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ABSTRACT. Systems-conjugate points have been introduced and studied by John Barrett [3] in

relation with the self-adjoint fourth order differential equation

(r(x)y′′)′′ − (q(x)y′)′ = p(x)y,

where r(x) > 0, p(x) > 0 and q ≡ 0. In this paper we extend some of his results to more general

cases, when q(x) is free of any sign restrictions.
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1. Introduction

This paper shall be concerned with the fourth-order differential equation

(r(x)y′′)′′ − (q(x)y′)′ = p(x)y, (1.1)

where r(x) > 0, p(x) > 0 and q(x) are continuous functions on [a,∞), a ≥ 0.

Definition 1.1. The systems-conjugate point of a, which is denoted by η̂1(a), is

defined as the smallest number b ∈ (a,∞) for which the two point boundary conditions

y(a) = y1(a) = y(b) = y1(b) = 0 (1.2)

(y1(x) = r(x)y′′) are satisfied by a nontrivial solution of equation (1.1).

Similarly, the systems-focal point of a, which is denoted by µ̂1(a), is defined as

the smallest number b ∈ (a,∞) for which the two point boundary conditions

y(a) = y1(a) = y′(b) = Ty(b) = 0 (1.3)

(Ty(x) = (p(x)y′′)′ − q(x)y′) are satisfied by a nontrivial solution of equation (1.1).

The notation y1(x) and Ty(x) will be used throughout the paper.

The systems-conjugate point and systems-focal point were first defined and stud-

ied by Barrett [3, 4] with respect to equation (1.1), for r(x) > 0, p(x) > 0 and

q ≡ 0. In his work, he showed that η̂1(a) exists, if and only if µ̂1(a) exists, and
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a < µ̂1(a) < η̂1(a), without further conditions on r(x) and p(x). Later on, using a

Morse system-formulation [11], Atkinson [1, Chap. 10.6] extended a part of Barrett’s

result to the case q(x) ≥ 0 (i.e., if η̂1 exists then µ̂1(a) exists and a < µ̂1(a) < η̂1(a)).

Cheng [6] also studied the existence and the relation between µ̂1(a) and η̂1(a) for a

system of two second-order differential equations; in particular, he gave a physical in-

terpretation of the numbers η̂1 and µ̂1. At the end of this work, he applied his results

to equation (1.1) for q(x) ≤ 0 and the additional condition p−q′′/2+q2/4r > 0. Note

that the systems-focal point studied in [6] do not coincide with that defined above

for (1.1) only for q ≡ const.

The main goal of the present paper is to establish Barrett’s result related to

equation (1.1) with some relaxation of the sign of q(x). Furthermore, in Sections 3

and 4 we establish a comparison theorem for µ̂1(a), and we show, without further

restrictions on r, p and q, that if µ̂1(a) exists then it is realized by a positive increasing

solution. These results are analogous to those obtained by Barrett [5] for the focal

point µ1(a) related to equation (1.1) and the boundary conditions y(a) = y′(a) =

y1(b) = Ty(b) = 0. However, here we use a different approach, which is essentially

based on the Leighton-Nehari transformation [10] and the properties of the Rayleigh

quotients. Finally, in Section 5 we establish two criteria for the existence of η̂1(a).

Similar results were given in [3] and [6] for q(x) ≡ 0 and q(x) ≤ 0, respectively.

2. Relation between η̂1 and µ̂1

The main result of this section is the following

Theorem 2.1. 1) If the first systems-conjugate point η̂1(a) exits and

I(w, a, b) =

∫ b

a

[r(w′)2 + qw2] > 0 (2.1)

for each b > a and each nontrivial admissible function w ∈ W 1
2 [a, b] (where W 1

2 [a, b]

is the Sobolev function space having a generalized first derivative in L2[a, b]), then the

first systems-focal point µ̂1(a) exists and

a < µ̂1(a) < η̂1(a). (2.2)

2) If the number µ̂1(a) exists and
∫ ∞

q(t) = −∞, then η̂1(a) exits. If in addition the

condition (2.1) is satisfied, then (2.2) holds.

Before proving this theorem we need some preliminaries. It is known that any

solution of equation (1.1) which satisfies the initial condition y(a) = y1(a) = 0 may

be expressed as a linear combination of u(x) and v(x) which are the fundamental

solutions of (1.1) whose initial conditions are

u(a) = u1(a) = Tu(a) = 0, u′(a) = 1, (2.3)
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v(a) = v′(a) = v1(a) = 0, T v(a) = 1. (2.4)

We introduce the following subwronskians:

rσ̂′ = uv1 − vu1, τ̂ ′ = u′Tv − v′Tu, (2.5)

and

σ̂ = uv′ − vu′, τ̂ = uTv − vTu, ρ̂ = u1Tv − v1Tu. (2.6)

It is easy to see that η̂1 and µ̂1 are the first zeros on (a,∞) of the subwronskians σ̂′

and τ̂ ′, respectively. The following identities involving the above subwronskians are

useful and easily verified. Similar ones have been stated in [5] for (1.1) with Dirichlet

boundary conditions at x = a (y(a) = y′(a) = 0).

rσ̂′τ̂ ′ = τ̂ 2 + ρ̂σ̂ (2.7)

τ̂ ′′ =
ρ̂

r
− pσ̂, (rσ̂′)′ = 2τ̂ + qσ̂. (2.8)

Note also, the initial conditions

τ̂(a) = 0, τ̂ ′(a) = 1, (2.9)

σ̂(a) = σ̂′(a) = (rσ̂′)′(a) = 0, (rσ̂′)′′(a) = 2, (2.10)

ρ̂(a) = 0, ρ̂′(a) = q(a), (2.11)

insure that σ̂, σ̂′, τ̂ and τ̂ ′ are all positive in a right-hand neighborhood of x = a.

Throughout our discussion we will use the following transformation given by

Leighton-Nehari [10] for removing the middle term (qy′)′ from equation (1.1). How-

ever, this transformation cannot be used in a straightforward way, since as will be

seen below, it changes the form of the initial conditions (2.3) and the subwronskians

σ̂′, ρ̂.

Let us denote by h a positive solution on the interval [a, b] of the second-order

equation

(py′)′ − qy = 0. (2.12)

Hence, the following substitution [10, Theorem 12.1]

t(x) :=

∫ x

0

h(s)ds (2.13)

transform equation (1.1) into

{(rh3(t)ÿ)}.. = h−1p(t)y, (2.14)

where p(x), h(x), r(x), y(x) are taken as functions of t and · := d
dt

. Therefore, if y is

a nontrivial solution of (1.1), then ỹ(t) ≡ y(x(t)) is a nontrivial solution of (2.14).

Thus, we have the relations:

˙̃y = y′h−1, h3 ¨̃y = hy′′ − y′h′, (2.15)

(r̃h̃3 ¨̃y)
.
= (ry′′)′ − qy′. (2.16)
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In what follows, for each of the quantities involving (2.14), the same notations as for

(1.1) will be used with the addition of the superscript “∼”. Let σ̃, ˙̃σ, τ̃ , ˙̃τ and ρ̃ denote

the subwronskians associated with equation (2.14) and the fundamental solutions ũ,

ṽ satisfying the initial conditions

ũ(0) = h̃(0)¨̃u(0) +
˙̃
h(0) = (r̃h̃3 ¨̃u)

.
(0) = 0, ˙̃u(0) = 1, (2.17)

ṽ(0) = ˙̃v(0) = ¨̃v(0) = 0, (r̃h̃3 ¨̃v)
.
(0) = 1. (2.18)

The relations between these subwronskians and those of equation (1.1) are expressed

as follows:

σ̂(x) = h̃(t)σ̃(t), τ̂ (x) = τ̃ (t), τ̂ ′(x) = h̃(t) ˙̃τ(t), (2.19)

σ̂′(x) = h̃2(t) ˙̃σ(t) + h̃
˙̃
hσ̃(t), (2.20)

Lemma 2.2. 1) If µ̂1(a) exists, then ρ̂(µ̂1(a)) < 0.

2) Let ξ̂1(a), ξ̂2(a) . . . denote the zeros of the subwronskian ρ̂ defined by (2.5). If µ̂1(a)

exists and ρ̂ has a first zero ξ̂i(a) (i ∈ {2, 3, . . .}) beyond µ̂1(a), then σ̂′ has a zero

η̂1(a) in (a, ξ̂i(a)].

Proof. 1) If µ̂1(a) exists, then σ̂ > 0 on (a, µ̂1(a)]. In fact, suppose that σ̂ has a zero

s0 ∈ (a, µ̂1(a)) which is the closest to a. From the initial conditions (2.9)-(2.10), we

have τ̂ ′ > 0 and σ̂ > 0 in a right-hand neighborhood of x = a, and hence, τ̂ ′(s0) > 0

and σ̂′(s0) < 0. On the other hand, by (2.7), τ̂ ′σ̂′(s0) ≥ 0, which is a contradiction. If

s0 = µ̂1(a), then again by (2.7), τ̂(s0) = 0. Thus, from Rolle’s theorem and the initial

conditions (2.9), there exists a zero of τ̂ ′ less than µ̂1(a), which is a contradiction.

Since σ̂(µ̂1(a)) > 0 then by (2.7), we have ρ̂σ̂(µ̂1(a)) ≤ 0. If ρ̂(µ̂1(a)) = 0, then

τ̂(µ̂1(a)) = 0, and as before, this is not possible.

2) Suppose that ρ̂ has a first zero ξ̂i beyond µ̂1(a) (i.e., the first in (µ̂1(a),∞)).

By (2.7), we have τ̂ ′σ̂′(ξ̂i(a)) ≥ 0. If τ̂ ′(ξ̂i(a)) < 0, then σ̂′(ξ̂i(a)) ≥ 0, and hence,

from the initial conditions (2.10), σ̂′ has a zero η̂1(a) in (a, ξ̂i(a)]. If τ̂ ′(ξ̂i(a)) ≥ 0,

then µ̂2(a) exists and a < µ̂2 ≤ ξ̂i(a). According to Lemma 2.3, σ̂ has a zero in the

interval (µ̂1(a), µ̂2(a)]. Thus, by Rolle’s theorem, η̂1(a) exists and a < η̂1(a) ≤ ξ̂i(a).

The lemma is proved.

Lemma 2.3. If µ̂1(a) and µ̂2(a) (the second zero of τ ′) both exist, then σ̂ has a zero

in the interval (µ̂1(a), µ̂2(a)].

Proof. By Lemma 2.2 and its proof, we have σ̂(µ̂1(a)) > 0 and ρ̂(µ̂1(a)) < 0. Thus,

τ̂ ′′(µ̂1(a)) = ( ρ̂

r
− pσ̂)(µ̂1(a)) < 0, which implies the simplicity of µ̂1(a), and hence,

µ̂1(a) < µ̂2(a). Suppose σ̂ > 0 on (µ̂1(a), µ̂2(a)]. Since τ̂ (µ̂1(a)) > 0, then by using

the identity (2.7), we obtain
(

τ̂ ′

σ̂

)′

= −p −
1

r

(

τ̂

σ̂

)2

< 0.
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Integration of this expression yields
∫ µ̂2

µ̂1

p +
1

r

(

τ̂

σ̂

)2

dx = 0,

which is a contradiction, and so σ̂ vanishes in (µ̂1(a), µ̂2(a)].

Proof of Theorem 2.1: 1) Let h be the solution of equation (2.12) which satisfies

the initial conditions

y′(a) = 0, y(a) = 1. (2.21)

If condition (2.1) holds, then all the eigenvalues of the problem determined by equa-

tion (2.12) and the boundary conditions y′(a) = y′(b) = 0 (for each b > a) are positive,

and hence, h(x) > 0 on [a,∞). Furthermore, since I(1, a, a + ε) =
∫ a+ε

a
q > 0 for

sufficiently small ε > 0, q(x) ≥ 0 in a right-neighborhood of x = a. Thus, h′(x) > 0

on [a,∞). Therefore, the change of variables t(x) :=
∫ x

0
h(s)ds is valid to transform

equation (1.1) into (2.14). Let η̃1(0) and µ̃1(0) denote, respectively, the first systems-

conjugate point and the first systems-focal point associated with equation (2.14); i.e.,

the first zeros of the subwronskians ˙̃σ and ˙̃τ , respectively. As noted before, these

subwronskians are obtained from the original ones via the above change of variables,

and the relations between them are expressed by (2.19)-(2.20). Note that also the

initial conditions

τ̃(0) = 0, ˙̃τ(0) = 1, (2.22)

σ̃(0) = ˙̃σ(0) = (r̃h̃3 ˙̃σ).(0) = 0, (r̃h̃3 ˙̃σ)..(0) = 2, (2.23)

imply that σ̃, ˙̃σ and ˙̃τ are positive in a right-hand neighborhood of t = 0.

Suppose η̂1(a) exists. By (2.21), together with the relation (2.20), we have
˙̃σ(

∫ η̂1(a)

a
h) < 0. Hence, η̃1(0) exists for (2.14). According to [3, Theorem 1.1],

which is applied to equation (2.14), it follows that µ̃1(0) exists, and

0 < µ̃1(0) < η̃1(0). (2.24)

Therefore, from the last relation of (2.19), µ̂1(a) also exists, and (2.2) holds.

2) Assume that
∫ ∞

q = −∞, and suppose that µ̂1(a) exists, but σ̂′ > 0 on (a,∞).

In view of Lemmas 2.2 (second statement) and 2.3, if ξ̂i(a) (the first zero of ρ̂ beyond

µ̂1(a)) or µ̂2(a) exists, then η̂1(a) exists. On the other hand, by the first statement

of Lemma 2.2, ρ̂(µ̂1(a)) < 0. Therefore, if ξ̂i(a) and µ̂2(a) do not exist then we have

k(x) = − ρ̂

τ̂ ′
< 0 on (µ̂1(a),∞), and

k′(x) = p

(

τ̂

τ̂ ′

)2

− q +
1

r
k2 ≥ 0 on (a,∞).

Integrating this expression, and taking into account the assumption that
∫ ∞

q = −∞,

it follows that k(x) → +∞ as x → +∞. This is a contradiction, and so µ̂1(a) exists.

If in addition, (2.1) holds, then from the first statement of the theorem, we have

a < µ̂1(a) < η̂1(a). The theorem is proved. �
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3. Wirtinger inequality and comparison theorem for η̂1(a)

The following theorem establish the relation between the existence of η̂1(a) and

the sign of the quadratic form associated with (1.1). This relation is known as a

Wirtinger-type inequality [7]. Note that the method of Cole used in [7] and also in [5]

(for a Wirtinger inequality related to the focal point µ1(a)) cannot be applied here.

Theorem 3.1. If η̂1(a) does not exist for (1.1), then for each b ∈ (a, +∞) and each

nontrivial admissible function w(x) on [a, b] (i.e., w(x) ∈ C1[a, b], w′ is absolutely

continuous and w′′ ∈ L2[a, b]) for which w(a) = w′(b) = 0, we have

I[w, a, b] =

∫ b

a

r(w′′)2 + q(w′)2 − pw2dx > 0.

For the proof of this theorem, we need some preliminarily results. We introduce

the following equation similar to (1.1), but depends on a parameter λ ∈ R.

(r(x)y′′)′′ − (q(x)y′)′ = λp(x)y. (3.1)

Let η̄1(a) denote the first conjugate point of a with respect to equation (2.12); i.e.,

the smallest number b ∈ (a,∞) for which the boundary conditions y′(a) = y(b) = 0

are satisfied by a nontrivial solution.

Lemma 3.2. Let λ1(b) be the first eigenvalue of Problem (3.1)-(1.3), and assume

that η̄1(a) exists. If λ1(b) > 0, then b < η̄1(a).

The proof of this lemma is based on the following result on the monotonicity

of the eigenvalues of Sturm-Liouville problem. To the best of my knowledge, this

property is known only for q ≥ 0 (e.g., [13]).

Lemma 3.3. The eigenvalues ρk(b) of the second-order boundary problem

−(r(x)y′)′ + q(x)y = ρy, (3.2)

y′(a) = 0, y(b) = 0 (3.3)

decrease as b increases.

Proof. Let

F (x, ρ) =
y(x, ρ)

ry′(x, ρ)
,

where y(x, ρ) is a nontrivial solution of Problem (3.2)-(3.3). Obviously, for fixed ρ,

the zeros and poles of F (x, ρ) do not coincide unless y(x, ρ) ≡ 0. If y(b, ρk(b)) = 0,

then F (b, ρk(b)) = 0 and

∂F (x, ρk(b))

∂x |x=b
= 1/r(b) > 0. (3.4)
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On the other hand, for fixed x = b, F (x, ρ) is a finite-order meromorphic function of

ρ, and

∂F (b, ρ)

∂ρ |ρ=ρk(b)

= y−2(b, ρk(b))

∫ b

a

p(x)y2(x, ρk(b))dx > 0 (3.5)

(e.g., see, [1, Chap. 6]). From the implicit-function theorem, together with (3.4)-(3.5),

we obtain

ρ′
k(b) = −

∂F (x,ρk(b))
∂x |x=b

∂F (b,ρ)
∂ρ |ρ=ρk(b)

< 0,

and this completes the proof of the lemma.

Proof of Lemma 3.2: Suppose λ1(b) > 0, but b ≥ η̄1(a). In this case, the mini-max

principle yields:

λ1(b) = min
w∈H

I(w)
∫ b

a
p(w)2dx

> 0,

where I(w) =
∫ b

a
[r(w′′)2 + q(w′)2]dx, and H is a set of nontrivial admissible functions

w (i.e., w(x) ∈ C1[a, b], w′ is absolutely continuous and w′′ ∈ L2[a, b]) for which

w(a) = w′(b) = 0. On the other hand, by Lemma 3.3, ρ1(b) ≤ 0, and hence, the

corresponding eigenfunction v(x) satisfies the inequality
∫ b

a

[r(v′)2 + q(v)2]dx ≤ 0.

Let y(x) =
∫ x

a
vdx. Then y(a) = 0, y′(b) = 0 and

∫ b

a
[r(y′′)2 + q(y′)2]dx ≤ 0, which is

a contradiction. The lemma is proved. �

The conclusion in the second part of the following lemma is similar to that of

Greenberg [8] stated for the first eigenvalue of the problem determined by equation

(3.1) and the Dirichlet boundary conditions y(a) = y′(a) = y(b) = y′(b) = 0.

Lemma 3.4. The first eigenvalue λ1(b) of Problem (3.1)-(1.3) is simple. Further-

more, if b → +a then λ1(b) → +∞.

Proof. By Lemma 3.2, if λ1(b) > 0 then b < η̄1(a). Therefore, the solution h of the

initial-value problem (2.12)-(2.21) is positive on the interval [a, b], and hence, it is

possible to transform equation (3.1) (with λ = λ1(b)) into

(rh3(t)ÿ)
..

= λh−1p(t)y (3.6)

(with λ = λ1(b)), and the boundary conditions (1.3) into

ỹ(0) = ¨̃v(0) = ˙̃v(b̃) = (r̃h̃3 ¨̃v)
.
(b̃) = 0, (3.7)

where b̃ =
∫ b

a
hdx. Obviously, if λ = λ1(b) is a multiple eigenvalue of Problem (3.1)-

(1.3), then it is so for Problem (3.6)-(3.7). But, this is not possible since all the

eigenvalues of this problem are simple (e.g., see [2]).
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Let b0 > a. For each b ≤ b0, consider the quadratic form

I(y) =

∫ b

a

[r(y′′)2 + q(y′)2]dx,

defined on the set of all nontrivial admissible functions y (i.e., y(x) ∈ C1[a, b], y′ is

absolutely continuous and y′′ ∈ L2[a, b]) for which y(a) = y′(b) = 0. For such y, we

have the following expressions, which follows from the Cauchy-Schwarz inequality:
∫ b

a

(y)2dx ≤ (b − a)

∫ b

a

(y′)2dx,

and
∫ b

a

(y′)2dx ≤ (b − a)

∫ b

a

(y′′)2dx.

Therefore,

I(y) ≥
r∗

∫ b

a
(y)2dx

(b − a)2
+

q∗
∫ b

a
(y)2dx

(b − a)
,

where, f ∗ = minx∈[a,b0] f(x). Thus,

I(y)
∫ b

a
p(y)2dx

≥
1

p∗

(

r∗

(b − a)2
+

q∗

(b − a)

)

,

where, p∗ = maxx∈[a,b0] p(x). The mini-max principle implies

λ1(b) ≥
1

p∗

(

r∗

(b − a)2
+

q∗

(b − a)

)

,

and hence, limb→a λ1(b) = +∞.

Proof of Theorem 3.1: In view of Lemma 3.4, λ1(b) → +∞ if b → +a (recall

that λ = λ1(b) denotes the smallest eigenvalue of Problem (3.1)-(1.3)). Thus, there

exists b > a such that λ1(b) > 1. Let τ̂ ′(λ, x) denotes the subwronskian defined by

(2.5) related to equation (3.1). It is easily remarked that, for fixed x = b, the zeros of

the function τ̂ ′(λ, x) and the eigenvalues of Problem (3.1)-(1.3), together with their

multiplicities, coincide. In particular, the simplicity of λ1(b) (see Lemma 3.4) yields

τ̂ ′(λ1(b), b) = 0,
∂τ̂ ′

∂λ
(λ, b)|λ=λ1(b) 6= 0.

It then follows from the implicit-function theorem that λ1(b) is a continuous function

of b ∈ (a,∞). Therefore, as b varies along the interval (a,∞), λ1(b) cannot pass

through the value λ = 1, since otherwise, we have for some b > a, η̂1(a) = b exists for

(1.1), and this is in contradiction to the hypothesis of the theorem. Hence, λ1(b) > 1

for all b ∈ (a, +∞), and so, for every nontrivial admissible function w for which

w(a) = w′(b) = 0, we obtain
∫ b

a

r(w′′)2 + q(w′)2dx >

∫ b

a

pw2dx.

The theorem is proved. �
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We now establish a comparison theorem for µ̂1(a).

Theorem 3.5. Let r0(x) > 0, p0(x)) > 0 and q0(x) be continuous functions on [a,∞),

such that

r ≤ r0, p0 ≤ p, q0 ≥ q, (3.8)

and there exists the first systems-focal point, say µ̂0
1(a), for the equation

(r0(x)y′′)′′ − (q0(x)y′)′ = p0(x)y. (3.9)

Then µ̂1(a) exists for the original equation (1.1) and

a < η̂1(a) ≤ η̂0
1(a).

Proof. Suppose that η̂0
1(a) exists but σ̂′ > 0 on (a, η̂0

1(a)]. Let y0 be the corresponding

eigenfunction; then Theorem 3.1 yields

I[y0, a, η̂0
1(a)] =

∫ η̂0

1
(a)

a

r(y′′
0)

2 + q(y′
0)

2 − p(y0)
2dx > 0

and

I0[y0, a, η̂0
1(a)] =

∫ η̂0

1
(a)

a

r0(y
′′
0)

2 + q0(y
′
0)

2 − p0(y0)
2dx = 0.

Subtracting these two expressions and taking into account (3.8), we obtain

0 ≤

∫ η̂0

1
(a)

a

(r0 − r)(y′′
0)

2 + (q0 − q)(y′
0)

2 + (p − p0)(y0)
2dx < 0.

This contradiction shows that there exists η̂1(a) ≤ η̂0
1(a).

4. Oscillation of the eigenfunction associated to µ̂1(a)

Theorem 4.1. If µ̂1(a) exists, then it is realized by an unique eigenfunction yµ̂1
up

to a multiplicative constant. It has the properties

yµ̂1
> 0, y′

µ̂1
> 0, T (yµ̂1

) < 0 on (a, µ̂1).

Also, if q ≤ 0 on [a, µ̂1), then y′′
µ̂1

< 0 on (a, µ̂1).

The following lemma establishes the relation between η̄1 (defined in Section 3)

and µ̂1.

Lemma 4.2. If η̄1(a) exists, then η̂1(a) exists, and

a < µ̂1(a) ≤ η̄1(a), (4.1)

with equality if, and only if, p(x) ≡ 0 on [a, η̄1(a)].

Proof. It is easily seen that if p(x) ≡ 0, then µ̂1(a) = η̄1(a). Therefore, the conclusion

of the lemma follows from Theorem 3.5.

For the proof of Theorem 4.1 we need the following two lemmas.
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Lemma 4.3 ([LN, Lemma 2.1]). Let y be a nontrivial solution of the differential

equation (1.1) for q ≡ 0. If y, y′, y′′ and Ty are nonnegative at x = a (but not all

zero), then they are positive for all x > a. If y,−y′, y′′ and −Ty are nonnegative at

x = a (but not all zero), then they are positive for all x < a.

Lemma 4.4. Let u and v be two fundamental solutions of (1.1) defined by (2.3) and

(2.4), respectively. Then:

u > 0, u′ > 0, Tu > 0 on (a, µ̂1]. (4.2)

v > 0, v′ > 0, T v > 0 on (a, µ̂1]. (4.3)

If, in addition; (2.1) holds, then u′′ > 0 and v′′ > 0 on (a, µ̂1].

Proof. In view of Lemma 4.2, we have a < η̂1(a) < η̄1(a). In this case, from the

definition of η̄1(a), the solution h of (2.12) satisfying the initial conditions h′(a) = 0,

h(a) = 1, is positive on [a, η̂1(a)], and hence, it is possible to use the transformation

(2.13) to rewrite equation (1.1) in the form (2.14). Note that, in view of (2.15) and

(2.16), the initial conditions (2.3) are preserved after this transformation. Therefore,

the solution ũ ≡ u(x(t)) of (2.14) satisfies these initial conditions. According to

Lemma 4.3, we obtain

ũ > 0, ˙̃u > 0, (r̃h̃3 ¨̃u)
.
> 0, on (a, µ̂1].

Again from (2.15)–(2.16), (4.2) follows. As shown in the proof of Theorem 4.1, if

(2.1) holds on (a, µ̂1], then h′(x) > 0 on (a, µ̂1]. Therefore, from the second relation

in (2.15) we get u′′ > 0 on (a, µ̂1]. By similar arguments we prove the same results

for v.

Proof of Theorem 4.1: We introduce the ratios

δ0 =
u

v
, δ1 =

u′

v′
, δ2 =

Tu

Tv
,

together with their derivatives

δ′0 = −
σ̂

v2
, δ′1 = −

τ̂

r(v′)2
, δ′2 =

pτ̂

(Tv)2
. (4.4)

Let

yµ̂1
= u − δ1(µ̂1)v. (4.5)

By Lemma 4.4, δ1(µ̂1) is well defined. In this case, we have y′
µ̂1

(µ̂1) = 0 and

Tyµ̂1
(µ̂1) = τ̂ ′(µ̂1) = 0. Therefore, yµ̂1

is an eigenfunction of the boundary prob-

lem (1.1)–(1.3) defined on the interval [a, µ̂1]. From the definition of µ̂1 and the

initial conditions (2.9), it follows that τ̂ > 0 on (a, µ̂1]. Thus, δ′1 < 0 on this interval,

and hence, y′
µ̂1

(x) 6= 0 on (a, µ̂1(a). From the initial condition y′
µ̂1

(a) = u′(a) = 1,

it follows that y′
µ̂1

(x) > 0 and yµ̂1
> 0. On the other hand, since Tyµ̂1

(a) = −1,

T ′yµ̂1
(x) > 0 on (a, µ̂1(a)] and Tyµ̂1

(µ̂1(a)) = 0, then Tyµ̂1
(x) < 0 on [a, µ̂1(a)).
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The relations (2.15) and (2.16) yield

ỹµ̂1
> 0, ˙̃yµ̂1

> 0, (r̃h̃3 ¨̃yµ̂1
)
.
< 0

on (0, µ̃1(0)), where µ̃1(0) =
∫ µ̂1

a
h. From this and ¨̃yµ̂1

(0) = 0, it follows that ¨̃yµ̂1
(t) < 0

on (0, µ̃1(0)). It is easily seen that, if q ≤ 0 on [a, µ̂1(a)), then h′ < 0 on (a, µ̂1(a)).

Therefore, from the second relation of (2.15), we obtain y′′
µ̂1

(x) < 0 on (a, µ̂1(a)). The

theorem is proved. �

5. Sufficient conditions for the existence of η̂1

We say equation (1.1) is systems-conjugate in (a,∞) if η̂1 exists; otherwise (1.1)

is said to be systems-disconjugate. In this section, a number of conjugacy and dis-

conjugacy criteria for (1.1) will be established.

Theorem 5.1. If
∫ ∞

q(t) = −∞ and
∫ ∞

p(t) = +∞ then equation (1.1) is systems-

conjugate.

Proof. If the subwronskian σ̂ has a zero in (a,∞), then by Rolle’s theorem, η̂1 exists.

Assume that σ̂ > 0 on (a,∞) and let k(x) = τ̂ ′

σ̂
. By using the identity (2.7), we

obtain

k′(x) = −P −
k2

r
< 0 on (a,∞).

Integrating this expression, and taking into account the assumption
∫ ∞

p = +∞, it

follows that k(x) → −∞ as x → +∞, and hence, µ̂1(a) exists. Therefore, in view of

Theorem 2.1 and the assumption
∫ ∞

q = −∞, η̂1(a) exists, which implies that (1.1)

is systems-conjugate.

Theorem 5.2. If
∫ ∞ 1

r
(t) = +∞ and

∫ ∞
q(t) = −∞ then equation (1.1) is systems-

conjugate.

For the proof of this theorem we need the following result.

Theorem 5.3 ([9, 14]). If the conditions
∫ ∞

a

r−1(x)dx = ∞,

∫ ∞

a

q(s)ds = −∞

hold, then the second-order equation (2.12) is oscillatory on (a,∞); i.e., each of its

solution has infinitely many zeros in this interval.

Proof. It is easy to see that the zeros of the subwronskian τ̂ ′ related to (1.1) for p ≡ 0

coincide with those of the solution h of the second-order initial value problem (2.12)–

(2.21). In view of Theorem 5.3, h has infinitely many zeros in (a,∞). Therefore, the

first-systems focal point µ̂1(a) exists for (1.1) with p ≡ 0. By Theorem 3.5, µ̂1(a)

exists for p > 0, and hence the assumption
∫ ∞

q = −∞ and Theorem 2.1 yield the

existence of the first-systems conjugate point η̂1(a). The theorem is proved.
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By combining Theorem 3.1 with the second statement of Theorem 2.1 we obtain

the following criterion giving the relation between the systems-disconjugacy of (1.1)

and the sign of the associated quadratic functional.

Theorem 5.4. If
∫ ∞

q = −∞, then equation (1.1) is systems-disconjugate if, and

only if,

I[w, a, b] =

∫ b

a

r(w′′)2 + q(w′)2 − pw2dx > 0

for each b ∈ (a, +∞) and each nontrivial admissible function w(x) on [a, b] (i.e.,

w(x) ∈ C1[a, b], w′ is absolutely continuous and w′′ ∈ L2[a, b]) for which w(a) =

w′(b) = 0.
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