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ABSTRACT. We study a boundary value problem for the discrete beam equation. Some upper

and lower estimates for positive solutions of the problem are obtained. Sufficient conditions for the

existence and nonexistence of positive solutions are established.
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1. INTRODUCTION

Boundary value problems are important in theory and have wide applications in

physical sciences. For example, the boundary value problem

u(4)(t) = g(t)f(u(t)), 0 ≤ t ≤ 1, (1.1)

u(0) = u′(0) = u′(1) = u(1) = 0 (1.2)

arises in the study of elasticity and has definite physical meanings. The equation (1.1)

is often referred to as the beam equation. It describes the deflection of a beam under

a force. The boundary conditions (1.2) mean that the beam is embedded at both

ends t = 0 and t = 1. Related is the boundary value problem that consists of the

equation (1.1) and the boundary conditions

u(0) = u′(0) = u′(1) = u′′′(1) = 0. (1.3)

It is well known that the problem (1.1), (1.3) arises in the study of symmetric solutions

to the problem (1.1), (1.2).

In 2005, Yang [10] studied the problem (1.1), (1.3) and proved the following

theorem.

Theorem 1.1. If u ∈ C4[0, 1] satisfies (1.3) and is such that

u′′′′(t) ≥ 0, 0 ≤ t ≤ 1,
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then u(t) ≥ 0 for 0 ≤ t ≤ 1, and

(3t2 − 2t3)u(1) ≤ u(t) ≤ (2t − t2)u(1), 0 ≤ t ≤ 1.

In this paper, we consider the fourth order discrete boundary value problem

∆4yi−2 = gif(yi), 1 ≤ i ≤ n, (1.4)

y0 = ∆y−1 = ∆yn = ∆3yn−1 = 0. (1.5)

Here the forward difference operator ∆ is defined as

∆yi = yi+1 − yi.

Problem (1.4), (1.5) can be considered a discrete analogue of problem (1.1), (1.3).

It is important to study boundary value problems of difference equations from a

computational point of view. An example is included at the end of Section 3 to show

how we discretize a boundary value problem of fourth order differential equation and

then solve it numerically.

The main purpose of this paper is to prove some upper and lower estimates

for positive solutions of the problem (1.4), (1.5). These upper and lower estimates

are essential in finding sufficient conditions for the existence of positive solutions. We

refer the reader to [1, 3, 6, 8, 9, 11] for some recent works on boundary value problems

of discrete beam equations. Throughout the paper, we assume that

(H) n ≥ 4 is a fixed integer, gi ≥ 0 for 1 ≤ i ≤ n,

n
∑

i=1

gi > 0,

and f : [0, +∞) → [0, +∞) is a continuous function.

Definition 1.2. By a positive solution to the problem (1.4), (1.5), we mean a se-

quence

(y−1, y0, y1, . . . , yn, yn+1, yn+2)

which satisfies the difference equation (1.4), the boundary conditions (1.5), and the

inequalities

yi > 0, 1 ≤ i ≤ n.

Throughout the paper, we let R denote the set of real numbers. For 1 ≤ i ≤ n

and 1 ≤ j ≤ n, we define

Gi,j =

{

j

6
(j + 1)(1 + 3i − j) − ij(i+1)(j+1)

4(n+1)
, j ≤ i,

i

6
(i + 1)(1 + 3j − i) − ij(i+1)(j+1)

4(n+1)
, i < j.

Then, Gi,j is the Green function for the problem (1.4), (1.5), in the sense that
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(1) First, if

(y−1, y0, y1, . . . , yn, yn+1, yn+2)

is a solution to the problem (1.4), (1.5), then

(y1, y2, . . . , yn)

solves the sum equation

yi =

n
∑

j=1

Gi,jgjf(yj), 1 ≤ i ≤ n; (1.6)

(2) Secondly, if

(y1, y2, . . . , yn) ∈ R
n

solves the sum equation (1.6), then

(0, 0, y1, y2, . . . , yn−1, yn, yn, yn−1)

is a solution to the problem (1.4), (1.5).

In other words, problem (1.4), (1.5) is equivalent to the sum equation (1.6). Hence,

in order to solve the problem (1.4), (1.5), it suffices to solve the sum equation (1.6).

We leave it to the reader to verify that

Gi,j > 0, 1 ≤ i, j ≤ n,

and

Gi,j = Gj,i, 1 ≤ i, j ≤ n.

Throughout the paper, we define the norm ‖ · ‖ on R
n as

‖y‖ = max
1≤i≤n

|yi|, ∀y = (y1, . . . , yn) ∈ R
n.

We define the subset Y of R
n as

Y = {y = (y1, . . . , yn) ∈ R
n : yi ≥ 0, 1 ≤ i ≤ n}.

It is obvious that Y is a positive cone of R
n. For each y = (y1, . . . , yn) ∈ Y , we define

Ty ∈ R
n as

Ty =

(

n
∑

j=1

G1,jgjf(yj),
n
∑

j=1

G2,jgjf(yj), . . . ,
n
∑

j=1

Gn,jgjf(yj)

)

,

or equivalently,

(Ty)i =

n
∑

j=1

Gi,jgjf(yj), 1 ≤ i ≤ n.

It is easy to see that T : Y → Y is a continuous operator.

To prove some of our results, we will need the following fixed point theorem,

which is due to Krasnosel’skii [7].
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Theorem 1.3. Let (X, ‖ · ‖) be a Banach space over the reals, and let P ⊂ X be a

cone in X. Let H1 and H2 be real numbers such that H2 > H1 > 0, and let

Ωi = {v ∈ X | ‖v‖ < Hi}, i = 1, 2.

If

L : P ∩ ( Ω2 − Ω1) → P

is a completely continuous operator such that, either

(K1) ‖Lv‖ ≤ ‖v‖ if v ∈ P ∩ ∂Ω1, and ‖Lv‖ ≥ ‖v‖ if v ∈ P ∩ ∂Ω2, or

(K2) ‖Lv‖ ≥ ‖v‖ if v ∈ P ∩ ∂Ω1, and ‖Lv‖ ≤ ‖v‖ if v ∈ P ∩ ∂Ω2.

Then L has a fixed point in P ∩ ( Ω2 − Ω1).

The rest of this paper is organized as follows. In Section 2, we prove some upper

and lower estimates for positive solutions of the problem (1.4), (1.5). In Section 3,

we state and prove the existence and nonexistence results for positive solutions of the

problem (1.4), (1.5). In Section 4, we give estimates for the first eigenvalue of the

linear boundary eigenvalue problem associated with the problem (1.4), (1.5).

2. UPPER AND LOWER ESTIMATES

We fix some notations first. For 1 ≤ i ≤ n, we define

ai =
i(i + 1)(3n + 2 − 2i)

n(n + 1)(n + 2)

and

bi =
i(2n + 1 − i)

n(n + 1)
.

It is easy to verify that (a1, . . . , an) ∈ Y and (b1, . . . , bn) ∈ Y .

Lemma 2.1. We have

0 < a1 < a2 < a3 < · · · < an = 1,

0 < b1 < b2 < b3 < · · · < bn = 1,

and ai ≤ bi for 1 ≤ i ≤ n.

Proof. It is easy to see that a0 > 0, b0 > 0, and an = bn = 1. For 1 ≤ i ≤ n − 1, we

have

ai+1 − ai =
6(i + 1)(n − i)

n(n + 1)(n + 2)
> 0,

bi+1 − bi =
2(n − i)

n(n + 1)
> 0.

For 1 ≤ i ≤ n, we have

bi − ai =
2i(n − i)(n + 1 − i)

n(n + 1)(n + 2)
≥ 0.

The proof of the lemma is now complete.
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We have the following estimates for the Green function.

Lemma 2.2. For 1 ≤ i ≤ n and 1 ≤ j ≤ n, we have

aiGn,j ≤ Gi,j ≤ biGn,j. (2.1)

Proof. We take two cases to prove the first inequality in (2.1). If 1 ≤ i < j ≤ n, then

Gi,j − aiGn,j

=
i(i + 1)(n − j)(n − j + 1)

6n(n + 1)(n + 2)
[(j − i)n + 2j(n − i) + 2(j − i) + n + 2]

≥ 0.

If 1 ≤ j ≤ i ≤ n, then

Gi,j − aiGn,j

=
j(j + 1)(n − i)(n − i + 1)

6n(n + 1)(n + 2)
[(i − j)n + 2i(n − j) + 2(i − j) + n + 2]

≥ 0.

Thus, we proved the first inequality in (2.1).

It also takes two cases to prove the second inequality in (2.1). If 1 ≤ i < j ≤ n,

then

biGn,j − Gi,j

=
i

6n(n + 1)

[

(j − 1)(j + 1)(n − j)(n + 1 − j) + (j − i)2n(n + 1)

+j(j − i)(n2 − j2 + n + 1)
]

≥ 0.

If 1 ≤ j ≤ i ≤ n, then

biGn,j − Gi,j =
(j − 1)j(j + 1)(n − i)(n − i + 1)

6n(n + 1)
≥ 0.

Thus, we proved the second inequality in (2.1). The proof of the lemma is now

complete.

Lemma 2.3. If y = (y1, . . . , yn) ∈ Y , then

ai(Ty)n ≤ (Ty)i ≤ bi(Ty)n, 1 ≤ i ≤ n.

In particular, if y = (y1, . . . , yn) is a non-negative solution to the sum equation (1.6),

then y ∈ Y and

aiyn ≤ yi ≤ biyn, 1 ≤ i ≤ n.
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Proof. Let y ∈ Y . For 1 ≤ i ≤ n, we have

(Ty)i =

n
∑

j=1

Gi,jgjf(yj) ≤ bi

n
∑

j=1

Gn,jgjf(yj) = bi(Ty)n.

In a similar way, we can show that

(Ty)i ≥ ai(Ty)n, 1 ≤ i ≤ n.

The proof is now complete.

3. EXISTENCE AND NONEXISTENCE OF POSITIVE SOLUTIONS

First, we define some important constants:

A =
n
∑

j=1

Gn,jgjaj , B =
n
∑

j=1

Gn,jgjbj ,

F0 = lim sup
x→0+

f(x)

x
, f0 = lim inf

x→0+

f(x)

x
,

F∞ = lim sup
x→+∞

f(x)

x
, f∞ = lim inf

x→+∞

f(x)

x
.

Throughout the rest of the paper, we let

P = {v = (v1, . . . , vn) ∈ Y | vn ≥ 0, aivn ≤ vi ≤ bivn for 1 ≤ i ≤ n}.

Clearly P is a positive cone in R
n. The next lemma shows that if u ∈ P , then the

greatest component of u is un.

Lemma 3.1. If u ∈ P , then un = ‖u‖.

Proof. If u ∈ P , then we have

0 ≤ ui ≤ biun ≤ bnun = un, for 1 ≤ i ≤ n.

The proof is complete.

We can restate Lemma 2.3 as follows.

Lemma 3.2. We have T (P ) ⊂ P . And, if u ∈ R
n is a nonnegative solution to the

sum equation (1.6), then u ∈ P .

It is clear that the sum equation (1.6) is equivalent to the equality

Tu = u, u ∈ P.

In order to find a positive solution to the problem (1.4), (1.5), we need only to find

a fixed point u of T such that u ∈ P and un = ‖u‖ > 0.

Now, we are ready to prove some sufficient conditions for the existence of at least

one positive solution to the problem (1.4), (1.5).
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Theorem 3.3. Suppose that (H) holds. If BF0 < 1 < Af∞, then the problem (1.4),

(1.5) has at least one positive solution.

Proof. First, we choose ε > 0 such that (F0 + ε)B ≤ 1. From the definition of F0 we

see that there exists H1 > 0 such that

f(x) ≤ (F0 + ε)x for 0 < x ≤ H1.

For each u ∈ P with ‖u‖ = H1, we have

(Tu)n =
n
∑

j=1

Gn,jgjf(uj) ≤ (F0 + ε)
n
∑

j=1

Gn,jgjuj

≤ (F0 + ε)‖u‖
n
∑

j=1

Gn,jgjbj

= (F0 + ε)‖u‖B ≤ ‖u‖,

which means ‖Tu‖ ≤ ‖u‖. Thus, if we let Ω1 = {u ∈ R
n | ‖u‖ < H1}, then

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.

To construct Ω2, we choose δ > 0 such that

(f∞ − δ)

n
∑

j=1

Gn,jgjaj ≥ 1.

There exists H3 > 0 such that f(x) ≥ (f∞ − δ)x for x ≥ H3. Let H2 = H3/a1 + H1.

Then H2 > H1. If u ∈ P is such that ‖u‖ = H2, then, for 1 ≤ i ≤ n, we have

ui ≥ unai ≥ H2a1 ≥ H3.

Therefore, for each u ∈ P with ‖u‖ = H2, we have

(Tu)n =
n
∑

j=1

Gn,jgjf(uj) ≥ (f∞ − δ)
n
∑

j=1

Gn,jgjuj

≥ (f∞ − δ)‖u‖
n
∑

j=1

Gn,jgjaj ≥ ‖u‖,

which means ‖Tu‖ ≥ ‖u‖. Thus, if we let Ω2 = {u ∈ R
n | ‖u‖ < H2}, then Ω1 ⊂ Ω2,

and

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2.

Now, since the condition (K1) of Theorem 1.3 is satisfied, there exists a fixed point

of T in P ∩ ( Ω2 − Ω1). The proof is now complete.

In a similar way, we can prove the next existence result.

Theorem 3.4. Suppose that (H) holds. If BF∞ < 1 < Af0, then the problem (1.4),

(1.5) has at least one positive solution.
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The next two theorems provide sufficient conditions for the nonexistence of pos-

itive solutions to the problem (1.4), (1.5).

Theorem 3.5. Suppose that (H) holds. If Bf(x) < x for all x ∈ (0, +∞), then the

problem (1.4), (1.5) has no positive solutions.

Proof. Assume to the contrary that u ∈ P is a positive solution of the sum equation

(1.6). Then, ui > 0 for 1 ≤ i ≤ n, and

un =
n
∑

j=1

Gn,jgjf(uj) < B−1
n
∑

j=1

Gn,jgjuj

≤ B−1un

n
∑

j=1

Gn,jgjbj = B−1Bun = un,

which is a contradiction. The proof is complete.

Theorem 3.6. Suppose that (H) holds. If Af(x) > x for all x ∈ (0, +∞), then the

problem (1.4), (1.5) has no positive solutions.

The proof of Theorem 3.6 is quite similar to that of Theorem 3.5 and is therefore

omitted.

Example 3.7. Consider the problem

∆4yi−2 = λgif(yi), 1 ≤ i ≤ 10, (3.1)

y0 = ∆y−1 = ∆y10 = ∆3y9 = 0. (3.2)

Here λ > 0 is a parameter, gi = (1 + i + i2)/1000000 for 1 ≤ i ≤ 10, and

f(u) =
λu(1 + 2u)

1 + u
, u ≥ 0, (3.3)

It is easy to see that f0 = F0 = λ, f∞ = F∞ = 2λ, and

λu < f(u) < 2λu, for u > 0.

By direct calculation, we find that

A =
68539

2000000
and B =

23067

625000
.

By Theorem 3.3, if

14.59 ≈
1

2A
< λ <

1

B
≈ 27.09,

then the problem (3.1), (3.2) has at least one positive solution.

From Theorems 3.5 and 3.6, we see that if

λ ≥
1

A
≈ 29.18 or λ ≤

1

2B
≈ 13.547,

then the problem (3.1), (3.2) has no positive solutions.

This example shows that our existence and nonexistence conditions are quite

sharp.
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Example 3.8. We consider the boundary value problem

u′′′′(t) = p(t) · (7 + 3u(t)), 0 < t < 1, (3.4)

u(0) = u′(0) = u′(1) = u′′′(1) = 0, (3.5)

where

p(t) =
240t

49 + 75t2 − 60t3 + 6t5
.

This boundary value problem has a positive solution

û(t) = (25t2 − 20t3 + 2t5)/7.

Note that max0≤t≤1 û(t) = 1.

For illustrative purposes, we now try to solve problem (3.4), (3.5) numerically.

First, we let n = 500, h = 1/n, and, for each i = −1, 0, 1, 2, 3, . . . , n, n + 1, n + 2, we

let

ti = (i − 1/2)h.

This means that we divide the interval [0, 1] into n = 500 subintervals of equal length

and we let t1, t2, . . . , tn be the midpoints of these subintervals. The discretization of

the boundary value problem (3.4), (3.5) is now

(u(ti−2) − 4u(ti−1) + 6u(ti) − 4u(ti+1) + u(ti+2)) /h4 = p(ti)(7 + 3u(ti)),

i = 1, 2, 3, . . . , n, (3.6)

u(t0) = 0, u(t0) − u(t−1) = 0,

u(tn+1) − u(tn) = 0, u(tn+2) − 3u(tn+1) + 3u(tn) − u(tn−1) = 0.

}

(3.7)

If we denote u(ti) by ui for each i = −1, 0, 1, . . . , n, n + 1, n + 2, then we can rewrite

problem (3.6), (3.7) as

∆4ui−2 = h4p(ti)(7 + 3ui), i = 1, 2, 3, . . . , n, (3.8)

u0 = ∆u−1 = ∆un = ∆3un−1 = 0. (3.9)

The boundary value problem (3.8), (3.9) is equivalent to the sum equation

ui =
n
∑

j=1

G(i, j)h4p(tj)(7 + 3uj), i = 1, 2, 3, . . . , n. (3.10)

By using the contraction mapping theorem, we can show that the sum equation (3.10)

has a unique solution.

Next, we construct an approximate solution to the sum equation (3.10) through

iteration. Let

u
(0)
i = 1, i = 1, 2, . . . , n.

For m ≥ 1, we let

u
(m)
i =

n
∑

j=1

G(i, j)h4p(tj)
(

7 + 3u
(m−1)
j

)

, i = 1, 2, 3, . . . , n.
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This iteration converges very fast, and for m ≥ 6,
{

u
(m)
i

}n

i=1
is a very nice approxi-

mation for û(t). Calculations using MATLAB indicate that

max
1≤i≤n

∣

∣

∣
u

(6)
i − û(ti)

∣

∣

∣
< 0.0103,

which is a very small error if compared with the size of û(t).

4. ESTIMATES FOR THE FIRST EIGENVALUE

In this section, we consider the boundary eigenvalue problem

∆4yi−2 = λgiyi, 1 ≤ i ≤ n, (4.1)

y0 = ∆y−1 = ∆yn = ∆3yn−1 = 0. (4.2)

If we let

D =

































6 −4 1 0 0 · · · 0 0 0 0 0

−4 6 −4 1 0 · · · 0 0 0 0 0

1 −4 6 −4 1 · · · 0 0 0 0 0

0 1 −4 6 −4 · · · 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 1 −4 6 −4 1

0 0 0 0 0 · · · 0 1 −4 6 −3

0 0 0 0 0 · · · 0 0 1 −3 2

































,

K = diag(g1, . . . , gn),

y = (y1, y2, . . . , yn),

then we can write the problem (4.1), (4.2) into the form

DyT = λKyT ,

or equivalently

yT = λGKyT , (4.3)

where

G = (Gi,j)n×n.

Let M be the number of nonzero components in the vector (g1, . . . , gn). In 2006, Ji

and Yang [6] proved the following result.

Theorem 4.1. The eigenvalue problem (4.3) has M positive eigenvalues. Each of

the M eigenvalues is simple. The smallest eigenvalue λ1 corresponds to a positive

eigen-solution

y = (y1, . . . , yn) ∈ Y.

By using the upper and lower estimates for positive solutions that we obtained

in Section 2, we can prove the following theorem.
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Theorem 4.2. If λ1 is the smallest positive eigenvalue of the problem (4.3), then

1/B ≤ λ1 ≤ 1/A.

Proof. Let z = (z1, . . . , zn) ∈ Y be an eigen-solution corresponding to λ1. Then it is

obvious that z ∈ P , zn > 0. And, we have

zn = λ1(GKz)n = λ1

n
∑

j=1

Gn,jgjzj ≥ λ1zn

n
∑

j=1

Gn,jgjaj = λ1znA.

This implies that λ1 ≤ 1/A. In a very similar way, we can show that λ1 ≥ 1/B. The

proof is complete.
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