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KEYWORDS. Caputo fractional differential equations, integral boundary conditions, Monotone

iterative technique, Existence.

AMS (MOS) Subject Classification. 34K07, 34A08, 34B15.

1. INTRODUCTION

The theory of Fractional differential equations has been growing independently

and is emerging as tool in modelling the real world problems in a wide range of areas,

as the fractional calculus generalizes and includes the concepts of classical derivative

and integral of integer order and consequently its theory is much richer than the

theory of ordinary differential equations.

Although numerous theoretical applications of the fractional calculus operators

have been found during their long history, many mathematicians and applied re-

searchers have tried to model real processes using Fractional Differential Equations

and it was realised that the derivatives of the arbitrary order provide an excelent frame

work for modelling the problems in a variety of disciplines such as Control Theory

of Dynamical Systems, Electro-Chemistry of Corrosion, Optics and Signal Process-

ing, Network Traffic, Atmospheric Diffusion of Polution and many more. There is

a vast amount of literature available on this important area and some of important

publications are [2,4,5,6,9] .

In this paper we develop the Monotone iterative technique [3] which is a theo-

retical and a constructive method to obtain existence of solutions in a sector. While

developing this technique we consider the weakened hypothesis of Cq-continuity.
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2. PRELIMINARIES

In this section we present all the results that are necessary to prove our main

result. We begin with a Lemma [11] with the weakened hypothesis of Cp-continuity.

This Lemma is essential in proving the basic differential inequality results for frac-

tional differential inequalities.

As observed above, the comparison theorems [4] in the fractional differential

equations set-up require Hölder continuity. Although this requirement is used to

develop iterative techniques such as the monotone iterative technique [5,6,7,8,10] and

the method of quasilinearization [12,13], there is no feasible way to check whether the

functions involved are Hölder continuous. To avoid this situation, we used comparison

results of [11] under the weaker condition of Cp-continuity. Basically, Lemma 2.3.1 in

[4] is essential in establishing the comparison theorems, a detailed proof of this result

under the weakened hypothesis was taken from [11].

We begin with the definition of the class Cp[[t0, T ], R], and proceed to state the

results from [11].

Definition 2.1. m is said to be Cp-continuous, (i.e) m ∈ Cp[[t0, T ], R], if m ∈

C[(t0, T ], R] and (t − t0)
pm(t) ∈ C[[t0, T ], R] with p + q = 1.

Definition 2.2. For m ∈ Cp[[t0, T ], R], the Riemann-Liouville derivative of m(t) is

defined as

Dqm(t) =
1

Γ(p)

d

dt

∫ t

t0

(t − s)p−1 m(s)ds. (2.1)

We next give the proof of the following lemma from [11] that is vital for our main

result.

Lemma 2.3. Let m ∈ Cp[[t0, T ], R]. Suppose that for any t1 ∈ (t0, T ], we have

m(t1) = 0 and m(t) < 0 for t0 < t < t1, m(t)(t − t0)
p
∣

∣

t=t0
< 0 then it follows that

Dqm(t1) ≥ 0.

Proof. Consider m ∈ Cp[[t0, T ], R], such that m(t1) = 0 and m(t) < 0 for t0 < t < t1.

Then m(t) is continuous on (t0, T ] and m(t)(t − t0)
p is continuous on [t0, T ]. Since

m(t) is continuous on (t0, T ], given any t1 such that t0 < t1 ≤ T , there exists a

k(t1) > 0 such that

−k(t1)(t1 − s) ≤ m(t) − m(s) ≤ k(t1)(t1 − s) (2.2)

for t0 < t1 − h ≤ s ≤ t1 + h < T , h > 0. We require to prove Dqm(t1) ≥ 0.

We have Dqm(t) = 1
Γ(p)

d

dt

∫ t

t0
(t− s)p−1 m(s)ds, set H(t) =

∫ t

t0
(t− s)p−1 m(s)ds, then,

H(t1)−H(t1−h) =
∫ t1−h

t0
[(t1−s)p−1−(t1−h−s)p−1]m(s)ds+

∫ t1

t1−h
(t1−s)p−1m(s)ds.

Let I1 =
∫ t1−h

t0
[(t1 − s)p−1 − (t1 − h − s)p−1]m(s)ds and I2 =

∫ t1

t1−h
(t1 − s)p−1m(s)ds.
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Since t1 − s > t1 − h − s and p − 1 < 0, we have (t1 − s)p−1 < (t1 − h − s)p−1. Also

by using the fact that m(t) < 0 for t0 ≤ t < t1, we get I1 ≥ 0. Now, consider I2 =
∫ t1

t1−h
(t1−s)p−1m(s)ds. Using (2.2) and the fact that m(t1) = 0, for s ∈ (t1−h, t1+h)

we obtain, m(s) ≥ −k(t1)(t1−s), and I2 ≥ −k(t1)
∫ t1

t1−h
(t1−s)pds = −k(t1)

hp+1

p+1
. Thus

we have H(t1) − H(t1 − h) ≥ −k(t1)
hp+1

p+1
. Now by dividing with h and apllying the

limits as h → 0, we have limh→0[
H(t1)−H(t1−h)

h
+ k(t1)hp+1

(p+1)h
] ≥ 0. Since p ∈ (0, 1), we

conclude that dH(t1)
dt

≥ 0, which implies that Dqm(t1) ≥ 0.

We now define a Cq-continuous function.

Definition 2.4. u is said to be Cq-continuous, (i.e) u ∈ Cq[[t0, T ], R] if the Caputo

derivative of u denoted by cDqu exists and u satisfies

cDqu(t) =
1

Γ(1 − q)

∫ t

t0

(t − s)−qu′(s)ds. (2.3)

We note that the Caputo and Riemann-Liouville derivatives are related as follows.

cDqx(t) = Dq[x(t) − x(t0)]. (2.4)

It is convenient to work with the Caputo fractional derivative, since the initial

conditions for fractional differential equations are of the same form as those of ordinary

differential equations. Further, the Caputo fractional derivative of a constant is zero,

which is useful in our work.

Consider the IVP for the Caputo fractional differential equation with integral

boundary condition given by






cDqx = f(t, x), t ∈ [t0, T ],

x(t0) = λ
∫ T

t0
x(s)ds + d, where d ≥ 0, λ = 1 or − 1

(2.5)

for 0 < q < 1, f ∈ C[[t0, T ] × R, R]. If x ∈ Cq[[t0, T ], R] satisfies (2.5), then it also

satisfies the Volterra fractional integral

x(t) = λ

∫ T

t0

x(s)ds + d +
1

Γ(q)

∫ t

t0

(t − s)q−1 f(s, x(s))ds, (2.6)

where d ≥ 0, λ = 1 or −1 and t ∈ [t0, T ].

3. MONOTONE ITERATIVE TECHNIQUE FOR THE CASE λ = 1

The monotone iterative technique is a flexible mechanism that guarantees the

existence of a solution in a sector. This technique has been developed for fractional

differential equations in [7,8,10], and for differential equations with integral bound-

ary conditions in [14], R-L fractional differential equations with integral boundary

conditions in [17] with the hypothesis of local Hölder continuity and in [15, 16] for

a HCFDE with a weakened hypothesis of Cq continuity. In this section we develop



110 M. K. SASTRY

the monotone iterative technique for Caputo fractional differential equations (CFDE)

involving integral boundary conditions for λ = 1, with the weakened hypothesis of

Cq-continuity.

Consider the Caputo fractional differential equation given by






cDqx = f(t, x), t ∈ [t0, T ],

x(t0) =
∫ T

t0
x(s)ds + d, d ≥ 0.

(3.1)

for 0 < q < 1, f ∈ C[[t0, T ] × R, R].

We begin with the definition of lower and upper solutions for (3.1).

Definition 3.1. v, w ∈ Cq[[t0, T ], R] are said to be lower and upper solutions of IVP

of CFDE (3.1), if and only if, they satisfy the following inequalities






cDqv(t) ≤ f(t, v(t)), t ∈ [t0, T ],

v(t0) ≤
∫ T

t0
v(s)ds + d, d ≥ 0

(3.2)

and






cDqw(t) ≥ f(t, w(t)), t ∈ [t0, T ],

w(t0) ≥
∫ T

t0
w(s)ds + d, d ≥ 0

(3.3)

respectively.

We now present the fundamental results relative to strict and non strict frac-

tional differential inequalities in Caputo fractional derivative set up, with a weakend

hypothesis of Cq-continuity, for λ = 1. As the result for strict inequalities is very

similar to that of Theorem 2.4 of [11], we omit.

Theorem 3.2. Let v, w ∈ Cq[[t0, T ], R], f ∈ C[[t0, T ] × R, R] and

(i) cDqv(t) ≤ f(t, v(t))

and

(ii)cDqw(t) ≥ f(t, w(t)),

t0 < t ≤ T , with one of the inequalities (i) or (ii) being strict. Then v(t0) < w(t0),

where v(t0) ≤
∫ T

t0
v(s)ds + d and w(t0) ≥

∫ T

t0
w(s)ds + d implies that

v(t) < w(t), t0 ≤ t ≤ T. (3.4)

Theorem 3.3. Let v, w ∈ Cq[[t0, T ], R], f ∈ C[[t0, T ] × R, R] and

(i) cDqv(t) ≤ f(t, v(t))

and

(ii)cDqw(t) ≥ f(t, w(t)),
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t0 < t ≤ T. Further assume that f satisfies the Lipschitz condition

f(t, x) − f(t, y) ≤ L(x − y), x ≥ y, L > 0. (3.5)

Then, v(t0) ≤ w(t0), where v(t0) ≤
∫ T

t0
v(s)ds + d and w(t0) ≥

∫ T

t0
w(s)ds + d implies

v(t) ≤ w(t), t ∈ [t0, T ].

Proof. We set

wǫ(t) = w(t) + ǫλ(t),

where ǫ is a small positive number and λ(t) = Eq,q(2L(t− t0)
q) now wǫ(t0) = w(t0) +

ǫλ(t0)

wǫ(t0) = w(t0) + ǫ

[
∫ T

t0

λ(s)ds + d

]

= w(t0) + ǫ[

∫ T

t0

∞
∑

k=0

2L(t − t0)
qk

Γ(qk + q)
ds + d]

= w(t0) + ǫd + ǫ

∞
∑

k=0

∫ T

t0

2L(s − t0)
qk

Γ(qk + q)
ds

= w(t0) + ǫd + ǫ

∞
∑

k=0

2L(s − t0)
qk+1

Γ(qk + q)(qk + 1)

∣

∣

∣

T

t0

= w(t0) + ǫd + ǫ

∞
∑

k=0

(qk + 1)(T − t0)
qk+1

Γ(qk + q)(qk + 1)(T − t0)

by choosing

2L =
(qk + 1)

(T − t0)

= w(t0) + ǫd + ǫ

∞
∑

k=0

(T − t0)
qk

Γ(qk + q)

= w(t0) + ǫd + ǫEq,q((T − t0)
q)

> w(t0) ≥ v(t0)

and wǫ(t) > w(t).

Employing the Lipschitz condition (3.5) , we see that

cDqwǫ(t) = cDqw(t) + cDqǫλ(t)

≥ f(t, w(t)) − f(t, wǫ(t)) + f(t, wǫ(t)) + ǫ[2Lλ(t)]

≥ L(−ǫλ(t)) + f(t, wǫ(t)) + ǫ(2Lλ(t))

> f(t, wǫ(t))
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Here we employed the fact that λ(t) is the solution of linear Caputo Fractional Dif-

ferential Equation






cDqλ(t) = 2Lλ(t), t0 ≤ t ≤ T,

λ(t0) =
∫ T

t0
λ(s)ds + d > 0.

Now applying the Theorem 3.2 to v(t), wǫ(t) to get v(t) < wǫ(t), t0 ≤ t ≤ T As

ǫ → 0, we arrive at the desired conclusion v(t) ≤ w(t), t0 ≤ t ≤ T .

Parallel to Theorem 2.4.3 in [4], we state the comparison theorem for the Caputo

fractional differential equation with integral boundary conditions for λ = 1 using the

same weaker hypothesis. As the proof is similar to that of Theorem 2.4.3 in [4], we

omit it.

Theorem 3.4. Assume that m ∈ Cq[[t0, T ], R] and

cDqm(t) ≤ g(t, m(t)), t0 ≤ t ≤ T,

where g ∈ C[[t0, T ] × R, R]. Let r(t) be the maximal solution of the IVP






cDqu = g(t, u),

u(t0) =
∫ T

t0
u(s)ds + d ≥ 0

(3.6)

existing on [t0, T ] such that m(t0) =
∫ T

t0
m(s)ds + d ≤ u(t0). Then we have m(t) ≤

r(t), t0 ≤ t ≤ T .

Lemma 3.5. The linear nonhomogeneous Caputo Fractional Differential Equation

(CFDE)






cDqx(t) = f(t, y)− M(x − y), t ∈ [t0, T ],

x(t0) =
∫ T

t0
x(s)ds + d, d ≥ 0

(3.7)

has a unique solution [2,4] in the interval [t0, T ], is given by

x(t) =

(
∫ T

t0

x(s)ds + d

)

Eq[−M(t−t0)
q]+

∫ t

t0

(t−s)q−1Eq,q(−M(t−s)q)f(s, y(s))ds.

As the proof is similar to given in [2,4] hence we omit.

Lemma 3.6. The linear homogeneous Caputo fractional differential equation (CFDE)






cDqp(t) = −Mp(t), t ∈ [t0, T ],

p(t0) =
∫ T

t0
p(s)ds + d, d ≥ 0

(3.8)

has a unique solution [2,4] in the interval [t0, T ], is given by

p(t) =

(
∫ T

t0

p(s)ds + d

)

Eq[−M(t − t0)
q], t ∈ [t0, T ].
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Corollary 3.7. From the above lemma we can also have






cDqp(t) ≤ −Mp(t), t ∈ [t0, T ],

p(t0) =
∫ T

t0
p(s)ds + d, d ≥ 0

(3.9)

has a unique solution in the interval [t0, T ], is given by

p(t) ≤

(
∫ T

t0

p(s)ds + d

)

Eq[−M(t − t0)
q], t ∈ [t0, T ]

Lemma 3.8. Suppose that

(i) v0(t), w0(t) be the lower and upper solutions of the IVP of CFDE (3.1), and

v0(t) ≤ w0(t), t ∈ [t0, T ],

(ii) v1(t), w1(t) be the unique solutions of the linear nonhomogeneous Caputo frac-

tional differential equations






cDqv1 = f(t, v0) − M(v1 − v0), t ∈ [t0, T ],

v1(t0) =
∫ T

t0
v0(s)ds + d, d ≥ 0

(3.10)







cDqw1 = f(t, w0) − M(w1 − w0), t ∈ [t0, T ],

w1(t0) =
∫ T

t0
w0(s)ds + d, d ≥ 0

(3.11)

respectively,

(iii) f ∈ C[[t0, T ] × R, R] and f(t, x) − f(t, y) ≤ −M(x − y) for v0 ≤ x ≤ y ≤ w0,

M > 0.

Then v0(t) ≤ v1(t) ≤ w1(t) ≤ w0(t), t ∈ [t0, T ].

Proof. Suppose that v0(t) be a lower solution of IVP of CFDE (3.1), and v1(t) be the

unique solution of (3.10). Now, set p(t) = v0(t)−v1(t), where t ∈ [t0, T ]. Then we have
cDqp(t) = cDqv0(t) −

cDqv1(t) ≤ f(t, v0) − [f(t, v0) −M(v1 − v0)] ≤ −Mp(t). Thus
cDqp(t) ≤ −Mp(t) and p(t0) = v0(t0)− v1(t0) ≤

∫ T

t0
v0(s)ds + d−

∫ T

t0
v0(s)ds− d = 0.

Then from the Corollary 3.7 we have p(t) ≤ p(t0)Eq(−M(t − t0)
q). Which yields

p(t) ≤ 0, t ∈ [t0, T ] since p(t0) ≤ 0. Thus we have v0(t) ≤ v1(t), t ∈ [t0, T ]. Similarly

suppose that w0(t) be an upper solution of IVP of CFDE (3.1) and w1(t) be the

unique solution of (3.11). Now, set p(t) = w1(t) − w0(t), where t ∈ [t0, T ]. Then

we have cDqp(t) = cDqw1(t) −
cDqw0(t) ≤ [f(t, w0) − M(w1 − w0)] − f(t, w0) ≤

−Mp(t). Thus cDqp(t) ≤ −Mp(t) and p(t0) = w1(t0) − w0(t0) ≤
∫ T

t0
w0(s)ds + d −

∫ T

t0
w0(s)ds−d = 0. Then from the Corollary 3.7 we have p(t) ≤ p(t0)Eq(−M(t−t0)

q).

Which yields p(t) ≤ 0, t ∈ [t0, T ] since p(t0) ≤ 0. Thus we have w1(t) ≤ w0(t),

t ∈ [t0, T ]. To prove v1 ≤ w1 set p(t) = v1(t) − w1(t), where t ∈ [t0, T ]. Then we

have cDqp(t) = cDqv1(t)−
cDqw1(t) = f(t, v0(t))−M [v1(t) − v0(t))]− f(t, w0(t)) +

M [w1(t)−w0(t)] ≤ −M [v0(t)−w0(t)]−M [v1(t)−v0(t))]+M [w1(t)−w0(t)] ≤ −Mp(t).

Thus cDqp(t) ≤ −Mp(t) and p(t0) = v1(t0)−w1(t0) =
∫ T

t0
v0(s)ds+d−

∫ T

t0
w0(s)ds−
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d ≤ 0 since vo(t) ≤ w0(t), t ∈ [t0, T ]. Then from the Corollary 3.7 we have p(t) ≤

p(t0)Eq(−M(t − t0)
q). Which yields p(t) ≤ 0, t ∈ [t0, T ] since p(t0) ≤ 0. Thus we

have v1(t) ≤ w1(t), t ∈ [t0, T ], which completes the proof.

We now state and prove the main result.

Theorem 3.9. Assume that

i) v0, w0 be the lower and upper solutions of IVP of CFDE (3.1) such that v0(t) ≤

w0(t) for t ∈ [t0, T ],

ii) f ∈ C[[t0, T ] × R, R] and f(t, x) − f(t, y) ≤ −M(x − y) for v0 ≤ x ≤ y ≤

w0, M > 0.

Then there exist monotone sequences {vn}, {wn} such that vn → ρ, wn → r as n → ∞

uniformly and monotonically on [t0, T ] and (ρ, r) are minimal and maximal solutions

of the IVP of CFDE (3.1) respectively.

Proof. Consider






cDqvi+1(t) = f(t, vi(t)) − M(vi+1(t) − vi(t)), t ∈ [t0, T ],

vi+1(t0) =
∫ T

t0
vi(s)ds + d, d ≥ 0

(3.12)

and






cDqwi+1(t) = f(t, wi(t)) − M(wi+1(t) − wi(t)), t ∈ [t0, T ],

wi+1(t0) =
∫ T

t0
wi(s)ds + d, d ≥ 0

(3.13)

For i = 0, Lemma 3.8 shows that

v0(t) ≤ v1(t) ≤ w1(t) ≤ w0(t), t ∈ [t0, T ] (3.14)

Next for i > 1, we assume that,

vi−1(t) ≤ vi(t) ≤ wi(t) ≤ wi−1(t), t ∈ [t0, T ] (3.15)

and prove that

vi(t) ≤ vi+1(t) ≤ wi+1(t) ≤ wi(t), t ∈ [t0, T ]. (3.16)

Since, vi(t) is a lower solution of IVP of CFDE (3.1) and vi+1(t) is the unique solution

of linear nonhomogeneous CFDE (3.12) by applying Lemma 3.8 we obtain that vi(t) ≤

vi+1(t) on t ∈ [t0, T ]. Similarly wi(t) is an upper solution of IVP of CFDE (3.1) and

wi+1(t) is the unique solution of linear nonhomogeneous CFDE (3.13), application of

Lemma 3.8 yields wi+1(t) ≤ wi(t), t ∈ [t0, T ]. To prove vi+1(t) ≤ wi+1(t), t ∈ [t0, T ].

Set p(t) = vi+1(t) − wi+1(t), on t ∈ [t0, T ]. Then

cDqp(t) = cDqvi+1(t) −
cDqwi+1(t)

= [f(t, vi(t)) − M(vi+1(t) − vi(t))] − [f(t, wi(t)) − M(wi+1(t) − wi(t))]

≤ −Mp(t),
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and p(t0) = vi+1(t0)−wi+1(t0) =
∫ T

t0
vi(s)ds+d−

∫ T

t0
wi(s)ds−d ≤ 0, since vi(t) ≤ wi(t)

for all t ∈ [t0, T ]. Thus we have






cDqp(t) ≤ −Mp(t),

p(t0) ≤ 0.

From the Corollary 3.7 we get

p(t) ≤ p(t0)Eq(−M(t − t0)
q), t ∈ [t0, T ].

This yields p(t) ≤ 0, t ∈ [t0, T ], since p(t0) ≤ 0. Thus we have vi+1(t) ≤ wi+1(t),

t ∈ [t0, T ] Thus (3.16) is proved and therefore by the principle of mathematical

induction, we see that

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0, t ∈ [t0, T ].

Thus the sequence of functions {vn},{wn} are continuous and uniformly bounded

on [t0, T ], also we can conclude that the sequence of functions {vn} and {wn} are

equicontinuous by using Lemma 2.3.2 in [4] and the relation between the solution of

Caputo fractional differential equations and the solution of R-L fractional differential

equations [1]. Thus by using Arzela-Ascoli’s Theorem, we obtain that the entire

sequence {vn} converges uniformly and monotonically to ρ(t) on [t0, T ], and {wn}

converges uniformly and monotonically to r(t) on [t0, T ], i.e

lim
n→∞

vn = ρ and lim
n→∞

wn = r,

t ∈ [t0, T ].

To show that ρ and r are the solutions of the IVP of CFDE (3.1) using the

corresponding Volterra’s integral equations

vn+1(t) =

∫ T

t0

vn(s)ds + d +
1

Γ(q)

∫ t

t0

(t − s)q−1h(s, vn(s))ds, d ≥ 0 (3.17)

and

wn+1(t) =

∫ T

t0

wn(s)ds + d +
1

Γ(q)

∫ t

t0

(t − s)q−1h(s, wn(s))ds, d ≥ 0 (3.18)

where h(s, vn(s)) = f(t, vn(s)) − M(vn+1(s) − vn(s)) and h(s, wn(s)) = f(t, wn(s)) −

M(wn+1(s) − wn(s)). Now by taking the limits as n → ∞, and using the uniform

continuity of f and the uniform convergence of the sequences {vn} and {wn}, t ∈

[t0, T ], we get






cDqρ(t) = f(t, ρ(t)), t ∈ [t0, T ],

ρ(t0) =
∫ T

t0
x(s)ds + d, d ≥ 0

(3.19)

and






cDqr(t) = f(t, r(t)), t ∈ [t0, T ],

r(t0) =
∫ T

t0
x(s)ds + d, d ≥ 0

(3.20)
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for t ∈ [t0, T ]. Further,

v0(t) ≤ ρ(t) ≤ r(t) ≤ w0(t)

t ∈ [t0, T ]. To prove ρ(t), r(t) are respectively minimal and maximal solutions of IVP

of CFDE (3.1), we have to show that if x(t) is any solution of IVP of CFDE (3.1)

such that v0(t) ≤ x(t) ≤ w0(t), t ∈ [t0, T ] then

v0(t) ≤ ρ(t) ≤ x(t) ≤ r(t) ≤ w0(t)

t ∈ [t0, T ]. To prove this, since vn(t), wn(t) satisfy

cDqvn(t) = f(t, vn−1(t)) − M(vn(t) − vn−1(t)), vn(t0) =

∫ T

t0

vn−1(s)ds + d, d ≥ 0

and

cDqwn(t) = f(t, wn−1(t))−M(wn(t)−wn−1(t)), wn(t0) =

∫ T

t0

wn−1(s)ds+d, d ≥ 0

respectively, suppose that for some n, vn(t) ≤ x(t) ≤ wn(t), t ∈ [t0, T ] and set

p(t) = vn+1(t) − x(t) so that,

cDqp(t) = cDqvn+1(t) −
cDqx(t) = [f(t, vn(t)) − M(vn+1(t) − vn(t)] − f(t, x)

≤ −M(vn(t) − x(t)) − M(vn+1(t) − vn(t))

= −Mp(t), t ∈ [t0, T ].

Also p(t0) =
∫ T

t0
vn(s)ds + d−

∫ T

t0
x(s)ds− d ≤ 0, d ≥ 0 since vn(t) ≤ x(t), t ∈ [t0, T ].

Thus






cDqp(t) ≤ −Mp(t), t ∈ [t0, T ],

p(t0) ≤ 0

Now by applying the Corollary 3.7 we get vn+1(t) ≤ x(t), t ∈ [t0, T ]. Similar process

yields that x(t) ≤ wn+1(t), t ∈ [t0, T ]. Thus we have vn+1(t) ≤ x(t) ≤ wn+1(t) on

[t0, T ], whenever vn(t) ≤ x(t) ≤ wn(t) on [t0, T ]. Now taking the limits, we obtain

that ρ(t) ≤ x(t) ≤ r(t) for t ∈ [t0, T ].

Corollary 3.10. If in addition to the assumptions of the Theorem 3.9 we have

f(t, x) − f(t, y) ≤ M(x − y),

v0 ≤ y ≤ x ≤ w0, M ≥ 0 and L ≥ 0. Then ρ = r = x is the unique solution of the

IVP of CFDE (3.1).

Proof. To prove this, set p(t) = r(t) − ρ(t). Then we have,

cDqp(t) =c Dqr(t) −c Dqρ(t) = f(t, r(t)) − f(t, ρ(t))

≤ M(r(t) − ρ(t)) = Mp(t), t ∈ [t0, T ]
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and p(t0) = 0. Thus we have






cDqp(t) ≤ Mp(t), t ∈ [t0, T ]

p(t0) = 0.

Now by using the Corollary 3.7 we can have p(t) ≤ 0, which implies that r(t) ≤ ρ(t),

t ∈ [t0, T ]. Thus we conclude that ρ(t) = r(t) = x(t) for t ∈ [t0, T ], which proves the

uniqueness of solution. Thus the proof is complete.

4. MONOTONE ITERATIVE TECHNIQUE FOR THE CASE λ = −1

In this section we develop the monotone iterative technique for Caputo fractional

differential equations (CFDE) involving integral boundary conditions for λ = −1,

with the weakened hypothesis of Cq-continuity.

Consider the Caputo fractional differential equation involving integral boundary

conditions for λ = −1 given by






cDqx = f(t, x), t ∈ [t0, T ],

x(t0) = −
∫ T

t0
x(s)ds + d, d ≥ 0

(4.1)

for 0 < q < 1, f ∈ C[[t0, T ] × R, R].

Definition 4.1. v, w ∈ Cq[[t0, T ], R] are said to be weakly coupled lower and upper

solutions of IVP of CFDE (4.1), if and only if, they satisfy the following inequalities






cDqv(t) ≤ f(t, v(t)), t ∈ [t0, T ],

v(t0) ≤ −
∫ T

t0
w(s)ds + d, d ≥ 0

(4.2)

and






cDqw(t) ≥ f(t, w(t)), t ∈ [t0, T ],

w(t0) ≥ −
∫ T

t0
v(s)ds + d, d ≥ 0

(4.3)

respectively.

As earlier we state the fundamental results relative to strict and non strict frac-

tional differential inequalities in Caputo fractional derivative set up, with a weakend

hypothesis of Cq-continuity, for λ = −1. As the result for strict inequalities is very

similar to that of Theorem 2.4 of [11], we omit.

Theorem 4.2. Let v, w ∈ Cq[[t0, T ], R], f ∈ C[[t0, T ] × R, R] and

(i) cDqv(t) ≤ f(t, v(t))

and

(ii) cDqw(t) ≥ f(t, w(t)),
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t0 < t ≤ T, with one of the inequalities (i) or (ii) being strict. Then v(t0) < w(t0),

where v(t0) ≤ −
∫ T

t0
w0(s)ds + d, d ≥ 0 and w(t0) ≥ −

∫ T

t0
v0(s)ds + d, d ≥ 0 implies

that

v(t) < w(t), t0 ≤ t ≤ T. (4.4)

The next result deals with the inequality theorem for non strict inequalities.

Theorem 4.3. Let v, w ∈ Cq[[t0, T ], R], f ∈ C[[t0, T ] × R, R] and

(i) cDqv(t) ≤ f(t, v(t))

and

(ii) cDqw(t) ≥ f(t, w(t)),

t0 < t ≤ T , with non strict inequalities (i) and (ii). Further assume that f satisfies

the Lipschitz condition

f(t, x) − f(t, y) ≤ −L(x − y), x ≥ y, L > 0. (4.5)

Then, v(t0) ≤ w(t0), where v(t0) ≤ −
∫ T

t0
w(s)ds+d, d ≥ 0 and w(t0) ≥ −

∫ T

t0
v(s)ds+

d, d ≥ 0 implies v(t) ≤ w(t), t ∈ [t0, T ].

Proof. We set

wǫ(t) = w(t) + ǫλ(t),

where ǫ is a small positive number and λ(t) = Eq,q(−2L(t − t0)
q) now wǫ(t0) =

w(t0) + ǫλ(t0)

wǫ(t0) = w(t0) + ǫ[−

∫ T

t0

λ(s)ds + d]

= w(t0) + ǫ

[

−

∫ T

t0

∞
∑

k=0

−2L(t − t0)
qk

Γ(qk + q)
ds + d

]

= w(t0) + ǫd − ǫ

∞
∑

k=0

∫ T

t0

−2L(s − t0)
qk

Γ(qk + q)
ds

= w(t0) + ǫd − ǫ

∞
∑

k=0

−2L(s − t0)
qk+1

Γ(qk + q)(qk + 1)

∣

∣

∣

T

t0

= w(t0) + ǫd + ǫ

∞
∑

k=0

(qk + 1)(T − t0)
qk+1

Γ(qk + q)(qk + 1)(T − t0)

by choosing

2L =
(qk + 1)

(T − t0)

= w(t0) + ǫd + ǫ

∞
∑

k=0

(T − t0)
qk

Γ(qk + q)

= w(t0) + ǫd + ǫEq,q((T − t0)
q)



EXISTENCE AND UNIQUENESS OF SOLUTIONS OF CFDE WITH INTEGRAL B.C 119

> w(t0) ≥ v(t0)

and wǫ(t) > w(t). Employing the Lipschitz condition (4.5), we see that

cDqwǫ(t) = cDqw(t) + cDqǫλ(t)

≥ f(t, w(t)) − f(t, wǫ(t)) + f(t, wǫ(t)) + ǫ[2Lλ(t)]

≥ L(−ǫλ(t)) + f(t, wǫ(t)) + ǫ(2Lλ(t))

> f(t, wǫ(t))

Here we employed the fact that λ(t) is the solution of linear Caputo Fractional Dif-

ferential Equation






cDqλ(t) = 2Lλ(t), t0 ≤ t ≤ T,

λ(t0) = −
∫ T

t0
λ(s)ds + d > 0, d ≥ 0.

Now applying the Theorem 4.2 to v(t), wǫ(t) to get v(t) < wǫ(t), t0 ≤ t ≤ T. As

ǫ → 0, we arrive at the desired conclusion v(t) ≤ w(t), t0 ≤ t ≤ T .

Parallel to Theorem 2.4.3 in [4], we state the comparison theorem for the Caputo

fractional differential equation with integral boundary conditions for λ = −1 using

the same weaker hypothesis. As the proof is similar to that of Theorem 2.4.3 in [4],

we omit it.

Theorem 4.4. Assume that m ∈ Cq[[t0, T ], R] and

cDqm(t) ≤ g(t, m(t)), t0 ≤ t ≤ T,

where g ∈ C[[t0, T ] × R, R]. Let r(t) be the maximal solution of the IVP






cDqu = g(t, u),

u(t0) = −
∫ T

t0
u(s)ds + d ≥ 0, d ≥ 0,

(4.6)

existing on [t0, T ] such that m(t0) = −
∫ T

t0
m(s)ds + d ≤ u(t0). Then we have m(t) ≤

r(t), t0 ≤ t ≤ T .

Before we proceed further, we need to present the following results to linear

Caputo fractional differential equations in a suitable form for λ = −1.

Lemma 4.5. The linear nonhomogeneous Caputo Fractional Differential Equation

(CFDE)






cDqx(t) = f(t, y)− M(x − y), t ∈ [t0, T ],

x(t0) = −
∫ T

t0
x(s)ds + d, d ≥ 0

(4.7)

has a unique solution [2, 4] in the interval [t0, T ], is given by

x(t) =

(

−

∫ T

t0

x(s)ds + d

)

Eq[−M(t−t0)
q]+

∫ t

t0

(t−s)q−1Eq,q(−M(t−s)q)f(s, y(s))ds.
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As the proof is similar to given in [2,4] hence we omit.

Lemma 4.6. The linear homogeneous Caputo fractional differential equation (CFDE)






cDqp(t) = −Mp(t), t ∈ [t0, T ],

p(t0) = −
∫ T

t0
p(s)ds + d, d ≥ 0

(4.8)

has a unique solution [2, 4] in the interval [t0, T ], is given by p(t) = (−
∫ T

t0
p(s)ds +

d)Eq[−M(t − t0)
q], t ∈ [t0, T ]

Corollary 4.7. From the above lemma we can also have






cDqp(t) ≤ −Mp(t), t ∈ [t0, T ],

p(t0) = −
∫ T

t0
p(s)ds + d, d ≥ 0

(4.9)

has a unique solution in the interval [t0, T ], is given by

p(t) ≤

(

−

∫ T

t0

p(s)ds + d

)

Eq[−M(t − t0)
q], t ∈ [t0, T ].

Lemma 4.8. Suppose that

(i) v0(t), w0(t) be the weakly coupled lower and upper solutions of the IVP of CFDE

(4.1) and v0(t) ≤ w0(t), t ∈ [t0, T ],

(ii) v1(t), w1(t) be the unique solutions of the linear nonhomogeneous Caputo frac-

tional differential equations






cDqv1 = f(t, v0) − M(v1 − v0), t ∈ [t0, T ],

v1(t0) = −
∫ T

t0
w0(s)ds + d, d ≥ 0

(4.10)







cDqw1 = f(t, w0) − M(w1 − w0), t ∈ [t0, T ],

w1(t0) = −
∫ T

t0
v0(s)ds + d, d ≥ 0

(4.11)

respectively,

(iii) f ∈ C[[t0, T ] × R, R] and f(t, x) − f(t, y) ≤ −M(x − y) for v0 ≤ x ≤ y ≤ w0,

M > 0. Then v0(t) ≤ v1(t) ≤ w1(t) ≤ w0(t), t ∈ [t0, T ].

Proof. Suppose that v0(t) be weakly coupled lower solution of IVP of CFDE (4.1) and

v1(t) be the unique solution of (4.10). Now, set p(t) = v0(t)− v1(t), where t ∈ [t0, T ].

Then we have

cDqp(t) = cDqv0(t) −
cDqv1(t) ≤ f(t, v0) − [f(t, v0) − M(v1 − v0)] ≤ −Mp(t).

Thus cDqp(t) ≤ −Mp(t) and p(t0) = v0(t0)−v1(t0) ≤ −
∫ T

t0
w0(s)ds+d+

∫ T

t0
w0(s)ds−

d = 0. Then from the Corollary 4.7 we have p(t) ≤ p(t0)Eq(−M(t − t0)
q). Which

yields p(t) ≤ 0, t ∈ [t0, T ] since p(t0) ≤ 0. Thus we have v0(t) ≤ v1(t), t ∈ [t0, T ].

Similarly suppose that w0(t) be weakly coupled upper solution of IVP of CFDE (4.1)
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and w1(t) be the unique solution of (4.11). Now, set p(t) = w1(t) − w0(t), where

t ∈ [t0, T ]. Then we have

cDqp(t) = cDqw1(t) −
cDqw0(t) ≤ [f(t, w0) − M(w1 − w0)] − f(t, w0) ≤ −Mp(t).

Thus cDqp(t) ≤ −Mp(t) and p(t0) = w1(t0)−w0(t0) ≤ −
∫ T

t0
v0(s)ds+d+

∫ T

t0
v0(s)ds−

d = 0. Then from the Corollary 4.7 we have p(t) ≤ p(t0)Eq(−M(t − t0)
q). Which

yields p(t) ≤ 0, t ∈ [t0, T ] since p(t0) ≤ 0. Thus we have w1(t) ≤ w0(t), t ∈ [t0, T ].

To prove v1(t) ≤ w1(t), set p(t) = v1(t) − w1(t), where t ∈ [t0, T ]. Then we have

cDqp(t) = cDqv1(t) −
cDqw1(t)

= f(t, v0(t)) − M [v1(t) − v0(t))] − f(t, w0(t)) + M [w1(t) − w0(t)]

≤ −M [v0(t) − w0(t)] − M [v1(t) − v0(t))] + M [w1(t) − w0(t)] ≤ −Mp(t).

Thus cDqp(t) ≤ −Mp(t) and

p(t0) = v1(t0) − w1(t0) = −

∫ T

t0

w0(s)ds + d +

∫ T

t0

v0(s)ds − d ≤ 0

since vo(t) ≤ w0(t), t ∈ [t0, T ]. Then from the Corollary 4.7 we have p(t) ≤

p(t0)Eq(−M(t − t0)
q). Which yields p(t) ≤ 0, t ∈ [t0, T ] since p(t0) ≤ 0. Thus

we have v1(t) ≤ w1(t), t ∈ [t0, T ], which completes the proof.

We now state and prove the main result.

Theorem 4.9. Assume that

i) v0, w0 be the weakly coupled lower and upper solutions of IVP of CFDE (4.1)

such that v0(t) ≤ w0(t) for t ∈ [t0, T ],

ii) f ∈ C[[t0, T ] × R, R] and f(t, x) − f(t, y) ≤ −M(x − y) for v0 ≤ x ≤ y ≤

w0, M > 0.

Then there exist monotone sequences {vn}, {wn} such that vn → ρ∗, wn → r∗ as

n → ∞ uniformly and monotonically on [t0, T ] and (ρ∗, r∗) are minimal and maximal

solutions of the IVP of CFDE (4.1) respectively.

Proof. Consider






cDqvi+1(t) = f(t, vi(t)) − M(vi+1(t) − vi(t)), t ∈ [t0, T ],

vi+1(t0) = −
∫ T

t0
wi(s)ds + d, d ≥ 0

(4.12)

and






cDqwi+1(t) = f(t, wi(t)) − M(wi+1(t) − wi(t)), t ∈ [t0, T ],

wi+1(t0) = −
∫ T

t0
vi(s)ds + d, d ≥ 0

(4.13)

For i = 0, Lemma 4.8 shows that

v0(t) ≤ v1(t) ≤ w1(t) ≤ w0(t), t ∈ [t0, T ] (4.14)
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Next for i > 1, we assume that,

vi−1(t) ≤ vi(t) ≤ wi(t) ≤ wi−1(t), t ∈ [t0, T ] (4.15)

and prove that

vi(t) ≤ vi+1(t) ≤ wi+1(t) ≤ wi(t), t ∈ [t0, T ]. (4.16)

Since, vi(t) is a weakly coupled lower solution of IVP of CFDE and (4.1) and vi+1(t) is

the unique solution of linear nonhomogeneous CFDE (4.12) by applying Lemma 4.8

we obtain that vi(t) ≤ vi+1(t) on t ∈ [t0, T ]. Similarly wi(t) is weakly coupled

upper solution of IVP of CFDE (4.1) and wi+1(t) is the unique solution of linear

nonhomogeneous CFDE (4.13). Application of Lemma 4.8 yields wi+1(t) ≤ wi(t),

t ∈ [t0, T ]. To prove vi+1(t) ≤ wi+1(t), t ∈ [t0, T ]. Set p(t) = vi+1(t) − wi+1(t), on

t ∈ [t0, T ]. Then

cDqp(t) = cDqvi+1(t) −
cDqwi+1(t)

= [f(t, vi(t)) − M(vi+1(t) − vi(t))] − [f(t, wi(t)) − M(wi+1(t) − wi(t))]

≤ −Mp(t),

and p(t0) = vi+1(t0) − wi+1(t0) = −
∫ T

t0
wi(s)ds + d +

∫ T

t0
vi(s)ds − d ≤ 0, since

vi(t) ≤ wi(t) for all t ∈ [t0, T ]. Thus we have






cDqp(t) ≤ −Mp(t),

p(t0) ≤ 0.

From the Corollary 4.7 we get

p(t) ≤ p(t0)Eq(−M(t − t0)
q), t ∈ [t0, T ].

This yields p(t) ≤ 0, t ∈ [t0, T ], since p(t0) ≤ 0. Thus we have vi+1(t) ≤ wi+1(t),

t ∈ [t0, T ]. Thus (4.16) is proved and therefore by the principle of mathematical

induction, we see that

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0, t ∈ [t0, T ].

Thus the sequence of functions {vn},{wn} are continuous and uniformly bounded

on [t0, T ], also we can conclude that the sequence of functions {vn} and {wn} are

equicontinuous by using Lemma 2.3.2 in [4] and the relation between the solution of

Caputo fractional differential equations and the solution of R-L fractional differential

equations [1]. Thus by using Arzela-Ascoli’s Theorem, we obtain that the entire

sequence {vn} converges uniformly and monotonically to ρ∗(t) on [t0, T ], and {wn}

converges uniformly and monotonically to r∗(t) on [t0, T ], i.e

lim
n→∞

vn = ρ∗ and lim
n→∞

wn = r∗, t ∈ [t0, T ].
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To show that ρ∗ and r∗ are the solutions of the IVP of CFDE (4.1), we use the

corresponding Volterra’s integral equations

vn+1(t) = −

∫ T

t0

wn(s)ds + d +
1

Γ(q)

∫ t

t0

(t − s)q−1h(s, vn(s))ds, d ≥ 0 (4.17)

and

wn+1(t) = −

∫ T

t0

vn(s)ds + d +
1

Γ(q)

∫ t

t0

(t − s)q−1h(s, wn(s))ds, d ≥ 0 (4.18)

where h(s, vn(s)) = f(t, vn(s)) − M(vn+1(s) − vn(s)) and h(s, wn(s)) = f(t, wn(s)) −

M(wn+1(s) − wn(s)). Now by taking the limits as n → ∞, and using the uniform

continuity of f and the uniform convergence of the sequences {vn} and {wn}, t ∈

[t0, T ], we get






cDqρ∗(t) = f(t, ρ∗(t)), t ∈ [t0, T ],

ρ∗(t0) = −
∫ T

t0
x(s)ds + d, d ≥ 0

(4.19)

and






cDqr∗(t) = f(t, r∗(t)), t ∈ [t0, T ],

r∗(t0) = −
∫ T

t0
x(s)ds + d, d ≥ 0

(4.20)

for t ∈ [t0, T ]. Further,

v0(t) ≤ ρ∗(t) ≤ r∗(t) ≤ w0(t)

t ∈ [t0, T ]. To prove ρ∗(t), r∗(t) are respectively minimal and maximal solutions of

IVP of CFDE (4.1), we have to show that if x(t) is any solution of IVP of CFDE

(4.1) such that v0(t) ≤ x(t) ≤ w0(t), t ∈ [t0, T ] then

v0(t) ≤ ρ∗(t) ≤ x(t) ≤ r∗(t) ≤ w0(t)

t ∈ [t0, T ]. To prove this, since vn(t), wn(t) satisfy

cDqvn(t) = f(t, vn−1(t)) − M(vn(t) − vn−1(t)), vn(t0) = −

∫ T

t0

wn−1(s)ds + d, d ≥ 0

and

cDqwn(t) = f(t, wn−1(t))−M(wn(t)−wn−1(t)), wn(t0) = −

∫ T

t0

vn−1(s)ds+d, d ≥ 0

respectively, suppose that for some n, vn(t) ≤ x(t) ≤ wn(t), t ∈ [t0, T ] and set

p(t) = vn+1(t) − x(t) so that,

cDqp(t) = cDqvn+1(t) −
cDqx(t) = [f(t, vn(t)) − M(vn+1(t) − vn(t)] − f(t, x)

≤ −M(vn+1(t) − vn(t)) − M(vn(t) − x(t))

= −Mp(t), t ∈ [t0, T ].
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Also p(t0) = −
∫ T

t0
wn(s)ds + d +

∫ T

t0
x(s)ds − d ≤ 0, d ≥ 0, since x(t) ≤ wn(t),

t ∈ [t0, T ]. Thus






cDqp(t) ≤ −Mp(t), t ∈ [t0, T ],

p(t0) ≤ 0

Now by applying the Corollary 4.7 we get vn+1(t) ≤ x(t), t ∈ [t0, T ]. Similar process

yields that x(t) ≤ wn+1(t), t ∈ [t0, T ]. Thus we have vn+1(t) ≤ x(t) ≤ wn+1(t) on

[t0, T ], whenever vn(t) ≤ x(t) ≤ wn(t) on [t0, T ]. Now taking the limits, we obtain

that ρ∗(t) ≤ x(t) ≤ r∗(t) for t ∈ [t0, T ].

Corollary 4.10. If in addition to the assumptions of the Theorem 4.9 we have

f(t, x) − f(t, y) ≤ M(x − y),

v0 ≤ y ≤ x ≤ w0,M ≥ 0 and L ≥ 0. Then ρ∗ = r∗ = x is the unique solution of the

IVP of CFDE (4.1).

Proof. To prove this, set p(t) = r∗(t) − ρ∗(t). Then we have,

cDqp(t) = cDqr∗(t) − cDqρ∗(t) = f(t, r∗(t)) − f(t, ρ∗(t))

≤ M(r∗(t) − ρ∗(t)) = Mp(t), t ∈ [t0, T ]

and p(t0) = 0. Thus we have






cDqp(t) ≤ Mp(t), t ∈ [t0, T ]

p(t0) = 0.

Now by Corollary 4.7 we have p(t) ≤ 0, which implies that r∗(t) ≤ ρ∗(t), t ∈ [t0, T ].

Thus we conclude that ρ∗(t) = r∗(t) = x(t) for t ∈ [t0, T ], which proves the uniqueness

of solution. Thus the proof is complete.

Corollary 4.11. By putting λ = 0 in (2.5) we can see the result of MIT for Caputo

Fractional Differential Equations from the Section 3 or Section 4 of the above.
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