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ABSTRACT. In this paper, we briefly review the recent development of research on Gronwall’s

inequality. Then obtain a result for the following nonlinear integral inequality:

s—h<&<s

w(u(t)) < K + Z/v(to)o‘i(t)fi(s) H Hij(u(s))Gij < max u(g)) ds.

As an application, we study the abstract functional differential equation, ‘é—lt‘ = f(t,u) with

Lyapunov’s second method. Then, we obtain an estimate of solutions of functional differential

equations, u' = F(t,u;) with conditions like:
D) Wh(lu(t)x) < V(¢ ue) < Wa([luellex)
ii) V(’&l)(t,ut) <0.
AMS (MOS) Subject Classification. 26D10, 34A40, 34D20, 34K38.

1. INTRODUCTION

In 1919, Gronwall [7] gave the following lemma when he studied a system of

differential equations with a parameter.

Theorem 1.1 (Gronwall’s Original Inequality). Let o, a,b and h be nonnegative con-
stants, and u : [o, o« + h] — [0,00) be continuous. If

t
0§u(t)§/[bu(s)+a]ds, a<t<a+h,
then
Ogu(t)gahebh, a<t<a+h.

His lemma stayed basically quietly until Bellman generalized it in 1943, which
is now commonly known as Gronwall’s Inequality, or Gronwall-Bellman’s Inequality.
This version of Gronwall’s inequality can be found in many references, for example
1, 5, 12].
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Theorem 1.2 (Gronwall’s Inequality). Let «v, 5 and ¢ be nonnegative constants, and

u, f i [a, B] = [0,00) continuous. If

ul(t) < c+ / fs)u(s)ds, a<t<p,

then

u(t) < celo Heds o <t < .

In 1958, Bellman [3] generalized Theorem 1.2, his own result, by allowing that ¢
is a nonnegative and nondecreasing function, which is stated as following, and can be

founded in many references, for example [8, 12].

Theorem 1.3 (Gronwall-Bellman’s Inequality). If u(t) and a(t) are real valued con-
tinuous functions on [a,b], a(t) is nondecreasing, and B(t) > 0 is integrable on [a, b]
with

u(t) < aft) + /tﬁ(s)u(s)ds fora <t <b,

then

u(t) < a(t)eds PO fora <t < b,

Today, Gronwall’s inequality has been found very useful in research of bound-
edness and stability of differential equations; research of inequalities of the Gronwall
type has exploded; and generalization of Gronwall’s inequality has gone into many
different directions. For example, the integral in Gronwall’s inequality is generalized
to iterated integrals or a sum of integrals; the function u(t) is generalized to a format
of W(u(t)) and from a one-variable function to a two-variable function with double
integrals; the upper limit of the integral is generalized to a function, instead of a
simple variable ¢; and the integral inequality is generalized to a difference inequality.
Applications of this type of inequalities are also expanded from ordinary differential
equations to functional differential equations, fractional differential equations and
difference equations. In 1998, Pachpatte published a book [12] summarizing the de-
velopment of inequalities of the Gronwall type up to 1998. Here are some examples

of new generalizations of the Gronwall type in the past a few years.

In 2007, Pachpatte [13] investigated the following two types of inequalities of the

Gronwall type involving double integrals and summations:

we) <t [ ot [ [ st
+ /OS /Otg(a, T)u(o, T)drdo + /0“ /Ob h(o, T)u(o, T)drdo]dtds,
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and

In 2012, Bohner, Hristova and Stefanova [4] studied the following inequality:

n a; (t)

va@) <k+ Y [ fsws)eu(s)ds

i=1 “ @i(to)

+éﬂwwm%m(mxw0 (11)

(o) E€[s—h,s]

In 2013, Lin [11] gave the following result of the Gronwall type when he considered
fractional differential equations: Let 3; > 0 be constants; b;(t) defined on [0,7") be
bounded, continuous and monotonically increasing; i = 1,2,...,n, a(t) and u(t) be

continuous. If

u(t) < a(t) + b(t) /Ot (t —s)tu(s)ds, te[0,T), (1.2)

then

e e}

ult) < + 3 ZZHZ 1(Z ﬁl) Bir)] /Ot(t_S)Z?_llBi/_la(S)dS

Meanwhile, by reversing the direction of Inequality (1.2), Lin also gave the fol-
lowing result: Let 3; > 0 be constants; b;(t) defined on [0, T") be bounded, continuous,

nonnegative and monotonically increasing; ¢ = 1,2, ..., n; u(t) be continuous. If

u(t) > i b;(t) /Ot (t — s)tu(s)ds, t€0,7),

then u(t) > 0,t € [0,T).

In 2014, Wang, Zheng and Guo [14] studied the following nonlinear delay sum-
difference inequality:

k ai(m—1) Bi(n—1)

u(m,n) < a(m,n) —I—Z Z Z film,n, s, t)w;(u(s,t)), m,n € Ny.

7’15051()562
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2. A NONLINEAR INTEGRAL INEQUALITY

In this section, we generalize Inequality (1.1) to the following inequality and

simplify the proof of [4]:

n a;(t) m
w(u(t)) < K + Z/ Ffi(s) T] His(ul(s)) Gy ( max u(§))ds, to<t<T.

i—1 7 ai(to) j=1 s—hsfss
(2.1)
Notations and conditions for this inequalty are as following: Let h > 0, K > 0, %,
and T are constants, 0 <ty < T < oo, Ry = [0, 00).

(A1) o; € C([ty, T),R,) are nondecreasing and «;(t) < t,t € [to,T), 1 =1,2,...,n;
(A2) f; € C([0,T),Ry) fori=1,2,...,m;

(A3) H,;,G,j € C(Ry,R,) are nondecreasing, and H;;(z) > 0, G;;(x) > 0 if x > 0;
(Ad) w e C(R4,Ry) is increasing, w(0) = 0, and lim;_, o, w(t) = oo;

(Ab) we C([-h,T),R,).

Theorem 2.1. Let u(t) satisfy (2.1) with conditions (A1) through (A5). Then

K+w™! (/j(t)) Zn:fi(S)ds)
alto) =1

u(t) <w™ 4y <t<T

where
. 1
W) :/0 H™ (w™ (K + )G (0™ (K + 5))

ds, 0<r<oo

H(r)= max {H;j(r)}, G(r)= max {G;(r)}.

0<i<n,0<j<m 0<i<n,0<j<m
Proof. Define
n Oci(t) m
Z(t) =K+ Z/ fi(s) HH,-j(u(s))G,-j ( max u(f))ds, to <t<T.
i=1 7 @i(to) j=1 STES=S

Then Z(t) is nondecreasing, and w(u(t)) < Z(t), to <t <T.

By (A4), w™! exists and has the same properties as those of w. Therefore,

u(t) <w (Z(t), te<t<T.

In addition,

max u(§) < max w H(Z(€)=w(Z(s)), to<s<T.

s—h<é<s s—h<é<s
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Therefore,
n a;(t) m
20 <K+ [ p@ T HOG ( pax w(6))as

n a;(t) m

<K+ ) [0 e [T 26 )i
n ra)

“K Y [ R (2 )G (26
—1 Y ai(to)

Let

n ai(t)
R(t) = Z/_(t | fi(s) H™(w™(Z(s)))G™ (w™(Z(s)))ds.

Clearly, Z(t) < K + R(t). Then

= Z Filea(®)) H™ (w™ (Z(i())))G™ (w™ (Z(i(t))))a (1)
< Zfi(ai(t))Hm(w‘l(Z(t)))Gm(w‘l(Z(t)))a/(t)
< Z fila (w™ (K + R(t)))G™ (w™ (K + R(1)))o'(t)

= H™(w (K + R(t)))G™(w (K + R(t Z fila

R(t) Z fila

Hm(w=(K + R(1))G™ (w1 (K + R(t

d(W(dJ:(t))) < ; Fileu(t))ei' (8).

Integrate the above inequality from to to t,

That is

W (R( R(ty)) /to 3 = /a " ; fi(s)ds.

at) n

W(R() < / S fils)ds

a(to) j—1

at) n
R(t) < W </(t | Z f,-(s)ds)

Zt) < K+ W™ (/a@ > fi(S)d8>

(to) =1

o ()

(to) =1

u(t) <

683
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O

Inequality (2.1) generalizes Inequality (1.1). Let us consider a very simple case

of Inequality (2.1) for applications.

Corollary 2.2. Given

u(t)) < K + /t f(s)H(u(s))ds, to<t<T, (2.2)
or
)< K +/ f(s . Iilggcgsu(f))ds, to <t<T, (2.3)

where f, H,w and u satisfy (A2), (A3), (A4) and (A5), respectively. Then

u(t) <w™! [K + Wt (/: f(s)ds)] :

where W (r fOH Sds 0<r<oo.

K+

3. APPLICATIONS IN CONJUNCTION WITH
LYAPUNOV’S SECOND METHOD

Let us consider the general abstract functional differential equations with finite

delay

du
pri = F(t,uy). (3.1)

First, let us set forth some notation and terminology. Suppose that (X, |- |x) and
(Y,] - |y) are Banach spaces and X N'Y # 0 with |uly < N|u|x for some constant
N > 0and all u € XNY. Denote Cx = C([—h,0],X), where h > 0 is a constant

and
lullex = sup{|u(s)|x : =h < s <0} forue Cx.

Thus (Cx, || - [|ex) is also a Banach space. If w : [ty — h, 3) — X for some 3 > to,
define u; € Cx by u(s) = u(t + s) for s € [—h,0], where t € [to, 5). For a positive
constant H, by Cxy we denote the subset of Cx for which ||¢||cx < H for each
¢ € Cx. F: Ry xCx — Y is a function. Here Ry = [0,00). % is the strong
derivative [9] of w at t in (X, |- |x).

Definition 3.1. A function u(ty, ¢) is said to be a solution of Eq. (3.1) with
initial function ¢ € Cx at t =ty > 0 and having value u(t, ty, ¢) if there is a 5 > 0
such that u : [to — h,to + 5) — X NY with uy € Cxny for tg < t < to+ 3, uy, = ¢,
and u(t, tg, ¢) satisfies Eq. (3.1) on (tg,to + ) in (Y, |- |v).

In this section, a wedge, denoted by W;, is a continuous and strictly increasing

function from R, — R with W;(0) = 0, which is related to properties of continuous



NONLINEAR INTEGRAL INEQUALITIES 685

scalar functionals (called Lyapunov functionals) V' : Ry X Cxg — R, which are

differentiated along the solutions of Eq. (3.1) by the relation
Visay(t: @) = sup lim sup[V(¢ + 6, ures(t, 9) = V(t, 9)]/0

and V (¢,0) = 0 for all t € R, where u(t, ¢) is a solution of Eq. (3.1) satisfying u; = ¢
and the first “sup” runs over such solutions, since the solution of Eq. (3.1) may not

be unique. Detailed consequences of this derivative are discussed in [6], [8], [9].

Lyapunov’s second method has generated numerous results on stability and bound-
edness. For example, please refer to Burton [6], Hale and Lunel [8], Ladas, Laksh-
mikantham and Leela [9, 10], Wang [20, 21], and Wu [22]. The following are two
typical theorems [6] about uniform stability and uniformly asymptotical stability,

which are stated for a system of ordinary functional differential equations:
X' =F(t X;), XeR" (3.2)

Theorem 3.1. Let D > 0 be a constant, V(t, ;) be a scalar continuous function in
(t, 1) and locally Lipschitz in @ when ty <t < oo and ¢, € C(t) with ||¢¢|| < D.
Suppose that F(t,0) =0, V(¢,0) =0, and

i) Wi(le@)]) <V (¢, 00) < Wallledl),
ii) Vi34)(t,¢1) <O0.

Then X = 0 is uniformly stable.

Theorem 3.2. Let D > 0 be a constant, V(t, ;) be a scalar continuous function in
(t,¢) and locally Lipschitz in ¢, when ty < t < oo and ¢, € C(t) with ||¢]] < D.
Suppose that F(t,0) =0, V(t,0) =0, and

i) Wi(le(t)]) < V(t,00) < Walle)) + Ws([,, l(s)ds),
ii) ‘/(/:’,_2)(15»801&) < —Wa(le(®)])-

Then X = 0 is uniformly asymptotically stable.

It has been an interest for a long time if we can use conditions similar to (i) and
(ii) in the above theorems to obtain an inequality about solutions of Equation (3.2).
Wang has published a few papers [15, 16, 17, 18, 19] on this type of research. Here is
a typical one. The proof is done by application of Theorem 1.3 (Gronwall-Bellman’s

Inequality).

Theorem 3.3 (Wang, [17]). Let V : R, x Cxg — Ry be continuous and D :
R, x Cxu — Ry be continuous along the solutions of Eq. (3.1), and n, L, and
P: R, — Ry be integrable. Suppose the following conditions hold:

i) Wi(lu(t)lx) < V(tu) < Wa(D(t, ) + i), Ls)WaJuls)|x)ds,
i) Visp)(t ) < =n(t)Wa(D(t, u)) + P(2).
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Then the solutions of Eq. (3.1), u(t) = u(t,to, @), satisfy the following inequality:

¢ s+h n(r)dr
xmmou>{K+/PUL”m“F“ IR s g
t
’ (3.3)

fto +h

where K=V (to, ¢) + [e — 1] 2, L(s + to) W1 (|¢(s)|x)ds

Now, as an application of Theorem 2.1, we prove another inequality with similar

conditions to those in Theorem 3.1.

Theorem 3.4. Let V : R, x Cxyg — R, be continuous and D : Ry X Cxg — Ry

be continuous along the solutions of Eq. (1). Suppose the following conditions hold:

i) Wi(u()]x) <Vt ur) < Wallludlox)
i) V. (t ) < 0.

Then
lu()|x < W [V(to,w) + WHE—t0)], to <t

where

ds.
/ Wy(W thuto)e °+5))
Proof. For convenience, let us denote V(t) = V(t,u;). With Condition (ii),

Visy(t) < =Wa((luellex) + Wa(lluellex)
< =V(t) + Wa([luellex)
Thus, V'(t) + V(t) < Wa(]|luel|ex). Multiplying e, we get
V/(t)e' + V(t)e' < Wa[luellex)e’
That is d(v(t ) < Wo(|luellex )et. Integrating from ¢ to ¢, we get
V(t)e' — V(ty)e™ < /tt Wa(||lusl|ox)e’ds < e /tt Wa(||us||ex)ds
0 0

Thus,

t
V(t) S V(to)e_t+t0 —|—/ W2(||us||cx)d8
to

¢
Vo) + [ Wallluox)ds
to
With Condition (i),

t
Wi(fu(t)|x) <V (t, u) < V(o) +/ Wa([lusllex)ds
to
Apply Corollary 2.2, we get
lu(t)|x < Wi [Vi(te) + Wt —to)] -
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