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ABSTRACT. An analysis of a model quantum mechanical system under the influence of an electric

field is studied. The quantum mechanical system presented models a diatomic molecule. The purpose

of this effort is to gain insight into the problem of designing an appropriate pulse to achieve a specific

dissociation of desired amount in a molecule. An appropriate pulse means one that is in the range

of current technology. The analysis of the model provides an opportunity to analyze and gain

some insight into the interplay between the constituent parameters of the field and duration of the

pulse as well the energy required to achieve a desired amount of dissociation in a molecule, and the

mathematical difficulty inherent in the problem. The insight gained here can be of value in dealing

with molecules containing more than two atoms.
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1. Inroduction

To gain understanding into the design of a realistic pulse in the infrared region

that will allow to break a specific bond in a molecule leaving all other bonds as undis-

turbed as possible we have undertaken the analysis of a model quantum mechanical

problem in detail.

In practice, a “realistic pulse” means that the duration of the pulse be in the

range of hundreds of femtoseconds, the energy of the pulse not exceed 1011Watt/cm2

and the spectrum remains localized. In other words, the pulse characteristics be in

the range of current technology. Our effort here is to gain insight into the physics and

mathematics that one needs to consider in designing appropriate pulse to achieve the

goal.

Optimal design is achieved by the minimization of an appropriate cost functional

of the electric field under appropriate constraints. Thus, an appropriate choice of

the cost functional is necessary, and in the absence of explicit solution to the control

problem, a numerical scheme has to be designed. For a more reliable numerical
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scheme of more complicated problems a study of a model problem for which explicit

solution of the quantum mechanical system is helpful. The analysis of the current

model provides insight into the complexity of the problem. By explicit calculation

we are able to gain insight into the interaction of the parameters of the pulse and

duration of the pulse. The insight gained here can be of value when dealing with

molecules containing more than two atoms.

2. Statement of The Model Quantum Mechanical Problem

The model quantum mechanical problem is given by the equation

i
∂ψ

∂t
+
∂2ψ

∂x2
− V (x, t)ψ = 0, (2.1)

where

V (x, t) = − |λ| δ(x) + xE(t) (2.2)

3. Analysis of The Problem

In this section we analyse problem (2.1)–(2.2). We consider subproblems to gain

a handle on the problem.

3.1. Case of Zero Electric Field.

In (2.2) set E(t) = 0. In this case (2.1) becomes

i
∂ψ

∂t
+
∂2ψ

∂x2
+ |λ| δ(x)ψ(x, t) = 0 (3.1)

By direct substitution we can verify that

ψ(x, t) =

√

|λ|
2
e−

|λ|
2
|x|ei

λ2

4
t (3.2)

satisfies (3.1).

3.2. Case When λ = 0. In this case (2.1) becomes

i
∂ψ

∂t
+
∂2ψ

∂x2
− xE(t)ψ = 0 (3.3)

Taking Fourier transform we obtain from (3.1) the equation

i∂tψ̂ − ξ2ψ − iE(t)∂ξψ̂ = 0 (3.4)

If we set

ψ̂ = eϕ (3.5)

then ϕ satisfies the equation

ϕt − E(t)ϕξ = −iξ2 (3.6)
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For a sufficiently smooth function of a real variable ϕH we can verify that

Φ(ξ, t, t0) = ϕH(ξ +

∫ t

t0

E(u)du) (3.7)

satisfies the homogeneous equation

ϕt −E(t)ϕξ = 0 (3.8)

We seek a particular solution for the problem

ϕt − E(t)ϕξ = −iξ2

in the form

ϕp(ξ, t) = a(t)ξ2 + b(t)ξ + c(t) (3.9)

We can quickly verify that

a(t) = −i(t− t0)

b(t) = −2i

∫ t

t0

(u− t0)E(u)du

c(t) = −2i

∫ t

t0

E(r)V (r, t0)dr,

where

V (t, t0) =

∫ t

t0

(u− t0)E(u)du

Setting

W (t, t0) =

∫ t

t0

E(r)V (r, t0)dr

we can write the general solution of the equation

ϕ(ξ, t, t0) = Φ(ξ, t, t0) − i(t− t0)ξ
2 − 2iξV (t, t0) − 2iW (t, t0) (3.10)

Finally we have (see (3.5))

ψ̂ = eΦ(ξ,t,t0)−i(t−t0)ξ2−2iξV (t,t0)−2iW (t,t0) (3.11)

Thus,

ψ(x, t) =
1

2π

∫ ∞

−∞

eΦ(ξ,t,t0)−i(t−t0)ξ2−2iξV (t,t0)−2iW (t,t0)eiξ·xdξ. (3.12)

Setting t = t0 we see that

ψ(x, t) =
1

2π

∫ ∞

−∞

Φ(ξ, t0, t0)e
iξ·xdξ. (3.13)

Thus, we must take

eΦ(ξ,t0,t0) = ψ̂(ξ, t0), (3.14)

and

eΦ(ξ,t,t0) = ψ̂(ξ +

∫ t

t0

E(u)du, t0), (3.15)
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4. Solution of the problem

We now consider the equation

i
∂ψ

∂t
+ ∂2

xψ + [|λ| δ(x) − xE(t)]ψ(x, t) = 0, (4.1)

E(t) = 0, t ≤ 0,

ψ(x, 0) =

√

|λ|
2
e

−|λx|
2 .

Taking Fourier transform we have

i∂tψ̂ − ξ2ψ̂ − iE(t)∂ξψ̂ +
|λ|
2π

∫ ∞

−∞

ψ̂(p, t)dp = 0 (4.2)

Consider the equation

i∂tψ̂ − ξ2ψ̂ − iE(t)∂ξψ̂ = δ(t− t0) (4.3)

Let

ψ̂(ξ, t, t0) = −iH(t− t0)e
−i(t−t0)ξ2−2iξV (t,t0)−2iW (t,t0) . (4.4)

where H is the Heaviside function. We can verify that the function defined in (4.4)

satisfies (4.3).

Let

Ψ̂∗(ξ, t) = −
∫ ∞

−∞

ψ̂(ξ, t, s)
|λ|
2π

∫ ∞

−∞

ψ̂(p, s)dp ds (4.5)

Let

L = −i∂t − ξ2 − iE(t)∂ξ (4.6)

Then,

LΨ̂∗(ξ, t) = −|λ|
2π

∫ ∞

−∞

ψ̂(p, t)dp dt (4.7)

Taking inverse Fourier transform we have

Ψ∗(x, t) =
i |λ|
2π

∫ t

t0

∫ ∞

−∞

e−i(t−s)ξ
2−2iξV (t,s)−2iW (t,s)+ix·ξψ(0, s)dξds (4.8)

Finally, using (3.12), and (4.8) we can give the solution of (4.1) by

ψ(x, t) =
1

2π

∫ ∞

−∞

ψ̂

(

ξ +

∫ t

t0

E(u)du, t0

)

e−i(t−t0)ξ2−2iξV (t,t0)−2iW (t,t0)eix·ξdξ

+
i |λ|
2π

∫ t

t0

∫ ∞

−∞

e−i(t−s)ξ
2−2iξV (t,s)−2iW (t,s)+ix·ξψ(0, s)dξds (4.9)

In the problem at hand t0 = 0 and t0 = 0 henceforth.
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We use analytic continuation in Fourier-inverting the second integral in (4.9) to

rewrite (4.9) as

ψ(x, t) =
1√
4π it

e−2iW (t,0)

∫ ∞

−∞

e
i
4t

(x−y−2V (t,0))2e−iy
R t

0 E(u)duψ(y, 0)dy

+
i |λ|√
4πi

∫ t

0

e
i

4(t−s)
·x2−iV (t,s)

t−s
·x+iV 2(t,s)

t−s
−2iW (t,s) ψ(0, s)√

(t− s)
ds (4.10)

We note that ψ̂(ζ, 0) is the Fourier transform of
√

|λ|
2
e

−|λ|
2

|x|.

If we set x = 0 in (4.10) we obtain

ψ(0, t) =
1√
4π it

e−2iW (t,0)

∫ ∞

−∞

e
i
4t

(y+2V (t,0))2e−iy
R t

0 E(u)duψ(y, 0)dy

+
i |λ|√
4πi

∫ t

0

ei
V 2(t,s)

t−s
−2iW (t,s) ψ(0, s)√

(t− s)
ds (4.11)

Set

Qψ(x, t) =
1√
4π it

e−2iW (t,0)

∫ ∞

−∞

e
i
4t

(x−y−2V (t,0))2e−iy
R t

0 E(u)duψ(y, 0)dy (4.12)

The equation in (4.11) is a Volterra integral equation for ψ(0, t). To simplify our

notation we rewrite (4.11) as

ψ(0, t) = Qψ(0, t) +
i |λ|√
4πi

∫ t

0

ei
V 2(t−s)

t−s
−2iW (t,s) ψ(0, s)√

(t− s)
ds (4.13)

At this point we remark that ψ(y, 0) in (4.10) equals
√

|λ|
2
e

−|λ|
2

|y|.

Let R(t, s;λ) be the resolvent kernel for the integral equation (4.13). Then,

ψ(0, t) = Qψ(0, t) +

∫ t

0

R(t, s;λ)Qψ(0, s)ds (4.14)

Now, we see that from (4.10) and (4.14) that ψ(x, t) is completely determined from

ψ(x, 0).

In (4.10) we can verify that
∫ ∞

−∞

|ψ(x, t)|2dx = 1. (4.15)

5. Feasibility of dissociation

In this section we investigate the problem of dissociation and the design of cor-

responding control.

Using (4.10) set

U(x, t) =
1√
4π it

e−2iW (t,0)

∫ ∞

−∞

e
i
4t

(x−y−2V (t,0))2e−iy
R t

0
E(u)duψ(y, 0)dy (5.1)

Next, set

Φ(x, z, t) = e−i(z−2V (t,0))
R t

0
E(u)duψ(z − 2V (t, 0) + x, 0) (5.2)
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Referring to (3.2) let

f(x) = ψ(x, 0) =

√

|λ|
2
e−

|λ|
2
|x|

We would like to see what happens to f as a result of the electric field excitation.

Using the stationary phase formula we have

U(x, t) ∼ e2iW (t,0)e−i(x−2V (t,0))
R t

0
E(u)duf(x− 2V (t, 0))

+ e2iW (t,0)
∞
∑

k=1

tk

k!
ik∂2k

z Φ(x, z, t))|z=0 (5.3)

where Φ(x, z, t) is given in (5.2). The second integral in (4.10)is bounded by const.
√
t,

and when x 6= 0, it decreases to zero fast as t tends to zero. To minimize its contribu-

tion we have to make t small. Then, to get a shift of the order of 1 we must consider

E(t) ∼ 1
t2

. We see this from (5.3) and the fact that

V (s, 0) =

∫ s

0

uE(u)du

In (5.3) the sum can be explicitly calculated and tends to zero as t −→ 0. We also

see from (5.3) that the function f is translated by 2V (t, 0). Thus, our problem be-

comes design of the electric field to translate f by a desired amount while minimizing

the energy required. Thus, recalling that

V (s, 0) =

∫ s

0

uE(u)du

we have the following extremum problem

min

∫ t

0

E2(s)ds

subject to
∫ t

0

sE(s)ds| ≥ δ

2
(5.4)

where δ is the desired amount of displacement or separation between the atoms. We

notice from (5.4) that the electric field has to be large to achieve the desired displace-

ment. Accepting that reality we would like to do the best we can, i.e., minimize the

energy. From the constraint in (5.4) we see that
∫ t

0

s|E(s)|ds ≥ δ

2

Thus
∫ t

0

E(s)ds ≥ δ

2t

Thus, we see that a choice of

E(s) =
δ

t2
, 0 ≤ s ≤ t (5.5)
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would accomplish the displacement
∫ t

0

uE(u)du =
δ

2

in the time interval t. Any other electric field Ẽ is such that Ẽ2 > E2 somewhere

in the interval (0, t). Therefore there should be a mechanism to generate a stronger

electric field. Next, using (5.5), we have
∫ t

0

E2(s)ds =
δ2

t3
(5.6)

Thus an enormous amount of energy is required to effect a significant displacement

of the initial wave distribution in a short time. With E given by (5.5) we note that

W (t, 0) =
δ2

6t
(5.7)

Thus, the wave function after the application of the electric field E(s) = 2δ
s2
, 0 <

s ≤ t for the time interval (0, t], should be moved by an amount approximately equal

to δ.

In the following figures the first one (Figure 1) shows the shifting of the modulus

of the original wave.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Figure 1. Shifting The Original Wave

6. Setting up a corresponding control problem

We saw above that we wish to accomplish the following

min

∫ t

0

E2(s)ds
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subject to
∫ t

0

sE(s)ds| ≥ δ

2

Note that
∫ t

0

sE(s)ds = tx1(t) − x2(t)

where

x1(t) =

∫ t

0

E(s)ds, x2(t) =

∫ t

0

x1(s)ds

Note that x1(0) = 0 and x2(0) = 0. This is used in the control problem we consider

next. Now we consider the following multiobjective problem

min

∫ tf

0

E2(s)ds, & min(tfx1(tf ) − x2(tf) − δ/2)2

subject to

dx1

dt
= E(t)

dx2

dt
= x1(t)

where δ/2 is the desired displacement of the initial wave function. In the control

problem above we have two objective functionals. We create one objective functional

by adding them. This control problem is solved by the method steepest descent and

the plots of the control E(t) and the Hamiltonian of the control problem J (Figure 2)

and displacement of the initial wave function (Figure 3) are shown below. We remark

that E(t)2 represents the energy contained in the electric field. In Figure 2 we note

that the Hamiltonian J decreases. The Hamiltonian J includes the square of the

electric field.

To do a control problem such as the one we have here for a particular diatomic

molecule we work in atomic mass units. We need the mass of the atoms, thus the

reduced mass, the energy of the bond from which we can approximate the bond length

and momentum of the reduced mass.

7. A related abstract problem

Here we present an abstract problem that is related to the problem we just

presented. In this abstract formulation we note that the discontinuous potential

represents the excitation of the molecule. How can one deal with the discontinuity

without losing critical information in an abstract reformulation? We note from the

objective function of this abstract formulation it is required to move a wave function

to a desired location with a minimal amount of excitation energy. Thus, it is the

same problem we presented above. The discontinuous input control in the abstract

formulation is handled by introducing operator valued measures. The above detailed
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Figure 2. Control and corresponding Hamiltonian J
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Figure 3. Corresponding Size of Shift inThe Original Wave

concrete analysis gives insight into what it takes to deal with the general abstract

problem in detail in specific situation, and to what extent the objective in the abstract

problem is met. That is, from the concrete problem above we see how the control

is related to the excitation energy and what should be the constraints on the size

of the control to accomplish a meaningful shift. Equipped with these observations

the abstract problem can be formulated even more precisely. The abstract problem

we have in mind is dealt with in ([1]) where existence and necessary conditions are

established. The verification that best control exists in the abstract formulation

assures us the concrete problem is well posed and we just have to make the effort to
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get to it.

i
∂φ

∂t
= H0φ+ v(t)χΓφ

φ(0, ξ) = φ0(ξ), (t, ξ) ∈ I × Ω, Γ ⊂ Ω

i(dφ) = H0φdt+ V0(dt)φ, φ(0) = φ0(·), t ∈ I.

Writing the real and imaginary parts of the wave function φ = φ1 + i φ2 we can model

the differential equation on L2(Ω) × L2(Ω) as

dx = Axdt+ M(dt)x, x(0) = x0 = (φ0,1, φ0,2)

A =

(

0 H0

−H0 0

)

M(σ) =

(

0 V0(σ)

−V0(σ) 0

)

J(M) =
1

2
(Q[x(T ) − xd], [x(T ) − xd]) + Φ(M)

8. Conclusion

The motion of a diatomic molecule can be separated into a center of mass part and

an equivalent one particle part with a reduced mass. The center of mass contribution

to the total kinetic energy can be ignored, since it only represents a shift in the total

energy of the system. The potential energy depends only upon the separation distance

between the atoms.

We can thus consider a one-dimensional equation to represent the motion of a

diatomic molecule. In this paper we see precisely, using asymptotic method, how

much the original wave function is shifted and the exact relationship with the control

and the energy. In addition we saw the asymptotic method was used to set up a

control problem that was solved by the method of steepest method. Thus, this model

problem gives insight in problems where we have more than two atoms and we want

to break a specific bond minimally affecting other bonds. In addition it provides

insight into the details of abstract problems of the same spirit.
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