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ABSTRACT. Denote by Ca,b(Q) the generalized two-parameter Yeh-Wiener space with associated

Gaussian measure. We investigate several scenarios in which integrals of functionals on this space

can be reduced to integrals of related functionals over an appropriate single-parameter generalized

Wiener space C
â,b̂

[0, T ]. This extends some interesting results of R. H. Cameron and D. A. Storvick.
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1. Introduction

Let C0[0, T ] denote one-parameter Wiener space (named after Norbert Wiener

who did some of the earliest work in this area); that is the space of all continuous real-

valued functions x on [0, T ] with x(0) = 0. During the past 75 years many people have

made substantial contributions in studying this space with important applications to

both physics and mathematics. In particular there is a considerable body of work

relating to what we now call generalized Wiener spaces. Earlier discussions of these

spaces can be found in [8, 22] and more recent developments can be found in [5, 6,

7, 9, 10]; the references listed in these papers led to a very large collection of other

results.

The space which we will refer to as Yeh-Wiener space was introduced in [25] with

further results in [23, 24]. In these papers, Yeh explored the structure and behavior

of a Gaussian measure analogous to the classical Weiner measure but defined on the

space of continuous functions of two variables. The associated stochastic process is

often called the Brownian sheet. See [3, 12, 13, 14, 15, 16, 17, 18] for more information

and examples.

The setting for this paper involves what we term a generalized Yeh-Wiener space.

This function space extends the ordinary Yeh-Wiener space in a similar manner to

Received December 15, 2014 1083-2564 $15.00 c©Dynamic Publishers, Inc.



644 I. PIERCE AND D. SKOUG

the single-parameter case. The main ideas and results of this paper follow and expand

on those found in [2]. The primary goal is to relate certain integrals on a general two-

parameter Wiener space with corresponding integrals on a general single-parameter

space.

2. Definitions and Preliminaries

In [25], Yeh described the properties of a measure similar to Wiener measure on

the space of continuous functions of two variables defined on the unit square. We are

concerned with a family of similar measures.

Let Q denote the rectangle [0, S] × [0, T ] in R2 and let ≤ be the usual partial

order on Q such that s ≤ t if and only if each sj ≤ tj. Also let a(s, t) be an absolutely

continuous function with derivative ∂2a
∂s∂t

∈ L2(Q) and a(0, 0) = 0, and let b(s, t) be

an absolutely continuous function with a continuous derivative ∂2b(s,t)
∂s∂t

> 0 on Q.

The functions a and b act to determine the center (or mean), and variance of the

generalized Yeh-Wiener measure. We list several properties and useful basic results

in this section; see Chapter 3 of [19] for a more detailed discussion of these matters.

A generalized Yeh-Wiener measure is a Gaussian measure on the space of con-

tinous functions C(Q). Therefore, the distribution of finite-dimensional projections

of this space with respect to this measure are Gaussian, with the following basic

form. For 0 < s1 < · · · < sm ≤ S and 0 < t1 < · · · < tn ≤ T , the dis-

tribution of a finite-dimensional projection onto Rmn with component projections

{δ(si,tj) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} (the generalized Yeh-Wiener kernel) is given by

Wm,n(u, s, t) =

(

m
∏

i=1

n
∏

j=1

2π∆i∆jb(s, t)

)−
1
2

exp

(

−1

2

m
∑

i=1

n
∑

j=1

(∆i∆j(u − a(s, t)))2

∆i∆jb(s, t)

)

,

where ∆i∆ju = ui,j − ui−1,j − ui,j−1 + ui−1,j−1 and ui,0 = u0,j = 0 for all i, j ≥ 0.

We will let m denote the generalized Yeh-Wiener measure on C0(Q) determined

by the functions a and b and will write Ca,b(Q) for the resulting measure space.

A function f on Q is said to be of bounded variation in the sense of Hardy-

Krause provided that supP∈P

{

∑

Rj∈P

∣

∣∆Rj
f
∣

∣

}

< ∞ over all finite partitions P of

Q into non-degenerate rectangles {Rj} and the restriction of f to any vertical or

horizontal line in Q yields a single-variable function of bounded variation in the usual

sense. We refer to the collection of such functions as BV (Q). For a more detailed

discussion of these functions and their properties see [1].

By L2
a,b(Q) we denote the collection of functions on Q that are square integrable

with respect to the Lebesgue-Stieltjes measure induced by the functions a and b. That

is,

L2
a,b(Q) =

{

f : Q → R :

∫

Q

f 2(s, t)d(b(s, t) + |a| (s, t)) < ∞
}

.
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The space L2
a,b(Q) is in fact a Hilbert space (as our notation suggests), and has the

obvious inner product

(f, g)a,b =

∫

Q

f(s, t)g(s, t)d(b(s, t) + |a| (s, t)).

In addition, by ‖ · ‖b and (·, ·)b we denote, respectively, the L2-norm of a function and

the inner product with respect to the Lebesgue-Stieltjes measure induced by b; that

is

‖f‖2
b =

∫

Q

f 2(s, t)db(s, t).

and

(f, g)b =

∫

Q

f(s, t)g(s, t)db(s, t).

Note that the conditions on b(s, t) ensure that L2
b(Q) is equivalent to L2(Q) and

further note that BV (Q) is a subset of both L2
b(Q) and L2

a,b(Q).

We next define the Paley-Wiener-Zygmund stochastic integral of a function f ∈
L2

a,b(Q), which is a basic tool in understanding how the measure works.

Definition 2.1. Let {φj} be a complete orthonormal set of functions of bounded

variation in L2
a,b(Q). For f ∈ L2

a,b(Q), put

Inf(x) =
n
∑

j=1

(f, φj)a,b

∫

Q

φj(u)dx(u),

Define the Paley-Wiener-Zygmund (PWZ) stochastic integral If(x) = limn→∞ Inf(x)

for all x ∈ Ca,b(Q) for which this limit exists.

The following theorem is fundamental in computing integrals over Ca,b(Q). It

gives some essential properties of the PWZ integral.

Theorem 2.2. 1. If f ∈ L2
a,b(Q), then the PWZ stochastic integral If(x) exists

for a.e. x ∈ Ca,b(Q) and is essentially independent of the choice of orthonormal

basis in Definition 2.1.

2. If f ∈ L2
a,b(Q), then If is a Gaussian random variable with mean If(a) and

variance ‖f‖2
L2

b
(Q)

.

3. If f and g are in L2
a,b(Q), then the covariance of the random variables If and

Ig is (f, g)L2
b
(Q).

Remark 2.3. We pause briefly to note that the order of measurability assumptions

in the following theorems, where the Lebesgue measurability of f is assumed and the

µ-measurability of F is a conclusion, is not actually necessary. By similar arguments

to those found in [4, 11, 21], the hypothesis of measurability can be either that F is

µ-measurable on Ca,b(Q) or that f is Lebesgue measurable, and the measurability of

one of these will imply the measurability of the other.
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Theorem 2.4 (Tame Functionals). Let 0 < s1 < · · · < sm ≤ S and 0 < t1 <

· · · < tn ≤ T and let f : Rmn → C and F : Ca,b(Q) → C be defined by F (x) =

f(x(s1, t1), . . . , x(sm, tn)). Then F is measurable if and only if f is Lebesgue measur-

able, and in this case,

∫

Ca,b(Q)

F (x)m(dx)
∗
=

∫

Rmn

f(u1,1, . . . um,n)Wm,n(u, s, t)du, (2.1)

where the equality (∗) is in the sense that if one of the integrals exists then the other

exists and the equality holds.

Proof. Let φi,j = χ[si−1,si]×[tj−1,tj ](u, v). It is easy to calculate

x(sk, tl) =
∑

0≤i≤k
0≤j≤l

∆i∆jx(s, t)

for any (sk, tl). It is not difficult to see that

∆i∆jx(s, t) = Iφi,j(x) =

∫

Q

χ[si−1,si]×[tj−1,tj ](u, v)dx(u, v),

whence we have

F (x) = f(x(s1, t1), . . . , x(sm, tn))

= f









Iφ1,1(x), . . . ,
∑

0≤i≤k
0≤j≤l

Iφi,j(x), . . . ,
∑

0≤i≤m
0≤j≤n

Iφi,j(x)









.

As φi,j ∈ BV (Q), we can use Theorem 2.2 to see that

∫

Ca,b(Q)

Iφi,j(x)µ(dx) = Iφi,j(a) = ∆i∆ja(s, t),

and also observe that
∫

Ca,b(Q)

(Iφi,j(x) − Iφi,j(a)) (Iφl,m(x) − Iφl,m(a))m(dx)

=

∫

Q

φi,j(u, v)φl,m(u, v)db(u, v)

=







∆i∆jb(s, t) if i = l, j = m

0 otherwise.

Accordingly, we see that the covariance matrix M for the collection {φi,j} is a diagonal

matrix whose nonzero entries are ∆i∆jb(s, t). Now we can apply Theorem 2.2 to

complete the proof.
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3. Integrals Over Paths

We will first be concerned with integrating functionals defined in terms of certain

paths in Q. We confine our discussion to paths φ : [0, S] → Q for which φ(τ) =

(φ1(τ), φ2(τ)) satisfies the condition that its component functions φ1 and φ2 are each

piecewise continuously differentiable. We will say that φ is an increasing path in Q if

φ′ · φ′ > 0 on [0, S] and φ(τ1) ≤ φ(τ2) whenever τ1 ≤ τ2.

The first theorem in this section establishes a special case of the tame functionals

theorem in the case that one defines the functional in terms of a sequence of points

lying on an increasing path.

Theorem 3.1. Let 0 = s0 < s1 ≤ · · · ≤ sn ≤ S and 0 = t0 < t1 ≤ · · · ≤ tn ≤ T

and let f : Rn → C be Lebesgue measurable. If F : Ca,b(Q) → C is defined by

F (x) = f(x(s1, t1)), x(s2, t2), . . . , x(xn, tn)), then F is µ-measurable and

∫

Ca,b(Q)

F (x)m(dx)
∗
=

(

n
∏

j=1

2π(b(sj , tj) − b(sj−1, tj−1)

)−
1
2 ∫

Rn

f(u1, . . . , un) (3.1)

exp

(

−1

2

n
∑

j=1

(uj − a(sj , tj) − uj−1 + a(sj−1, tj−1))
2

b(sj , tj) − b(sj−1, tj−1)

)

du1 · · ·dun,

where the equality (
∗
=) is in the sense that if one of the integrals exists then the other

exists and the equality holds.

Proof. The proof is by induction on n. The theorem is certainly true for n = 1

because by (2.1),
∫

Ca,b(Q)

f(x(s1, t1))m(dx)

=

(

1
∏

i=1

1
∏

j=1

2π∆i∆jb(s, t)

)−
1
2 ∫

R

f(u1,1) exp

(

−1

2

1
∑

i=1

1
∑

j=1

(∆i∆j(u − a(s, t)))2

∆i∆jb(s, t)

)

du1,1

=
1

√

2πb(s1, t1)

∫

R

f(u1) exp

(

−1

2

1
∑

j=1

(uj − a(sj , tj))
2

b(sj , tj) − b(sj−1, tj−1)

)

du1,

and thus (3.1) holds.

Assume that the result holds for n = k ≥ 1. Then for n = k + 1 we have

∫

Ca,b(Q)

f(x(s1, t1), . . . , x(sn, tn))µ(dx) =

(

k+1
∏

i=1

k+1
∏

j=1

2π∆i∆jb(s, t)

)−
1
2 ∫

R(k+1)2
f(u1,1, . . . , uk+1,k+1)
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exp

(

−1

2

k+1
∑

i=1

k+1
∑

j=1

(∆i∆j(u − a(s, t)))2

∆i∆jb(s, t)

)

du1,1du1,2du2,1 · · ·duk+1,k+1. (3.2)

Note that for j = 1, . . . , k the variables uk+1,j and uj,k+1 appear in (3.2) only

in the kernel as the functional F (x) does not depend on the values of x at these

points. Also observe that b(sk+1, t1)−b(sk, t1) = ∆k+1∆1b(s, t), b(sk+1, t2)−b(sk, t2) =

∆k+1∆2b(s, t)+∆k+1∆1b(s, t), and eventually b(sk+1, tk)−b(sk, tk) = ∆k+1∆kb(s, t)+

· · ·+ ∆k+1∆1b(s, t). In addition observe that

uk+1,1 − a(sk+1, t1) − uk,1 + a(sk, t1) = ∆k+1∆1(u − a(s, t)),

uk+1,2 − a(sk+1, t2) − uk,2 + a(sk, t2) = ∆k+1∆2(u − a(s, t)) + ∆k+1∆1(u − a(s, t)),

...

uk+1,k − a(sk+1, tk) − uk,k + a(sk, tk)

=∆k+1∆k(u − a(s, t)) + · · ·+ ∆k+1∆1(u − a(s, t)).

Applying the Chapman-Kolmogorov equation 2k − 2 times to the right side of

(3.2) yields

(

k
∏

i=1

k
∏

j=1

2π∆i∆jb(s, t)

)−
1
2

(3.3)

∫

Rk2+1

f(u1,1, . . . , uk,k) exp

(

−1

2

k
∑

i=1

k
∑

j=1

(∆i∆j(u − a(s, t)))2

∆i∆jb(s, t)

)

(

1
√

2π∆k+1∆k+1b(s, t)

1
√

2π(b(sk, tk+1) − b(sk, tk)))

1
√

2π(b(sk, tk+1) − b(sk, tk))

)

∫

R2

exp

(

(∆k+1∆k+1(u − a(a, t)))2

−2∆k+1∆k+1b(s, t)

)

exp

(

(uk+1,k − a(sk+1, tk) − uk,k + a(sk, tk))
2

−(b(sk+1, tk) − b(sk, tk))

)

exp

(

(uk,k+1 − a(sk, tk+1) − uk,k + a(sk, tk))
2

−(b(sk, tk+1) − b(sk, tk))

)

duk+1,kduk,k+1duk+1,k+1duk,k . . .du1,1

Now notice that

∆k+1∆k+1(u− a(s, t))

= uk+1,k+1 − a(sk+1, tk+1) − uk+1,k + a(sk+1, tk)

− uk,k+1 + a(sk, tk+1) + uk,k − a(sk, tk)

= [(uk+1,k+1 − a(sk+1, tk+1)) − (uk,k − a(sk, tk))]

− [(uk,k+1 − a(sk, tk+1)) − (uk,k − a(sk, tk))]

− [(uk+1,k − a(sk+1, tk)) − (uk,k − a(sk, tk))] ,
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and also that

∆k+1∆k+1b(s, t) = b(sk+1, tk+1) − b(sk, tk+1) − b(sk+1, tk) + b(sk, tk)

= [b(sk+1, tk+1) − b(sk, tk)] − [b(sk, tk+1) − b(sk, tk)] − [b(sk+1, tk) − b(sk, tk)] ,

and apply the Chapman-Kolmogorov equation twice to the inner double integral in

(3.3),
(

1
√

2π∆k+1∆k+1b(s, t)

1
√

2π(b(sk, tk+1) − b(sk, tk))

1
√

2π(b(sk, tk+1) − b(sk, tk))

)

∫

R2

exp

(

−(∆k+1∆k+1(u − a(a, t)))2

2∆k+1∆k+1b(s, t)

)

exp

(

−(uk+1,k − a(sk+1, tk) − uk,k + a(sk, tk))
2

b(sk+1, tk) − b(sk, tk)

)

exp

(

−(uk,k+1 − a(sk, tk+1) − uk,k + a(sk, tk))
2

b(sk, tk+1) − b(sk, tk)

)

duk+1,kduk,k+1.

This yields

(

1

2π(b(sk+1, tk+1) − b(sk, tk))

)

1
2

exp

(

(uk+1,k+1 − a(sk+1, tk+1) − uk,k + a(sk, tk))
2

−2(b(sk+1, tk+1) − b(sk, tk))

)

Thus (3.2) becomes
∫

Ca,b(Q)

f(x(s1, t1), . . . , x(sn, tn))m(dx)

=

(

k
∏

i=1

k
∏

j=1

2π∆i∆jb(s, t)

)−
1
2 (

1

2π(b(sk+1, tk+1) − b(sk, tk))

)

1
2

∫

Rk2

∫

R

f(u1,1, . . . , uk+1,k+1)

exp

(

−(uk+1,k+1 − a(sk+1, tk+1) − uk,k + a(sk, tk))
2

2(b(sk+1, tk+1) − b(sk, tk))

)

duk+1,k+1

exp

(

−1

2

k
∑

i=1

k
∑

j=1

(∆i∆j(u − a(s, t)))2

∆i∆jb(s, t)

)

k
∏

i=1
j=1

dui,j. (3.4)

Define the function g : Rk2 → C so that g(u1,1, . . . , uk,k) is equal to

∫

R

f(u1,1, . . . , uk+1,k+1)

exp

(

−(uk+1,k+1 − a(sk+1, tk+1) − uk,k + a(sk, tk))
2

2(b(sk+1, tk+1) − b(sk, tk))

)

duk+1,k+1 (3.5)

and define a tame functional G(x) : Ca,b(Q) → R by

G(x) = g(x(s1, t1), . . . , x(sk, tk)). (3.6)
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Combine (3.4) and (3.6) to obtain
∫

Ca,b(Q)

f(x(s1, t1), . . . , x(sn, tn))m(dx) =

(

k
∏

i=1

k
∏

j=1

2π∆i∆jb(s, t)

)−
1
2∫

Rk2

g(u1,1, . . . , uk,k)

exp

(

−1

2

k
∑

i=1

k
∑

j=1

(∆i∆j(u − a(s, t)))2

∆i∆jb(s, t)

)

k
∏

i=1
j=1

dui,j

=

∫

Ca,b(Q)

G(x)m(x). (3.7)

Apply the induction hypothesis to the functional G. Put uk+1,k+1 = uk+1 and

uk,k = uk in equation (3.5) and then use (3.7) to obtain
∫

Ca,b(Q)

f(x(s1, t1), . . . , x(sn, tn))m(dx)

=

(

k
∏

j=1

2π(b(sj , tj) − b(sj−1, tj−1))

)−
1
2 ∫

Rk

g(u1, . . . , uk)

exp

(

−1

2

k
∑

j=1

(uj − a(sj , tj) − uj−1 + a(sj−1, tj−1))
2

b(sj , tj) − b(sj−1, tj−1)

)

duk · · ·du1

=

(

k+1
∏

j=1

2π(b(sj, tj) − b(sj−1, tj−1))

)−
1
2 ∫

Rk+1

f(u1, . . . , uk+1)

exp

(

−1

2

k+1
∑

j=1

(uj − a(sj , tj) − uj−1 + a(sj−1, tj−1))
2

b(sj , tj) − b(sj−1, tj−1)

)

duk+1 · · ·du1,

and so for n = k + 1, equation (3.1) holds by induction.

4. One-line Theorems

We are now equipped to investigate formulas for the integration of functionals

depending only on the values of x on certain well-behaved paths in Q. The follow-

ing theorem permits reduction of certain integrals over Ca,b(Q) to integrals over an

appropriately chosen single-parameter function space Cã,b̃[0, S].

Theorem 4.1. Let φ : [0, S] → Q be an increasing path. Let aφ(τ) = a(φ(τ)) −
a(φ(0)) and bφ(τ) = b(φ(τ))−b(φ(0)), and let mφ be the Gaussian measure on C0[0, S]

subordinate to aφ and bφ. If F (x) = f(x(φ(·))) is a measurable functional on Ca,b(Q),
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then
∫

Ca,b(Q)

F (x)m(dx)
∗
=

∫

Caφ,bφ
[0,S]

f(w)mφ(dw), (4.1)

where the equality (
∗
=) is in the sense that if one of the integrals exists then the other

exists and the equality holds.

Proof. Let 0 = τ0 < τ1 < · · · < τj < · · · < τn ≤ S and let I = {x ∈ Ca,b(Q) :

αj < x(φ(τj)) < βj}and J = {w ∈ Caφ,bφ
[0, S] : αj < w(τj) < βj}. Note that by the

conditions on γ we have φ1(0) ≤ φ1(τ1) ≤ · · · ≤ φ1(τn) and φ2(0) ≤ φ2(τ1) ≤ · · · ≤
φ2(τn). Then by Theorem 3.1,

m(I) =

∫

Ca,b(Q)

χI(x)(dx)

=

(

n
∏

j=1

2π(b(φ(τj)) − b(φ(τj−1)))

)−
1
2

∫

Rn

exp

(

−1

2

n
∑

j=1

(uj − a(φ(τj)) − uj−1 + a(φ(τj−1)))
2

b(φ(τj)) − b(φ(τj−1))

)

dun · · ·du1

=

(

n
∏

j=1

2π(bφ(τj) − bφ(τj−1))

)−
1
2

∫

Rn

exp

(

−1

2

n
∑

j=1

(uj − aφ(τj) − uj−1 + aφ(τj−1))
2

bφ(τj) − bφ(τj−1)

)

dun · · ·du1

=

∫

Caφ,bφ
[0,S]

χJ(y)mφ(dy)

= mφ(J).

Hence the result holds for characteristic functions of sets of the form {x ∈
Ca,b(Q) : αj < x(φ(τj)) < βj}. The theorem follows by taking the function f to

successively be the characteristic function of a Borel set, and then to be a simple

function. From here, by monotone convergence the theorem holds for positive func-

tions, and hence for general functions by taking positive and negative and real and

imaginary parts.

As a corollary to Theorem 4.1 we have the following one-line theorem of Cameron

and Storvick from [2].

Corollary 4.2. Let 0 < β ≤ T and let f(·) be a real or complex valued functional

defined on C0[0, S] such that f(
√

βw) is a Wiener measurable functional on C0[0, S].

Then f(x(·, β)) is a Yeh-Wiener measurable functional of x on C0(Q) and
∫

C0(Q)

f(x(·, β))(dx)
∗
=

∫

C0[0,S]

f(
√

β w)w(dw), (4.2)
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where w denotes the ordinary Wiener measure and the equality (
∗
=) is in the sense

that if one of the integrals exists then the other exists and the equality holds.

Proof. Take φ : [0, S] → Q to be φ(τ) = (τ, β) and note that a(s, t) = 0 and b(s, t) =

st. Applying Theorem 4.1 to any tame functional F (x) = f(x(s1, β), . . . , x(sn, β)) we

obtain
∫

C0(Q)

F (x)m(dx)

=

(

n
∏

j=1

2π(βsj − βsj−1)

)−
1
2 ∫

Rn

f(u1, . . . , un) exp

(

−1

2

n
∑

j=1

(uj − uj−1)
2

βsj − βsj−1

)

du

=

(

n
∏

j=1

2π(sj − sj−1)

)−
1
2 ∫

Rn

f(
√

β w1, . . . ,
√

β wn)

exp

(

−1

2

n
∑

j=1

(wj − wj−1)
2

sj − sj−1

)

dw

=

∫

C0[0,S]

f(
√

β y(s1), . . . ,
√

β y(sn))w(dw).

The theorem holds in the general case by the same argument used to finish the

proof of Theorem 4.1.

5. n-line Theorem

We can use Theorem 4.1 to extend the n-line theorem of Cameron and Storvick

from [2].

Theorem 5.1. Let 0 < β1 < · · · < βn ≤ T and let F (x) = f(x(·, β1), . . . , x(·, βn))

be µ-measurable. Put a1(s) = a(s, β1) and ak(s) = a(s, βk) − a(s, βk−1) and put

b1(s) = b(s, β1) and bk(s) = b(s, βk) − b(s, βk−1) for k = 2, . . . , n. Let m1, . . . , mn

be Gaussian measures on C0[0, S], each subordinate to the corresponding ak and bk.

Then
∫

Ca,b(Q)

F (x)m(dx)

∗
=

∫

Can,bn [0,S]

. . .

∫

Ca1,b1
[0,S]

f(y1, y1 + y2, · · · , y1 + y2 + · · ·+ yn)m1(dy1) · · ·mn(dyn),

where the equality (
∗
=) is in the sense that if one of the integrals exists then the other

exists and the equality holds.



INTEGRATING PATH-DEPENDENT FUNCTIONALS 653

Proof. Let 0 = s0 < s1 < . . . < sm ≤ S and tk = βk for k = 1, . . . , n and let pj,k < qj,k

for all j = 1, . . .m and k = 1, . . . , n. Define

Ij = {x ∈ Ca,b(Q) : pj,k < x(sj , βk) ≤ qj,k for k = 1, . . . , n},
Ej = {(uj,1, . . . , uj,n) ∈ R

n : pj,k < uj,k ≤ qj,k for k = 1, . . . , n},

Jj = {(y1, . . . , yn) ∈ ×n
k=1Cak,bk

[0, S] : pj,k <

k
∑

l=1

yl(sj) ≤ qj,k for k = 1, . . . , n}.

Notice that measurability of Ej in Rn assures the measurability of Ij and Jj in

their respective spaces. Moreover, for a cylinder set I(p1,1, . . . , pm,n, q1,1, . . . , qm,n) ⊆
Ca,b(Q) determined solely by the values of x(·, ·) at the points (sj, βk) for j = 1, . . . , m

and k = 1, . . . , n, we have

I(p1,1, . . . , pm,n, q1,1, . . . , qm,n)

= {x ∈ Ca,b(Q) : pj,k < x(sj , βk) ≤ qj,k for j = 1, . . . , m; k = 1, . . . , n}

=

m
⋂

j=1

Ij.

Begin by considering the case in which

F (x) = χI(x) =

m
∏

j=1

χIj
(x) =

m
∏

j=1

χEj
(x(·, β1), . . . , x(·, βn)).

By Theorem 2.4,
∫

Ca,b(Q)

F (x)m(dx) =

∫

Ca,b(Q)

m
∏

j=1

χEj
(x(sj , β1), . . . , x(sj , βn))m(dx)

=

(

n
∏

k=1

m
∏

j=1

2π∆k∆jb(s, β)

)−
1
2 ∫

Rmn

m
∏

j=1

χEj
(uj,1, . . . , uj,n) (5.1)

n
∏

k=1

exp

(

−1

2

m
∑

j=1

(∆k∆j(u − a(s, t)))2

∆k∆jb(s, t)

)

du1,1 · · ·dum,n.

Note that

∆k∆j(u − a(s, t)) = uj,k − uj,k−1 − a(sj, βk) + a(sj, βk−1)

− uj−1,k + uj−1,k−1 + a(sj−1, βk) − a(sj−1, βk−1) (5.2)

= [uj,k − uj,k−1] − [a(sj , βk) − a(sj, βk−1)] (5.3)

− [uj−1,k − uj−1,k−1] + [a(sj−1, βk) − a(sj−1, βk−1)],

and also that

∆k∆jb(s, t) = b(sj , βk) − b(sj−1, βk) − b(sj , βk−1) + b(sj−1, βk−1)

= [b(sj , βk) − b(sj, βk−1)] − [b(sj , βk) − b(sj−1, βk−1)]. (5.4)



654 I. PIERCE AND D. SKOUG

Take b1(·) = b(·, β1), bk(·) = b(·, βk) − b(·, βk−1), a1(·) = a(·, β1), and a(·) =

b(·, βk) − b(·, βk−1) for k = 2, . . . , n as in the statement of the theorem. Let

vj,k = uj,k − uj,k−1, (5.5)

and observe that dvj,k = duj,k under this change of variables, and that

uj,k = vj,k + uj,k−1 = vj,k + vj,k−1 + · · · + vj,1 (5.6)

for 1 ≤ k ≤ n. Substitute (5.2), (5.4), (5.5), and (5.6) in (5.1) to obtain

n
∏

k=1

(

m
∏

j=1

2π∆jbk(s)

)−
1
2 ∫

Rmn

m
∏

j=1

χEj
(vj,1, vj,1 + vj,2, . . . , vj,1 + · · ·+ vj,n)

n
∏

k=1

exp

(

−1

2

m
∑

j=1

(∆j(vj − aj(s)) − vj−1 + aj−1(s))
2

∆jbk(s)

)

dv1,1 · · ·dvm,n

=

∫

Ca1,b1
[0,S]

· · ·
∫

Can,bn [0,S]

m
∏

j=1

χEj
(y1(sj), . . . , y1(sj) + · · ·+ yn(sj))mn(dyn) · · ·m1(dy1)

=

∫

Ca1,b1
[0,S]

· · ·
∫

Can,bn [0,S]

m
∏

j=1

χEj
(y1(·), . . . , y1(·) + · · · + yn(·))mn(dyn) · · ·m1(dy1).

Therefore the theorem is true for characteristic functions of cylinder sets that are

dependent only on the value of x(·, ·) at the points {(sj, βk) for j = 1, . . . , m; k =

1, . . . , n}. In the usual manner we can prove the theorem for characteristic functions

of measurable sets depending only on the values of x(·, βk) for k = 1, . . . n. The proof

is then completed in the same fashion as the proof of Theorem 4.1.

6. Examples

Example 6.1. This first example demonstrates the use of Theorem 5.1. Let a(s, t) =

b(s, t) = st on [0, S]× [0, 2T ] and put F (x) =
∫ S

0
x(s, T )x(s, 2T )ds. We find the value

of
∫

Ca,b(Q)
F (x)µ(dx). Note that a1(s) = b1(s) = sT and a2(s) = b2(s) = 2sT − sT =

sT , and thus
∫

Ca,b(Q)

F (x)m(dx) =

∫

Ca2,b2
[0,S]

∫

Ca1,b1
[0,S]

∫ S

0

y1(s)(y1(s) + y2(s))dsm1(dy1)m2(dy2)

=

∫ S

0

∫

Ca2,b2
[0,S]

∫

Ca1,b1
[0,S]

(

y2
1(s) + y1(s)y2(s)

)

m1(dy1)m2(dy2)ds

=

∫ S

0

∫

Ca2,b2
[0,S]

(

sT + s2T 2 + sTy2(s)
)

m2(dy2)ds

=

∫ S

0

(

sT + s2T 2 + s2T 2
)

ds
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=
1

2
S2T +

2

3
S3T 2,

where Fubini’s theorem justifies the change in order of integration. In this example,

we can easily verify our result without using Theorem 5.1, for
∫

Ca,b(Q)

F (x)m(dx) =

∫

Ca,b(Q)

∫ S

0

x(s, T )x(s, 2T )dsm(dx)

=

∫ S

0

∫

Ca,b(Q)

x(s, T )x(s, 2T )m(dx)ds

=

∫ S

0

(

sT + 2s2T 2
)

ds

=
1

2
S2T +

2

3
S3T 2.

Example 6.2. We next demonstrate the use of Theorem 4.1. Let Q = [0, S]2,

a(s, t) = st, b(s, t) = s2t2, and F (x) = exp
(

∫ S

0
x(s, s)ds

)

. Note that φ : [0, S] → Q

defined by φ(s) = (s, s) is increasing. Then
∫

Ca,b(Q)

F (x)m(dx) =

∫

Ca1,b1
[0,S]

exp

(
∫ S

0

y(s)ds

)

mφ(dy), (6.1)

where a1(s) = a(φ(s))−a(φ(0)) = a(s, s)−a(0, 0) = s2 and b1(s) = b(φ(s))−b(φ(0)) =

s4. Integrating by parts we obtain that
∫ S

0

y(s)ds = Sy(S) −
∫ S

0

sdy(s) = 〈S, y〉 − 〈s, y〉 = 〈S − s, y〉,

for m a.e. y ∈ Caφ,bφ
[0, S]. In this case we let 〈f, y〉 denote the single-variable PWZ

stochasitc integral of the function f ∈ L2
aφ,bφ

[0, S]. Compute the values A =
∫ S

0
(S −

s)daφ(s) = 1
3
S3 and B =

∫ S

0
(S − s)2dbφ(s) = 1

15
S6 and make use of a theorem from

[20] to compute the right-hand side of (6.1) to obtain
∫

Ca1,b1
[0,S]

exp

(
∫ S

0

y(s)ds

)

mφ(dy)

=
1√
2πB

∫ ∞

−∞

exp(u) exp

(

−(u − A)2

2B

)

du

=
1√
2πB

∫ ∞

−∞

exp

(

− 1

2B
[u2 − 2Au − 2Bu + A2]

)

du

= exp

(

−A2

2B

)

exp

(

(A + B)2

2B

)
∫ ∞

−∞

exp

(

− [u − (A + B)]2

2B

)

du

= exp

(

2AB + B2

2B

)

= exp

(

1

3
S3 +

1

30
S6

)

.
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