
all t € [0, 7] and u(t) > 0, v(t) > 0 for all t € (0,7). In the case when f and g are
nonnegative functions and, in the boundary conditions (BC'), Hy, Hy, K1, K5 are scale
functions (denoted by (EC/')), the existence of positive solutions of the above problem
(u(t) >0, v(t) >0 for all t € [0, 7], (u,v) # (0,0)) has been studied in [5] and [8] by
using the Guo-Krasnosel’skii fixed point theorem. The positive solutions (u(t) > 0,
v(t) > 0 for all ¢ € [0,T], sup,joru(t) > 0, sup;epv(t) > 0) of system () with
A = pu = 1and with f(¢,u,v) and g(¢, u,v) replaced by f(t,v) and g(¢, u), respectively,
(f, g nonnegative functions) with the boundary conditions (EC/’) were investigated in
[6] (the nonsingular case) and [7] (the singular case). In [6], the authors obtained
the existence and multiplicity of positive solutions by applying some theorems from
the fixed point index theory, and in [7], the authors studied the existence of positive
solutions by using the Guo-Krasnosel’skii fixed point theorem. We also mention the
paper [3], where the authors investigated the existence of positive solutions for the
nonlinear nth order differential equation u(™(t) + a(t)f(u(t)) = 0, t € (0, 1), subject
to the boundary conditions u(0) = u'(0) = --- = u™2(0) = 0, au(n) = u(1), with
O<np<land0<an™?!<1.

The paper is organized as follows. In Section 2, we present some auxiliary results
which investigate a boundary value problem for higher-order equations. The main
theorem is presented in Section 3, and finally, in Section 4, two examples are given

to support the new result.

2. AUXILIARY RESULTS

In this section, we present some auxiliary results related to the following n-order

differential equation
u™(t) + 2(t) =0, te(0,T), (2.1)

with the integral boundary conditions

u(0) = /0 u(s)dHy(s), ¢ (0)=---=u20)=0, u(l)= /0 u(s)dHs(s),

(2.2)
where n € N, n > 2, and Hy, Hy : [0,7] — R are functions of bounded variation. If
n = 2, the condition (2.2) has the form u(0 fo s)dH,(s fo s)dHy(s

Lemma 2.1. If Hy, Hy are functions of bounded variation, A, = (1 - fOT dH2(3)> X
X fOT s"YdHy(s)+ (1 — fOT dHl(s)> (T"‘l — fOT s”‘ldH2(8)> #0, and z € C([0,T)),
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then the solution of (2.1)—(2.2) is given by

== [ G {1 [ o) gy
x /O ' ( /O (- T>“—1z<r>df) dH(s) + (1 - / an >) il
X UOT(T —8)" ' 2(s)ds — /OT (/Os(s -7 ) dHy(s } } (2.3)

([ o) [

(Lo amen] - (Tn-l i /OT )
xﬁ /0 ' ( /0 (s — T)n—lz(f)df) dHl(s)}

Proof. If n > 3, then the solution of equation (2.1) is

n—2

t t— n—1 )
u(t) = —/ %z(s)ds + A" 4 Z Ait' + B,
o (n—1)! —
with A, 4;,i =1,...,n—2, B € R. By using the conditions v/(0) = - - - = u("=2)(0) =
0, we obtain A; =0 for¢=1,...,n — 2. Then we conclude

u(t) = —/0 %z(s)dsjtflt"_lth.

If n = 2, the solution of our problem is given directly by the above expression where

n is replaced by 2.

Therefore for a general n > 2, by using the conditions u(0) = fOT u(s)dHy(s) and
fo s)dHy(s), we deduce

( B= /OT J;— /OS %Z(T)Ch‘ + As" 7t B] dH(s),

—/ %z(s)ds + AT '+ B

| :/OT [—/OS%Z(T)deLAS"_I—I—B} dHy(s),

( A/OTsn‘ldHl(s)JrB (/TdHl(s)—l)

_ /0 Z ( /0 s %z(f)cﬂ dfl(s), ”
A (T"‘l _ /0 s”_ldﬂg(s)) +B (1 - /0 ng(s))

| e [ (o)

or
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The above system with the unknown A and B has the determinant

Ay = (1 — /OT dH2(3)> /OT s"1dH,(s)
+ (1 — /OT dHl(s)> <T"-1 - /OT s"‘ldH2(3)> £ 0,

by using the assumptions of this lemma. Hence, the system (2.4) has a unique solu-
tion, namely

L o) [ (e
(- o)l -
[ ([ =) amo)| ).

oo ([ ) e
- /0 ' ( /0 (s— T)n—lz(r)df) dH2(s)] - (T"—l - /0 ' s"_ldH2(s))
xﬁ /OT (/Os(s _ T)"—lz(r)df) dHl(s)} |

Therefore, we obtain the expression (2.3) for the solution u(t) of problem (2.1)-
(2.2). O

Lemma 2.2. Under the assumptions of Lemma 2.1, the solution of problem (2.1)—

(2.2) can be expressed as u(t) = fOT G1(t, s)z(s)ds, where the Green’s function Gy is
defined by

(?xus):gh@,ﬁ-+zi-kzm—l—tﬂ—w (1—E£Tdﬁ5@§) (2.5)

+/0T(Tn—1_7"—1) dHQ(T)] /OTQI(Tas)dHl(T)

+ Ail [t”‘l (1 —/OT dHl(T)) + /OT Tn_ldHl(T)} /OTgl(T, s)dHy(T),
for all (t,s) € [0,T] x [0,T], and

(t.9) 1 T — )L =Tt —s)" ) 0<s<t<T
’S = -
& (n—DITn1 ) =Y (T —s)!, 0<t<s<T.

Proof. By Lemma 2.1 and relation (2.3), we conclude

u(t) = W {/0 [t"‘l(T — )"t — s)"—l] z(s)ds
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n /tT YT — 5)" ' 2(s)ds — /OT " T — 5)" " 2(s)ds

(o Lo [ (oo
+ (1 - /0 ' dHl(s)) [ /0 T(T— s)"L2(s)ds — /0 ' < /0 (s r)"‘lz(f)df) dH2<8)H
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1

' o )
+/ 1T — ) ()ds+%{—<1—/0 dH(7) OTU( (T — 1)
—T" Y s—1)"") Z(T)dr+/;s YT — 7)™ tz( )d}dHl(s)
+<1—/ dHl(T)> /OT Uos(s" (T — 7)1 — T (s — 7)"V)2(r)dr

_Ail (/OT T”—ldH2(T)> [/OTSQ/OS [s" (T — 7)™
— T s —7)" M 2(r)dr + / s"HT —7)" ' a(r)dr dHl(s)] } :

Then, the solution u of problem (2.1)—(2.2) is

u@:/2ﬂ><m+%;LQ—AUHm)
<[ ([ o) amer« (1= [ i)
AV DI T [ ([ i)
1E m) [ ( (5, ) dias)

YA
N 1) [ ([ smztwyir) o)

)
- Tln‘l(os — 7)Y 2(7)dT + / sO"—l(T - T)"‘lz(r)df) de(s):
)
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o S (o)
X/OT(/O 01(r, s)dHy (r ) ds+< /OTdHl(T))
X/OT (/0 o1(r, $)d (7 ) } i 1/0 (/OTgl(T, S)dHl(T)) +(s)ds
L[ ) ([ i) e
(i) ([

where ¢; is given in (2.6).

Therefore, we conclude

u) = [ " gult,5)a(s s+ 5|0 (1= Tde) e | Tf"-ldﬂm]
<[ ([ atmsamn) s+ 5[ (1= [Came) + [ )]
X /OT (/OTgl(T, S)ng(’T)) z(s)ds

:/OT {gl(t )+ 5 {(T" L_ g 1)( / dHy( )) +/0T(T"‘1—T"‘1)de(7>}
x /0 ' 91(7, 5)dHy(7) {t” ! (1 dH1 ) - /0 TTn_ldHl(T)}
x/OTgl(T s)dHa(r } /OTal

where G is given in (2.5). O

Using similar arguments as those used in the proof of Lemma 2.2 from [10], we

obtain the following lemma.

Lemma 2.3. For any n > 2, the function g, given by (2.6) has the properties:

a) g1 :[0,T] x [0,T] — Ry is a continuous function, g,(t,s) > 0 for all (t,s) €
[0,7] x [0,T], g1(t,s) > 0 for all (t,s) € (0,T) x (0, 7).

b) gi(t,s) < hi(s) for all (t,5) € [0,T] x [0,T], where hy(s) = 2T=L—.

c) gi(t,s) > ki(t)hi(s) for all (t,s) € [0,T] x [0,T], where

tn—l
T—t)=2 gl e 0st<T/2
]{31 (t) = min { ((n — 1)>Tn—17 (n — 1)Tn—1 } = ((T} _12)%;”_2
T/2<t<T.

(n— 1)1V
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Lemma 2.4. Assume that Hy, Hy : [0,7] — R are nondecreasing functions, H,(T') —
H1(0) <1 and Ho(T) — H2(0) < 1. Then the Green’s function Gy of problem (2.1)-
(2.2) given by (2.3) is continuous on [0,T] x [0,T] and satisfies G1(t,s) > 0 for
all (t,s) € [0,T] x [0,T], G1(t,s) > 0 for all (t,s) € (0,T) x (0,T). Moreover, if
z € C([0,T)) satisfies z(t) > 0 for allt € [0,T], then the unique solution u of problem
(2.1)~(2.2) satisfies u(t) > 0 for allt € [0,T].

Proof. By using the assumptions of this lemma, Lemma 2.2 and Lemma 2.3, we
obtain A; > 0, G4(t,s) > 0 for all (¢t,s) € [0,T] x [0,T], G1(t,s) > 0 for all (¢,s) €
(0,7) x (0,7, and so u(t) > 0 for all t € [0,T]. 0O

Lemma 2.5. Assume that Hy, Hy : [0,7] — R are nondecreasing functions, Hy(T') —
H1(0) <1 and Ho(T) — H2(0) < 1. Then the Green’s function G of problem (2.1)-

(2.2) satisfies the inequalities
a) Gi(t,s) < Ji(s), Y (t,s) € [0,T] x [0,T], where Jy(s) = 11h1(s), s € [0,T] and
1 T
T = 1 + A_ Tn_l(l - HQ(T) + HQ(O)) + / (Tn_l - Tn_l)dHQ(T):| (27)
1 0

x (H\(T) — H(0)) + Ail [T"‘l(l — H(T) + H.(0)) +/0 Tn_ldHl(T)}
X (Hy(T) — H5(0)).

b) Gi(t,s) > n(t)i(s), Y (t,s) € [0,T] x [0,T], where

7(t) = l{kl(t) + Ail (T — "1 (1 — Hy(T) + Hy(0)) (2.8)

71

+ /0 T(T"—l—T"—l)dHQ(r)] /O ' Fa (7)dHi (7)

F e oy /OTTn—ldHlm] / Tkl(r)de(T)}-
Proof. a) We have

Gi(t,s) < hy(s )+Ai1 [T” 1(1 - /0 TdH2(T)) + / (77t =) dH2<T)]

/ s)dH, (1) + Ail {T"‘l (1 — /OT dHl(T)) —E/OTTn_ldHl(T):|
[

| n(s)dHa(r) = mhi(s) = A(s), ¥ (6s) € 071 < [0,7)

where 7 is given in (2.7).

b) For the second inequality, we obtain

Gat, ) > k1 (E)ha(s) + All {(T" ey (1 - /0 TdHQ(T))
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N /OT (171 — 1) dH2<T)] /0 () (s)dH ()

+Ail {tn—l (1_ /0 TdHl(T)) + /0 Tfn-ldHl(T)} /0 () (s)d ()

_ %(Tlhl(s)) {k: (t) + Ail [(T"‘1 — " (1 - /OT de(T))

+ / ' (77! — ) dﬂzm] / () + Ai {t" 1 (1 - / ) dH1<T>)
' /OTT"-ldHAT)] / Tkldez(f)}=v1<t>J1<s>, ¥(t,s) € 0.7] x [0.7,

where 7;(t) is defined in (2.8). O

Lemma 2.6. Assume that Hy, Hy : [0,7] — R are nondecreasing functions, H,(T') —
Hi(0) < 1, Ho(T) — Ho(0) < 1, z € C([0,T)), 2(t) > 0 for all t € [0,T]. Then
the solution u(t), t € [0,T] of problem (2.1)~(2.2) satisfies the inequality u(t) >
Y1 (t) maxyp o u(t') for allt € [0,T].

Proof. For t € [0,T], we deduce

u(t):/ Gq(t, s)z(s)dsE/ vl(t)Jl(s)z(s)ds:vl(t)/ J1(s)z(s)ds

0

0 0
T
> (t) / Gi(t s)z(s)ds = m(t)ult)), V¢ € [0,T).
0
Therefore, we conclude that u(t) > v1(t) maxyepm u(t’) for all ¢ € [0, 7. O

We can also formulate similar results as Lemmas 2.1-2.6 above for the ordinary

differential equation
V™M) +Z(t) =0, 0<t<T, (2.9)

with the integral boundary conditions

T T
v(0) = / v(s)dK(s), v'(0)=---=0v™20)=0, oT)= / v(s)dKs(s),

’ ’ (2.10)
where m € N, m > 2, Kl,KQ : [0,7] — R are nondecreasing functions and z €
C([O T)). In the case m = 2, the boundary conditions have the form v(0) =
f v(s)dKy(s), fo s)dKs(s). We denote by As, go, G, ho, kg, 72, Jo and
72 the correspondmg Constants and functions for problem (2.9)—(2.10) defined in a

similar manner as Ay, g1, Gy, hy, k1,71, J1 and ~y;, respectively.

In the proof of our main result, we shall use the following nonlinear alternative

of Leray-Schauder type (see [1]).
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Theorem 2.7. Let X be a Banach space with  C X closed and convexr. Assume
U is a relatively open subset of Q0 with O € U, and let S : U — ) be a completely
continuous operator (continuous and compact). Then either

1) S has a fized point in U, or

2) there exists u € OU and v € (0,1) such that v = vSu.

3. MAIN RESULT

In this section, we investigate the existence of positive solutions for our problem

(S)—(BC). We present now the assumptions that we shall use in the sequel

(H1) Hy,Hs, K1, K5 : [0,T] — R are nondecreasing functions, H;(7T) — H,(0) < 1,
Hy(T) — Hy(0) < 1, K1 (T) — K1(0) < 1 and Ko(T) — K5(0) < 1.

(H2) The functions f,g € C([0,7] x [0,00) x [0,00), (—00,+00)) and there exist
functions py, p2 € C([0,7],(0,00)) such that f(t,u,v) > —pi(t) and g(t,u,v) >
—pa(t) for any ¢t € [0,7] and u,v € [0, 00).

(H3) f(£,0,0) > 0, g(t,0,0) > 0 for all £ € [0, 7].

We consider the system of nonlinear ordinary differential equations
e () + A(f(E [2(t) — @ [y() — eO)]) +pi(t) =0, 0<t<T,
y () + (gt [2(t) = )], [y(t) — @(O]) +p2(t)) =0, 0<t<T,
with the integral boundary conditions

{ fo $)dH(s), 2'(0) ==z (0) =
= [Ty(s)dKy(s), ¥/(0)=---=y™2(0) =

(3.1)

where

Here ¢; and ¢, are given by ¢ (t) :)\foTGl(t, s)p1(s)ds and gy (t “fo Gs(t, s)p2(s)ds,
that is, they are the solutions of the problems

{<"<>+Ap<> 0, te(0,7),

Sy a(s)dHy(s), ¢i(0)=---=g¢"20)=0, @(T)= [ qi(s)dHy(s),
(3.3)
and
{ ¢ (1) + ppa(t) =0, te <0,T>,
0(0) = [ ga(s)dK1(s), @h(0) =--- =g 2(0) =0, @(T) = [ ga(s)dEs(s),
(3.4)

respectively. If n = 2 or m = 2 then the above conditions do not contain the
conditions on the derivatives in the point 0. By (H1)-(H2) and Lemma 2.4, we have
q1(t) >0, go(t) > 0 for all t € [0,T7], and ¢1(t) > 0, go(t) > 0 for all t € (0,7).
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We shall prove that there exists a solution (z,y) for the boundary value problem
(3.1)—(3.2) with x(t) > ¢1(¢) and y(t) > ¢2(t) for all t € [0, T]. In this case, the pair of
functions (u,v) with u(t) = x(t) — q1(¢t) and v(t) = y(t) — q2(t), t € [0, T] represents a
positive solution (nonnegative on [0, 7] and positive on (0, 7)) of the boundary value
problem (S)—(BC). Indeed, by (3.1)—(3.2) and (3.3)—(3.4), we have

u®(t) = 2™ () — ¢ (t) = =Af (L [2(t) — (D], [y(t) — @2(8)]")
— Api(t) + Apl(t) = =Af(t,u(t),v(t), Vte(0,T),

V(1) =y ™ (t) — g (1) = —pg(t, [2(t) — (O], [y(t) — g2(0)]")
— ppa(t) + ,Up2( ) = —ng(t,u(t),v(t)), Vte(0,T),

and
u(0) =2(0) = a(0) = | u(s)dH(s)
w'(0) = 2(0) — ¢ (0) = 0,...,u"2(0) = 2"72(0) — "> (0) = 0,
u(T) = 2(T) —qi(T) = | u(s)dHs(s),

0
T

(0) = 2(0) = / o($)dK(s),

)
V' (0) = y'(0) — g5(0) = 0,..., 0™ 2(0) = y™2(0) — ¢" " (0) = 0,

o(T) = y(T) — gx(T) = / o(s)dK(s).

Therefore, in what follows, we shall investigate the boundary value problem (3.1)—
(3.2).
By using Lemma 2.2, the system (3.1)—(3.2) is equivalent to the system

= A/ Gt s) (f(s, [2(5) = u(3)], [y(s) = q2(8)]") + pals)) ds, ¢ € [0, 77,
/ Ga(t, s) (9(s, [2(s) = qa ()", [y(s) — q2()]") + pa(s)) ds, ¢ €0, T].

We consider the Banach space X = C([0,7]) with supremum norm || - || and the
Banach space Y = X x X with the norm [|(z,v)|y = ||z|| + ||y]|.- We also define the
cones

={reX, z(t)Zzn@)|l, Ytel0,T]}CX,
={ye X, y) Zn@Olyl, vt T} CX,

and P=P x P CY.
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For A\, u > 0, we define the operator Q) : P — Y by Q(z,y) = (Q1(x,y), Q2(x,y))
with

() (1) = A / Gr(t,5) (f (5. [2(5) — ()], [y(s) — a(3)]) + pa(s)) ds, 0 < £ < T,
/ Galt, )(g(s, [2(5) — a1 ()], [9(5) — qu(s)]*) + pa(s)) ds, 0 < t < T.

Lemma 3.1. If (H1)-(H2) hold, then the operator Q : P — P is a completely

continuous operator.

Proof. The operators ()1, Q)2 are well-defined. For every (z,y) € P, by Lemma 2.5 a),
we have Q1(z,y)(t) < oo and Qa(z,y)(t) < oo for all ¢t € [0,T]. Then, by Lemma 2.6
we obtain

Qu(z,y)(t) = n(t) sup Qi(z,y)(t),  Qa(z,y)(t) 2 12(t) sup Qa(z,y)(t),

t'€[0,T) t'€[0,T]

for all t € [0, T]. Therefore, we conclude

Qu(z, y)(t) = )@z, y)ll,  Qa(z,y)(t) = 1(B)|Q2(z, y)ll, Vi €[0,T],

and Q(x>y) = (Ql(x>y)>Q2(x>y)) Sy
By using standard arguments, we deduce that the operator @ : P — P is a

completely continuous operator (a compact operator, that is it maps bounded sets

into relatively compact sets, and continuous). O

Then (z,y) € P is a solution of problem (3.1)—(3.2) if and only if (x,y) is a fixed
point of operator ().

Theorem 3.2. Assume that (H1)—(H3) hold. Then there exist constants \g > 0 and
to > 0 such that for any X € (0, o] and p € (0, pol, the boundary value problem
(S)-(BC) has at least one positive solution.

Proof. Let § € (0,1) be fixed. From (H3), there exists Ry > 0 such that

f(tu,v) 2 0f(¢,0,0) >0, g(t,u,v) = dg(t,0,0) >0, (3.5)
for all t € [0,T] and u,v € [0, Ry.
We define
J(Ro) = _max . {f(t,u,0) +pi(0)} = max {6f(t,0,0) +pi(t)} >0,

g(RO) = max {g(ta u, U) + p2(t)} > Org%}%{ég(ta O> 0) +p2(t)} > O>

U4,V SU, U

T T
1 = / Jl(S)dS >0, c= / JQ(S)dS > 0,
0 0

R() RO
A= ——r >0, =2 >
"7 4 f(Ro) 1= esg(Ro)
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We will show that for any A € (0, \o] and u € (0, o], problem (3.1)-(3.2) has at

least one positive solution.

So, let A € (0, \o] and p € (0, 1] be arbitrary, but fixed for the moment. We
define the set U = {(z,y) € P, ||(x,y)||y < Ro}. We suppose that there exist (x,y) €
OU (||(x,y)|ly = Ro or ||z|| + ||ly]| = Ro) and v € (0,1) such that (z,y) = vQ(x,y) or
z=vi(z,y), y = vQa(z,y).

We deduce that

[#(t) = @)]" = x(t) —qu(t) < z(t) < Ro, it z(t) —qu(t) =0,
[z(t) —q1(t)]" =0, for x(t)—aq(t) <0, Vtel0,T],
[y(t) — @] =y(t) — @) Syt) < Ro, if y(t) —q(t) =0,
[y(t) — )" =0, for y(t) —q(t) <0, Vie[0,T].

Then, for all t € [0, 7], we obtain
z(t) = vQi(z,y)(t) < Qi(z,y)(t)
= A/O Gi(t,s) (f (s, [z(s) — ar(s)]", [y(s) — q2(s)]")

+pi(s)) ds < A/O Gi(t, 5)f (Ro)ds

S )\AT Jl(S)f(Ro)dS S )\()le(Ro) = R0/4

In a similar manner we conclude y(t) < uocag(Ro) = Ro/4, for all t € [0,T].

Hence [|lz| < Ro/4 and [ly|| < Ro/4. Then Ry = |[(z,y)lh = [lz] + [lyl <

% + % = @0, which is a contradiction.

Therefore, by Theorem 2.7 (with Q = P), we deduce that @) has a fixed point
(z,y) € UNP. That's (z,y) = Q(z,y) & = = Qi(z,y), y = Q2(z,y), and [[z]|+[|y|| <
Ry, with z(t) > v (t)||z]| > 0 and y(t) > v2(¢)||y|| > 0 for all ¢t € [0, T].

Moreover, by (3.5), we obtain
(t) = Q1(z,y)( / Gi(t,5) (f(s, [2(s) = ()", [y(s) — q2(s)]") + pa(s)) ds

> )\/o G1(t,s)(0f(s,0,0) + pi(s))ds > )\/0 Gi(t, s)pi(s)ds = qi(t) > 0,

for all t € (0,7). In a similar manner, we have y(t) > ¢2(t) > 0 for all t € (0, 7).

Let u(t) = z(t) — q1(t) > 0 and v(t) = y(t) — ¢g2(t) > 0 for all t € [0,7T], with
u(t) > 0, v(t) > 0on (0,7). Then, (u,v) is a positive solution of the boundary value
problem (S)—(BC). O
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4. EXAMPLES

Let T=1,n=3m=4, H(t) =%, Ko(t) = 3/2, and

0, tel0,1/3) 0, tel0,1/2)
B S i v
Then, we have fo s)dHy(s) = g s)ds, fo s)dHy(s) = %u (%) + %u (%)’
Jo v(s)dKy(s) = S0 (3), Jy v(s)dRa(s gfo s*v(s)ds.

We consider the system of differential equations

u®(t) + Af(tu(t),v(t) =0, te€(0,1), (50)
V@ () + pg(t,u(t), v(t)) =0, te(0,1), "
with the boundary conditions
u(0) = %fol su(s)ds, w'(0)=0, wu(l)=1iu(3)+3u(?), BC
{ v(0)=1v (%), v'(0)=2"(0)=0, v(1)= %fol s?v(s)ds. (BG)

Then, we obtain H;(1)— Hl(O) =1 <1, Hy(1)—Hy(0) = 2 < 1, K;(1) - K,(0) =
% < 1 and Kg(l) KQ(O) = < 1.

2
We also deduce

1| 2(1—8)?—(t—s)? 0<s<t<I,
gl(t7s>:_ ) 2

2 t(l—S), §t§8§17

1] B1—s2—(t—5)3 0<s<t<l,
mits) = 3( )3( )

6| t°(1—s)°, 0<t<s<1,

Ay = 81, Ay = 32, T = %, To 13, hi(s) = s(1 — s)2, hyo(s) = %s(l - s5)3,
Ti(s) = Bs(1 — 5)2, Jo(s) = }—55(1 — )% s € [0,1], o1 = [, Ji(s)ds = 12 ¢, =
fol‘]( )dS =

260
Example 1. We consider the functions

ft,u,v) = (u—1)(u—2) +cos(3v), g¢g(t,u,v)=(v—2)(v—3)+sin(2u),

fort € [0,1] and u, v > 0. There exists My > 0 (Mo = 5) such that f(¢,u,v)+M, > 0,
g(t,u,v) + My >0, (p1(t) = p2(t) = Mo, Vit € [0,1]) for all t € [0, 1] and u,v > 0.
Let5:i<1andR0:%. Then

Fltow0) > F(50,0) = >, g(tu,0) > 8g(t,0,0) = ; vte[0,1],uve0,1/2]

Za
Besides
f(Fo) = 0<t<1.0%0< Ry Ut u,v) +pi()} = 425,
g(Ry) = max {g(t u,v) + po(t)} = 7.25 +sin 1.

SV LU W, U
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Then \g = g5 ~ 0.12338594 and o = g sy ~ 0-23626911. By Theorem
3.2, for any A € (0, \o] and p € (0, o], we conclude that problem (Sy) — (BCy) has a
positive solution (u,v) with [|(u,v)|| < 1/2.

Example 2. We consider the functions

f(t,u,v) =03 + cos(2u),  g(t,u,v) =u'/* + cos(3v), te[0,1], wu,v>0.

There exists My > 0 (My = 1) such that f(¢t,u,v)+ My > 0, g(t,u,v) >0, (pi(t) =
pa(t) = My, Vtel0,1]) forall t € [0,1] and u,v > 0.
Let5:%<1andR0:§. Then

Fltou,v) > 0F(£.0,0) = % g(t,u,0) > 59(t,0,0) = % vte[0,1], uvel0,r/9].

Besides f(Ry) = = +2, g(Ro) = (£)"" +2. Then Ao ~ 0.15364044, 11 ~ 0.48206348.

By Theorem 3.2, for any A € (0, Ao] and u € (0, po], we deduce that problem
(So) — (BCp) has a positive solution (u,v) with ||(u,v)| < /9.
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