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differential equations and inclusions with nonlocal and integral boundary conditions. Some new

existence and uniqueness results are obtained by using fixed point theorems. Illustrative examples

are also presented.
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1. INTRODUCTION

Fractional differential equations have attracted the attention of many researchers

in a variety of directions, due to the development and applications in many fields such

as engineering, mathematics, physics, chemistry, etc. (see [12, 18, 19, 20]). Different

aspects of fractional differential equations are studied and being developed, but one

of the most important area of research in the field of fractional order differential

equations is the theory of existence and uniqueness of solutions of nonlinear fractional

order differential equations. The recent development of the subject can be found in

a series of papers [1, 2, 3, 4, 5, 7, 9, 10] and the references therein.

Here we refer to some boundary value problems which motivated us for the present

work. By the help of fixed-point theorems, in [22] Tariboon et al. investigated the

existence and uniqueness of solutions for a new class of fractional boundary value
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problems involving three-point nonlocal Riemann-Liouville integral boundary condi-

tions of the form:






Dαx(t) = f(t, x(t)), 1 < α ≤ 2, 0 < t < T,

x(η) = 0, Ipx(T ) ≡

∫ T

0

(T − s)p−1

Γ(p)
x(s) ds = 0,

(1.1)

whereDα denotes the Riemann-Liouville fractional derivative of order α, f ∈ C([0, T ]×

R,R) and η ∈ (0, T ) is a given constant. Note that in problem (1.1) instead of the

value x(0), which appeared usually in references, there exists the value x(η) for some

η ∈ (0, T ) and an “average type” boundary condition Ipx(T ) = 0 was introduced.

Ntouyas, in [14], studied the existence and uniqueness of solutions for a boundary

value problem of nonlinear fractional differential equations of order q ∈ (1, 2] with

nonlocal and integral boundary conditions given by:






cDqx(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

x(0) = x0 + g(x), x(1) = αIpx(θ), 0 < θ < 1,
(1.2)

where cDq denotes the Caputo fractional derivative of order q, f : [0, 1]×R → R is a

given continuous function, g : C([0, 1],R) → R, α ∈ R is such that α 6= Γ(p+2)/θp+1,

Γ is the Euler gamma function and Ip is the Riemann-Liouville fractional integral of

order p.

Nonlocal conditions can be more useful than the standard initial condition to

describe some physical phenomena. For example, g(x) may be given by g(x) =
∑m

i=1 cix(ti) where ci, i = 1, . . . , m, are given constants and 0 < t1 < · · · < tm ≤ T .

For recent papers on nonlocal fractional boundary value problems, the interested

reader is referred to [6], [8], [21], [23] and the references cited therein.

In this paper, we discuss the existence and uniqueness of solutions for a boundary

value problem of nonlinear fractional differential equations of order q ∈ (1, 2] with

nonlocal and integral boundary conditions given by:
{

cDqx(t) = f(t, x(t)), 0 ≤ t ≤ T, 1 < q ≤ 2,

x(η) = g(x), AIpx(T ) +Bx(ξ) = c, 0 < η < ξ < T,
(1.3)

where cDq denotes the Caputo fractional derivative of order q, f : [0, T ] × R → R,

g : C([0, T ],R) → R are given continuous functions, Ip is the Riemann-Liouville

fractional integral of order p and A,B, c are real constants.

In Section 3 we give some sufficient conditions for the existence and uniqueness

of solutions and for the existence of at least one solution of problem (1.3). The first

result is based on Banach’s contraction principle and the second on a fixed point

theorem due to D. O’Regan. Concrete examples are also provided to illustrate the

possible applications of the established analytical results.
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In Section 4, we extend the results to cover the multi-valued case, considering

the following boundary value problem for fractional order differential inclusions with

nonlocal and fractional integral boundary conditions:
{

cDqx(t) ∈ F (t, x(t)), 0 ≤ t ≤ T, 1 < q ≤ 2,

x(η) = g(x), AIpx(T ) +Bx(ξ) = c,
(1.4)

where cDq denotes the Caputo fractional derivative of order q and F : [0, T ] × R →

P(R) is a multivalued map, P(R) is the family of all nonempty subsets of R.

We give an existence result for the problem (1.4) in the case when the right hand

side is convex valued by using the nonlinear alternative for contractive maps.

The paper is organized as follows: in Section 2 we recall some preliminary facts

that we need in the sequel, in Section 3 we prove our results for single-valued case

and in Section 4 our results for multi-valued case.

2. PRELIMINARIES

Let us recall some basic definitions of fractional calculus [12, 18, 20].

Definition 2.1. For at least n-times differentiable function g : [0,∞) → R, the

Caputo derivative of fractional order q is defined as

cDqg(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)

(t− s)1−q
ds, q > 0,

provided the right hand side is pointwise defined on (0,∞).

Lemma 2.3. For q > 0, the general solution of the fractional differential equation
cDqx(t) = 0 is given by

x(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [q] + 1).

In view of Lemma 2.3, it follows that

Iq cDqx(t) = x(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1, (2.1)

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [q] + 1).

To define the solution for the problem (1.3), we find the solution for its associated

linear problem.
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Lemma 2.4. Let η 6= T
p+1

. For a given y ∈ C([0, T ],R), the problem

{

cDqx(t) = y(t), 1 < q ≤ 2, t ∈ [0, T ],

x(η) = y0, AIpx(T ) +Bx(ξ) = c, y0 ∈ R, 0 < η < ξ < T,
(2.2)

is equivalent to an integral equation:

x(t) = Iqy(t) +
t− η

Ω
[c−AIp+qy(T ) −BIqy(ξ)] (2.3)

+
1

Ω

[ AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)
]

Iqy(η)

−
1

Ω

[ AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)
]

y0, t ∈ [0, T ],

where

Ω =
AT p

Γ(p+ 1)

( T

p+ 1
− η
)

+B(ξ − η).

Proof. For some constants c1, c2 ∈ R, we have [12]

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
y(s)ds+ c1t+ c2, t ∈ [0, T ]. (2.4)

Using the Riemann-Liouville integral of order p for (2.4), we have

Ipx(t) =

∫ t

0

(t− s)p−1

Γ(p)

[
∫ s

0

(s− r)q−1

Γ(q)
y(r)dr + c1s+ c2

]

ds

=
1

Γ(p)

1

Γ(q)

∫ t

0

∫ s

0

(t− s)p−1(s− r)q−1y(r)drds+ c1
tp+1

Γ(p+ 2)
+ c2

tp

Γ(p+ 1)

= IpIqy(t) + c1
tp+1

Γ(p+ 2)
+ c2

tp

Γ(p+ 1)

= Ip+qy(t) + c1
tp+1

Γ(p+ 2)
+ c2

tp

Γ(p+ 1)
.

Applying the boundary conditions, we get the system

c1η + c2 = y0 − Iqy(η)

( AT p+1

Γ(p+ 2)
+Bξ

)

c1 +
( AT p

Γ(p+ 1)
+B

)

c2 = c− AIp+qy(T ) − BIqy(ξ),

from which we get

c1 =
1

Ω

{

c−AIp+qy(T )− BIqy(ξ) −
( AT p

Γ(p+ 1)
+B

)

(y0 − Iqy(η))

}

,

c2 =
1

Ω

{

( AT p+1

Γ(p+ 2)
+Bη

)

(y0 − Iqy(η))− η
(

c− AIp+qy(T ) − BIqy(ξ)
)

}

.

Substituting into (2.4) the values of c1 and c2 gives (2.3). Conversely, applying the

operator cDq on (2.3) and taking into account the fact that cDβIβf(t) = f(t), it
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follows that (cDq)x(t) = y(t). From (2.3), it is easy to verify that the boundary con-

ditions x(η) = y0, AI
px(T )+Bx(ξ) = c are satisfied. This establishes the equivalence

between (2.2) and (2.3).

3. EXISTENCE RESULTS FOR THE SINGLE-VALUED CASE

We denote by C = C([0, T ],R) the Banach space of all continuous functions from

[0, T ] → R endowed with a topology of uniform convergence with the norm defined

by ‖x‖ = sup{|x(t)| : t ∈ [0, T ]}.

In the forthcoming analysis we assume that η 6= T
p+1

, which implies that Ω 6= 0.

In view of Lemma 2.4, we define an operator Q : C → C by

(Qx)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds (3.1)

+
t− η

Ω

[

c− A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
f(s, x(s))ds

− B

∫ ξ

0

(ξ − s)q−1

Γ(q)
f(s, x(s))ds

]

+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
f(s, x(s))ds

−
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

g(x), t ∈ [0, T ].

For convenience, we set:

k0 =
1

|Ω|

[

|A|T p+1(p+ 2)

Γ(p+ 2)
+ |B|(T + η)

]

, (3.2)

and

p0 =
T q

Γ(q + 1)
+
T + η

|Ω|

[

|A|T p+q

Γ(p+ q + 1)
+

|B|ξq

Γ(q + 1)

]

+ k0
ηq

Γ(q + 1)
. (3.3)

Theorem 3.1. Let f : [0, T ] × R → R and g : C([0, T ],R) → R be continuous

functions. Assume that:

(A1) |f(t, x) − f(t, y)| ≤ L|x− y|, ∀t ∈ [0, T ], L > 0, x, y ∈ R;

(A2) |g(u) − g(v)| ≤ ℓ‖u− v‖, ℓ < k−1
0 for all u, v ∈ C([0, T ],R);

(A3) γ := Lp0 + ℓk0 < 1.

Then the boundary value problem (1.3) has a unique solution.

Proof. For x, y ∈ C and for each t ∈ [0, T ], from the definition of Q, see (3.1), and

assumptions (A1) and (A2), we obtain

|(Qx)(t) − (Qy)(t)|
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≤

∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s)) − f(s, y(s))|ds

+
|t− η||A|

|Ω|

∫ T

0

(T − s)p+q−1

Γ(p+ q)
|f(s, x(s)) − f(s, y(s))|ds

+
|t− η||B|

|Ω|

∫ ξ

0

(ξ − s)q−1

Γ(q)
|f(s, x(s)) − f(s, y(s))|ds

+
1

|Ω|

∣

∣

∣

∣

∣

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

∣

∣

∣

∣

∣

∫ η

0

(η − s)q−1

Γ(q)
|f(s, x(s)) − f(s, y(s))|ds

+
1

|Ω|

∣

∣

∣

∣

∣

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

∣

∣

∣

∣

∣

|g(x) − g(y)|

≤ L‖x− y‖

[

∫ t

0

(t− s)q−1

Γ(q)
ds+

(T + η)|A|

|Ω|

∫ T

0

(T − s)p+q−1

Γ(p+ q)
ds

+
(T + η)|B|

|Ω|

∫ ξ

0

(ξ − s)q−1

Γ(q)
ds

+
1

|Ω|

(

|A|T p+1(p+ 2)

Γ(p+ 2)
+ |B|(T + η)

)

∫ η

0

(η − s)q−1

Γ(q)
ds

]

+
1

|Ω|

[

|A|T p+1(p+ 2)

Γ(p+ 2)
+ |B|(T + η)

]

ℓ‖x− y‖

≤ L‖x− y‖

{

T q

Γ(q + 1)
+
T + η

|Ω|

[

|A|T p+q

Γ(p+ q + 1)
+

|B|ξq

Γ(q + 1)

]

+
1

|Ω|

(

|A|T p+1(p+ 2)

Γ(p+ 2)
+ |B|(T + η)

)

ηq

Γ(q + 1)

}

+
1

|Ω|

[

|A|T p+1(p+ 2)

Γ(p+ 2)
+ |B|(T + η)

]

ℓ‖x− y‖

= (Lp0 + ℓk0)‖x− y‖.

Hence

‖Qx−Qy‖ ≤ γ‖x− y‖.

As γ < 1, by (A3), F is a contraction map from the Banach space C into itself. Thus,

the conclusion of the theorem follows by the contraction mapping principle (Banach

fixed point theorem).

Example 3.2. Consider the following fractional boundary value problem














cD3/2x(t) =
1

(t+ 3)2

|x|

1 + |x|
+ 1 + sin2 t, t ∈ [0, 1],

x

(

1

4

)

=
1

5
x

(

1

2

)

,
2

3
I

5

2x(1) +
3

5
x

(

3

4

)

=
7

2
.

(3.4)
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Here, q = 3/2, T = 1, p = 5/2, η = 1/4, A = 2/3, B = 3/5, ξ = 3/4, c = 7/2,

f(t, x) = (1/(t+ 3)2)(|x|/(1 + |x|)) + 1 + sin2 t and g(x) = (1/5)x. It is easy to verify

that Ω ≈ 0.307164 6= 0, k0 ≈ 3.281355 and p0 ≈ 2.366861. As |f(t, x) − f(t, y)| ≤

(1/9)|x − y| and |g(x) − g(y)| ≤ (1/5)|x − y| therefore, (A1) and (A2) are satisfied

with L = 1/9 and ℓ = 1/5 such that ℓk0 ≈ 0.656271 < 1. Since γ ≈ 0.919256 < 1, by

the conclusion of Theorem 3.1, the boundary value problem (3.4) has a solution on

[0, 1].

Next, we introduce the fixed point theorem which was established by O’Regan in

[15]. This theorem will be adopted to prove the next main result.

Lemma 3.3. Let U be an open set in a closed, convex set C of a Banach space E.

Assume 0 ∈ U . Also assume that F(Ū) is bounded and that F : Ū → C is given by

F = F1 + F2, in which F1 : Ū → E is continuous and completely continuous and

F2 : Ū → E is a nonlinear contraction (i.e., there exists a continuous nondecreasing

function ϑ : [0,∞) → [0,∞) satisfying ϑ(z) < z for z > 0, such that ‖F2(x) −

F2(y)‖ ≤ ϑ(‖x− y‖) for all x, y ∈ Ū). Then, either

(C1) F has a fixed point u ∈ Ū ; or

(C2) there exist a point u ∈ ∂U and κ ∈ (0, 1) with u = κF(u), where Ū and ∂U ,

respectively, represent the closure and boundary of U on C.

In the sequel, we will use Lemma 3.3 by taking C to be E. For more details of

such fixed point theorems, we refer a paper [16] by Petryshyn.

Let

Ωr = {x ∈ C([0, T ],R) : ‖x‖ < r}.

Theorem 3.4. Let f : [0, T ] × R → R be a continuous function. Suppose that (A2)

holds. In addition, we assume that:

(A4) g(0) = 0;

(A5) there exists a nonnegative function p ∈ C([0, T ],R) and a nondecreasing function

ψ : [0,∞) → (0,∞) such that

|f(t, u)| ≤ p(t)ψ(|u|) for any (t, u) ∈ [0, T ] × R;

(A6) supr∈(0,∞)
r

p0‖p‖ψ(r)+ T+η

|Ω|
|c|
> 1

1−k0ℓ
, where p0 and k0 are defined in (3.3) and (3.2)

respectively.

Then the boundary value problem (1.3) has at least one solution on [0, T ].

Proof. Consider the operator Q : C → C as defined in (3.1). We decompose Q into a

sum of two operators

(Qx)(t) = (Q1x)(t) + (Q2x)(t), t ∈ [0, T ], (3.5)
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where

(Q1x)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds (3.6)

+
t− η

Ω

[

c− A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
f(s, x(s))ds

− B

∫ ξ

0

(ξ − s)q−1

Γ(q)
f(s, x(s))ds

]

+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
f(s, x(s))ds,

and

(Q2x)(t) = −
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

g(x), t ∈ [0, T ]. (3.7)

From (A6) there exists a number r0 > 0 such that

r0

p0‖p‖ψ(r0) + T+η
|Ω|

|c|
>

1

1 − k0ℓ
. (3.8)

We shall prove that the operators Q1 and Q2 satisfy the conditions in Lemma 3.3.

Step 1. The operator Q2 : Ω̄r0 → C([0, T ],R) is contractive. Indeed, we have:

|(Q2x)(t) − (Q2y)(t)| ≤
1

|Ω|

∣

∣

∣

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)
∣

∣

∣
|g(x) − g(y)|

≤ k0ℓ‖x− y‖,

and hence by (A2), Q2 is contractive.

Step 2. The operator Q1 is continuous and completely continuous. We first show

that Q1(Ω̄r0) is bounded. For any x ∈ Ω̄r0 we have

‖Q1x‖ ≤

∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds

+
|t− η|

|Ω|

[

|c| + |A|

∫ T

0

(T − s)p+q−1

Γ(p+ q)
|f(s, x(s))|ds

+ |B|

∫ ξ

0

(ξ − s)q−1

Γ(q)
|f(s, x(s))|ds

]

+
1

|Ω|

(

|A|T p+1(p+ 2)

Γ(p+ 2)
+ |B|(T + η)

)

∫ η

0

(η − s)q−1

Γ(q)
|f(s, x(s))|ds

]

≤ ‖p‖ψ(r0)

{

∫ t

0

(t− s)q−1

Γ(q)
ds+

T + η

|Ω|

[

|c| + |A|

∫ T

0

(T − s)p+q−1

Γ(p+ q)
ds

+ |B|

∫ ξ

0

(ξ − s)q−1

Γ(q)
ds

]
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+
1

|Ω|

(

|A|T p+1(p+ 2)

Γ(p+ 2)
+ |B|(T + η)

)

∫ η

0

(η − s)q−1

Γ(q)
ds

}

≤ p0‖p‖ψ(r0) +
T + η

|Ω|
|c|.

This proves that Q1(Ω̄r0) is uniformly bounded.

In addition for any t1, t2 ∈ [0, T ], t1 < t2, we have:

|(Q1x)(t2) − (Q1x)(t1)|

≤

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]

Γ(q)
|f(s, x(s))|ds+

∫ t2

t1

(t2 − s)q−1

Γ(q)
|f(s, x(s))|ds

+
|t2 − t1|

|Ω|

{

|c| + |A|

∫ T

0

(T − s)p+q−1

Γ(p+ q)
|f(s, x(s))|ds

+ |B|

∫ ξ

0

(ξ − s)q−1

Γ(q)
|f(s, x(s))|ds

}

+
|t2 − t1|

|Ω|

(

|A|T p

Γ(p+ 1)
+ |B|

)

∫ η

0

(η − s)q−1

Γ(q)
|f(s, x(s))|ds

≤
‖p‖ψ(r0)

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]ds+
‖p‖ψ(r0)

Γ(q)

∫ t2

t1

(t2 − s)q−1ds

+
‖p‖ψ(r0)|t2 − t1|

|Ω|

{

|c| + |A|
T p+q

Γ(p+ q + 1)
+ |B|

ξq

Γ(q + 1)

+

(

|A|T p

Γ(p+ 1)
+ |B|

)

ηq

Γ(q + 1)

}

,

which is independent of x and tends to zero as t2−t1 → 0. Thus, Q1 is equicontinuous.

Hence, by the Arzelà-Ascoli Theorem, Q1(Ω̄r0) is a relatively compact set. Now, let

xn ⊂ Ω̄r0 with ‖xn − x‖ → 0. Then the limit |xn(t) − x(t)| → 0 is uniformly valid

on [0, T ]. From the uniform continuity of f(t, x) on the compact set [0, T ]× [−r0, r0],

it follows that ‖f(t, xn(t)) − f(t, x(t))‖ → 0 is uniformly valid on [0, T ]. Hence

‖Q1xn − Q1x‖ → 0 as n → ∞ which proves the continuity of Q1. Hence Step 2 is

completely proved.

Step 3. The set F (Ω̄r0) is bounded. (A2) and (A4) imply that

‖Q2(x)‖ ≤ k0ℓr0,

for any x ∈ Ω̄r0 . This, with the boundedness of the set Q1(Ω̄r0), implies that the set

Q(Ω̄r0) is bounded.

Step 4. Finally, we show that the case (C2) in Lemma 3.3 does not occur. To

this end, we suppose that (C2) holds. Then, we have that there exist λ ∈ (0, 1) and
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x ∈ ∂Ωr0 such that x = λQx. So, we have ‖x‖ = r0 and

x(t) = λ(Qx)(t)

= λ

{

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds

+
t− η

Ω

[

c− A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
f(s, x(s))ds− B

∫ ξ

0

(ξ − s)q−1

Γ(q)
f(s, x(s))ds

]

+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
f(s, x(s))ds

−
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

g(x)

}

, t ∈ [0, T ].

With hypotheses (A4)-(A6), and similar computations, as in Step 2, we have

|x(t)| ≤ ψ(‖x‖)‖p‖p0 +
T + η

|Ω|
|c| + k0ℓ‖x‖.

Taking the supremum over all t gives

‖x‖ ≤ ψ(‖x‖)‖p‖p0 +
T + η

|Ω|
|c| + k0ℓ‖x‖,

which implies
r0

p0‖p‖ψ(r0) + T+η
|Ω|

|c|
≤

1

1 − k0ℓ
,

contradicting (3.8). Consequently, we have proved that the operators Q1 and Q2

satisfy all the conditions in Lemma 3.3. Hence, the operator Q has at least one fixed

point x ∈ Ω̄r0 , which is the solution of the boundary value problem (1.3). The proof

is completed.

Example 3.5. Consider the following fractional boundary value problem


















cD3/2x(t) =
t

20

(

|x| +
1

1 + |x|

)

, t ∈ [0, 1],

x

(

1

3

)

=
1

19
sin

(

x

(

1

2

))

,
4

5
I5/2x(1) +

3

4
x

(

2

3

)

=
1

25
.

(3.9)

Here q = 3/2, T = 1, p = 5/2, η = 1/3, ξ = 2/3, A = 4/5, B = 3/4, c = 1/25,

f(t, x) = (t/20)(|x| + (1/(1 + |x|))) and g(x) = (1/19) sinx with g(0) = 0. Since

|f(t, x)| = |(t/20)(|x| + (1/(1 + |x|)))| ≤ (t/20)(x2 + |x| + 1), we choose p(t) = t/20

and ψ(|x|) = x2 + |x| + 1. It is easy to verify that Ω ≈ 0.238537 6= 0, k0 ≈ 4.840962,

p0 ≈ 3.356013. Since |g(x) − g(y)| ≤ (1/19)|x − y|, we have ℓ = (1/19) such that

ℓk0 ≈ 0.254787 < 1. We find that

sup
r∈(0,∞)

r

p0‖p‖ψ(r) + T+η
|Ω|

|c|
≈ 1.469846 > (1/(1 − k0ℓ)) ≈ 1.341899.

Hence, by Theorem 3.4, the boundary value problem (3.9) has a solution on [0, 1].
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4. EXISTENCE RESULTS FOR THE MULTI-VALUED CASE

In this section, we deal with the problem (1.4). Let L1([0, T ],R) be the Banach

space of measurable functions x : [0, T ] → R which are Lebesgue integrable with the

norm ‖x‖L1 =
∫ T

0
|x(t)|dt. In the following, AC1([0, T ],R) will denote the space of

functions x : [0, T ] → R that are absolutely continuous and whose first derivatives

are absolutely continuous.

Definition 4.1. A function x ∈ AC1([0, T ],R) is a solution of the problem (1.4) if

x(η) = g(x), AIpx(T ) +Bx(ξ) = c, and there exists a function f ∈ L1([0, T ],R) such

that f(t) ∈ F (t, x(t)) a.e. on [0, T ] and

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds (4.1)

+
t− η

Ω

[

c− A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
f(s)ds− B

∫ ξ

0

(ξ − s)q−1

Γ(q)
f(s)ds

]

+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
f(s)ds

−
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

g(x), t ∈ [0, T ].

To prove our main result in this section we will use the following form of the

Nonlinear Alternative for contractive maps [17, Corollary 3.8].

Lemma 4.2. Let X be a Banach space, and D a bounded neighborhood of 0 ∈ X. Let

Z1 : X → Pcp,c(X) (here Pcp,c(X) denotes the family of all nonempty, compact and

convex subsets of X) and Z2 : D̄ → Pcp,c(X) two multi-valued operators satisfying

(a) Z1 is contraction, and

(b) Z2 is upper semicontinuous (u.s.c) and compact.

Then, if G = Z1 + Z2, either

(i) G has a fixed point in D̄, or

(ii) there is a point u ∈ ∂D and λ ∈ (0, 1) with u ∈ λG(u).

Definition 4.3. A multivalued map F : [0, T ]×R → P(R) is said to be Carathéodory

if

(i) t 7−→ F (t, x) is measurable for each x ∈ R;

(ii) x 7−→ F (t, x) is upper semicontinuous for almost all t ∈ [0, T ];

Further a Carathéodory function F is called L1-Carathéodory if

(iii) for each α > 0, there exists ϕα ∈ L1([0, T ],R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕα(t)
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for all ‖x‖ ≤ α and for a.e. t ∈ [0, T ].

For each y ∈ C([0, T ],R), define the set of selections of F by

SF,y := {v ∈ L1([0, T ],R) : v(t) ∈ F (t, y(t)) for a.e. t ∈ [0, T ]}.

The following lemma will be also used in the sequel.

Lemma 4.4 ([13]). Let X be a Banach space. Let F : [0, T ] × X → Pcp,c(X) be

an L1-Carathéodory multivalued map and let Θ be a linear continuous mapping from

L1([0, T ], X) to C([0, T ], X). Then the operator

Θ ◦ SF : C([0, T ], X) → Pcp,c(C([0, T ], X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x)

is a closed graph operator in C([0, T ], X)× C([0, T ], X).

Theorem 4.5. Assume that (A2) holds. In addition we suppose that:

(H1) F : [0, T ] × R → Pcp,c(R) is L1-Carathéodory multivalued map;

(H2) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a

function p ∈ C([0, T ],R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖) for each (t, x) ∈ [0, T ] × R;

and

(H3) there exists a number M > 0 such that

(1 − k0ℓ)M

p0‖p‖ψ(M) + T+η
|Ω|

|c|
> 1, (4.2)

where p0 and k0 are defined in (3.3) and (3.2), respectively.

Then the boundary value problem (1.4) has at least one solution on [0, T ].

Proof. Transform the problem (1.4) into a fixed point problem. Consider the operator

N : C([0, T ],R) −→ P(C([0, T ],R)) defined by:

N (x) = {h ∈ C([0, T ],R) :

h(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds

+
t− η

Ω

[

c− A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
f(s)ds

−B

∫ ξ

0

(ξ − s)q−1

Γ(q)
f(s)ds

]

+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
f(s)ds
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−
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

g(x)

}

,

for f ∈ SF,x.

Now, we define two operators as follows: A : C([0, T ],R) −→ C([0, T ],R) by

Ax(t) = −
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

g(x), (4.3)

and the multi-valued operator B : C([0, T ],R) −→ P(C([0, T ],R)) by

B(x) =

{

h ∈ C([0, T ],R) :

h(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds

+
t− η

Ω

[

c−A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
f(s)ds−B

∫ ξ

0

(ξ − s)q−1

Γ(q)
f(s)ds

]

+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
f(s)ds

}

,

for f ∈ SF,x. Then N = A + B. We shall show that the operators A and B satisfy

all the conditions of Theorem 4.2 on [0, T ]. For better readability, we break the proof

into a sequence of steps and claims.

Step 1: We show that A is a contraction on C([0, T ],R). The proof is similar to the

one for the operator Q2 in Step 2 of Theorem 3.4.

Step 2: We shall show that the operator B is compact and convex valued and it is

completely continuous. This will be given in several claims.

Claim I: B maps bounded sets into bounded sets in C([0, T ],R). To see this, let

Bρ = {x ∈ C([0, T ],R) : ‖x‖ ≤ ρ} be a bounded set in C([0, T ],R). Then, for each

h ∈ B(x), x ∈ Bρ, there exists f ∈ SF,x such that

h(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds

+
t− η

Ω

[

c−A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
f(s)ds− B

∫ ξ

0

(ξ − s)q−1

Γ(q)
f(s)ds

]

+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
f(s)ds.

Then for t ∈ [0, T ] we have

|h(t)| ≤ ‖p‖ψ(‖x‖)

{

∫ t

0

(t− s)q−1

Γ(q)
ds+

T + η

|Ω|

[

|A|

∫ T

0

(T − s)p+q−1

Γ(p+ q)
ds
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+ |B|

∫ ξ

0

(ξ − s)q−1

Γ(q)
ds

]

+
1

|Ω|

(

|A|T p+1(p+ 2)

Γ(p+ 2)
+ |B|(T + η)

)

∫ η

0

(η − s)q−1

Γ(q)
ds

}

+
T + η

|Ω|
|c|.

Thus,

‖h‖ ≤ ‖p‖ψ(ρ)p0 +
T + η

|Ω|
|c|.

Claim II: Next we show that B maps bounded sets into equicontinuous sets. Let

t1, t2 ∈ [0, T ] with t1 < t2 and x ∈ Bρ. For each h ∈ B(x), we obtain

|h(t2) − h(t1)|

≤
‖p‖ψ(ρ)

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]ds+
‖p‖ψ(ρ)

Γ(q)

∫ t2

t1

(t2 − s)q−1ds

+
‖p‖ψ(ρ)(t2 − t1)

|Ω|

{

|c| + |A|
T p+q

Γ(p+ q + 1)
+ |B|

ξq

Γ(q + 1)

+

(

|A|T p

Γ(p+ 1)
+ |B|

)

ηq

Γ(q + 1)

}

.

Obviously the right hand side of the above inequality tends to zero independently

of x ∈ Bρ as t2 − t1 → 0. Therefore it follows by the Arzelà-Ascoli theorem that

B : C([0, T ],R) → P(C([0, T ],R)) is completely continuous.

Claim III: It is well known [11, Proposition 3.1] that if an operator is completely

continuous and has a closed graph, then it is u.s.c. Thus, we prove that B has a

closed graph. Let xn → x∗, hn ∈ B(xn) and hn → h∗. Then we need to show that

h∗ ∈ B(x∗). Associated with hn ∈ B(xn), there exists fn ∈ SF,xn
such that for each

t ∈ [0, T ],

hn(t) =

∫ t

0

(t− s)q−1

Γ(q)
fn(s)ds

+
t− η

Ω

[

c−A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
fn(s)ds− B

∫ ξ

0

(ξ − s)q−1

Γ(q)
fn(s)ds

]

+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p + 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
fn(s)ds.

Thus, it suffices to show that there exists f∗ ∈ SF,x∗ such that for each t ∈ [0, T ],

h∗(t) =

∫ t

0

(t− s)q−1

Γ(q)
f∗(s)ds

+
t− η

Ω

[

c−A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
f∗(s)ds− B

∫ ξ

0

(ξ − s)q−1

Γ(q)
f∗(s)ds

]
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+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
f∗(s)ds.

Let us consider the linear operator Θ : L1([0, T ],R) → C([0, T ],R) given by

f 7→ Θ(f)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds

+
t− η

Ω

[

c−A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
f(s)ds− B

∫ ξ

0

(ξ − s)q−1

Γ(q)
f(s)ds

]

+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
f(s)ds.

Observe that

‖hn(t) − h∗(t)‖

=

∥

∥

∥

∥

∥

∫ t

0

(t− s)q−1

Γ(q)
(fn(s) − f∗(s))ds

+
t− η

Ω

[

c−A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
(fn(s) − f∗(s))ds

−B

∫ ξ

0

(ξ − s)q−1

Γ(q)
(fn(s) − f∗(s))ds

]

+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
(fn(s) − f∗(s))ds

∥

∥

∥

∥

∥

→ 0,

as n → ∞. Thus, it follows by Lemma 4.4 that Θ ◦ SF is a closed graph operator.

Further, we have hn(t) ∈ Θ(SF,xn
). Since xn → x∗, therefore, we have

h∗(t) =

∫ t

0

(t− s)q−1

Γ(q)
f∗(s)ds

+
t− η

Ω

[

c−A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
f∗(s)ds− B

∫ ξ

0

(ξ − s)q−1

Γ(q)
f∗(s)ds

]

+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
f∗(s)ds,

for some f∗ ∈ SF,x∗. Hence B has a closed graph (and therefore has closed values).

As a result B is compact valued. Therefore the operators A and B satisfy all the

conditions of Theorem 4.2 and hence an application of it yields that either condition

(i) or condition (ii) holds. We show that the conclusion (ii) is not possible. If x ∈

λA(x) + λB(x) for λ ∈ (0, 1), then there exists f ∈ SF,x such that

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds
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+
t− η

Ω

[

c− A

∫ T

0

(T − s)p+q−1

Γ(p+ q)
f(s)ds− B

∫ ξ

0

(ξ − s)q−1

Γ(q)
f(s)ds

]

+
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

∫ η

0

(η − s)q−1

Γ(q)
f(s)ds

−
1

Ω

[

AT p

Γ(p+ 1)

(

t−
T

p+ 1

)

+B(t− η)

]

g(x), t ∈ [0, T ].

Consequently, we have

|x(t)| ≤ ‖p‖ψ(‖x‖)

{

∫ t

0

(t− s)q−1

Γ(q)
ds+

T + η

|Ω|

[

|A|

∫ T

0

(T − s)p+q−1

Γ(p+ q)
ds

+ |B|

∫ ξ

0

(ξ − s)q−1

Γ(q)
ds

]

+
1

|Ω|

(

|A|T p+1(p+ 2)

Γ(p+ 2)
+ |B|(T + η)

)

∫ η

0

(η − s)q−1

Γ(q)
ds

}

+
T + η

|Ω|
|c|

+
1

|Ω|

(

|A|T p+1(p+ 2)

Γ(p+ 2)
+ |B|(T + η)

)

ℓ‖x‖

≤ p0‖p‖ψ(‖x‖) +
T + η

|Ω|
|c| + k0ℓ‖x‖,

or taking the supremum over t,

‖x‖ ≤ p0‖p‖ψ(‖x‖) +
T + η

|Ω|
|c| + k0ℓ‖x‖.

If condition (ii) of Theorem 4.2 holds, then there exists λ ∈ (0, 1) and x ∈ ∂BM

with x = λN (x). Then, x is a solution of (3.5) with ‖x‖ = M . Now, the previous

inequality implies
(1 − k0ℓ)M

p0‖p‖ψ(M) + T+η
|Ω|

|c|
≤ 1

which contradicts (4.2). Hence, N has a fixed point in [0, T ] by Theorem 4.2, and

consequently the boundary value problem (1.4) has a solution. This completes the

proof.

Remark 4.6. We note that the following boundary value problem
{

cDqx(t) = f(t, x(t)), 0 ≤ t ≤ T, 1 < q ≤ 2,

x(η) = g(x), AIpx(ξ) +Bx(T ) = c, 0 < η < ξ < T,
(4.4)

can be treated in a similar way.

Example 4.7. Consider the following fractional boundary value problem






cD3/2x(t) ∈ F (t, x), t ∈ [0, 1],

x

(

1

2

)

=
|x(8/9)|

16(1 + |x(8/9)|)
,

3

8
I5/2x(1) +

5

6
x

(

3

4

)

=
1

32
.

(4.5)
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Here q = 3/2, T = 1, p = 5/2, η = 1/2, ξ = 3/4, A = 3/8, B = 5/6, c = 1/32,

g(x) = (|x|/(16(1 + |x|))) and F : [0, 1] × R → P(R) is a multivalued map given by

x→ F (t, x) =

[

t|x|(cos2 x+ 1)

2(|x| + 1)
,
(t+ 1)x2

x2 + 1

]

.

We find that Ω ≈ 0.184154 6= 0, k0 ≈ 7.575611 and p0 ≈ 6.210884. It is easy to verify

that |g(x) − g(y)| ≤ (1/16)|x− y| with ℓ = 1/16 such that ℓk0 ≈ 0.473476 < 1.

For f ∈ F , we have

|f | ≤ max

(

t|x|(cos2 x+ 1)

2(|x| + 1)
,
(t+ 1)x2

x2 + 1

)

≤ t+ 1, x ∈ R.

Thus,

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖), x ∈ R,

with p(t) = t + 1, ψ(‖x‖) = 1. With the given data, it found that M > 18.177459.

Clearly, all the conditions of Theorem 4.5 are satisfied. Hence, the boundary value

problem (4.5) has at least one solution on [0, 1].
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