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ABSTRACT. We discuss existence of at least one positive solution to the singular second-order

two point boundary value problem,











− (pu′)
′

(t) = f(t, u(t)), t ∈ (0, 1) ,

au(0) − b limt→0 p(t)u′(t) = 0,

cu(1) + d limt→1 p(t)u′(t) = 0,

where a, b, c, d ∈ [0, +∞), p : (0, 1) → [0, +∞) is a measurable function, and f : (0, 1) × R → R is a

Carathéodory function.

AMS (MOS) Subject Classification. 34B16, 34B18.

1. INTRODUCTION

The theory of boundary value problems associated with differential equations

has becomed an important branch of applied mathematics. This importance is due

essentially to the fact that many physical and biological phenomenas are modeled by

such problems. Many hundreds of papers where several classes of boundary value

problems have been investigated, have appeared during the last three decades. In

particular, study of existence and multiplicity of positive solutions for boundary value

problems associated with differential equations have received a great interest; see [1],

[3], [4], [5], [7]–[11], [13]–[16] and references therein.

Motivated by the works in [2], [7], [12], [13] and [16], we will investigate in this

work a second order boundary value problem with a Carathéodory sign-changing

nonlinearity which may have singularities. So, this paper deals with existence of at

least one positive solution to the second-order nonlinear boundary value problem (bvp
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for short),










− (pu′)′ (t) = f(t, u(t)), a.e. t ∈ (0, 1) ,

au(0) − b limt→0 p(t)u
′(t) = 0,

cu(1) + d limt→1 p(t)u
′(t) = 0,

(1.1)

where a, b, c, d ∈ R
+ := [0,+∞), p : (0, 1) → R

+ is a measurable function, and

f : (0, 1) × (0,+∞) → R is a Carathéodory function which may change its sign.

We recall that a function h : (0, 1)× I → R where I is an interval of R, is said to

to be a Carathéodory function if

• h(·, u) is a measurable function for all u ∈ I, and

• h(t, ·) is continuous for a.e. t ∈ (0, 1).

Throughout, we assume that
∫ 1

0

dτ

p(τ)
<∞, (1.2)

∆ = ad+ ac

∫ 1

0

dτ

p(τ)
+ bc > 0. (1.3)

In all this paper, G denotes the Green’s function associated with the bvp










− (pu′)′ (t) = 0, a.e. t ∈ (0, 1) ,

au(0) − b limt→0 p(t)u
′(t) = 0,

cu(1) + d limt→1 p(t)u
′(t) = 0.

We have

G(t, s) =
1

∆

{

Φab(s)Ψcd(t), 0 ≤ s ≤ t ≤ 1,

Φab(t)Ψcd(s), 0 ≤ t ≤ s ≤ 1,

where

Φab(x) = b+ a

∫ x

0

dτ

p(τ)
and Ψcd(x) = d+ c

∫ 1

x

dτ

p(τ)
,

are well defined on [0, 1].

Also, throughout, we let

L1
G =

{

q : (0, 1) → R measurable,

∫ 1

0

G(t, t) |q (t)| dt < +∞
}

equipped with the norm |·|G, defined for q ∈ L1
G by

|q|G =

∫ 1

0

G(t, t) |q (t)| dt

and

KG =
{

q ∈ L1
G such that q (t) ≥ 0 for a.e. t ∈ (0, 1)

}

.

A function h : (0, 1) × I −→ R where I is an interval of R, is said to be an

L1
G-Carathéodory function, if

• h is a Carathéodory function, and
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• for each compact Q ⊂ (0,+∞) there exists ψQ ∈ KG such that |h(t, u)| ≤ ψQ (t)

for a.e. t ∈ (0, 1) and for all u ∈ Q.

Throughout this paper, we assume that the function f satisfies the following

hypotheses:

f is an L1
G-Carathéodory function on (0, 1) × (0,+∞) , (1.4)

and there exists a function q ∈ KG ∩ L1 [0, 1] such that

f(t, u) + q (t) ≥ 0, for all u > 0 and a.e. t ∈ (0, 1) . (1.5)

Note that under the above hypotheses, the nonlinearity f may be singular at

u = 0, that is, there may exist t0 ∈ (0, 1) such that limu→0 f (t0, u) = +∞. Note

also, that the hypotheses assumed here on the weight p and the nonlinearity f are

less restrictive than those imposed in [7], [12], [13] and [16].

The paper is organized as follows. Section 2 deals with preliminaries, and in

Section 3, we present our main results and their proofs. We end the paper with

Section 4, where we provide illustrative examples. The main tool in this paper is

Krasnoselskii’s theorem of expansion and compression of a cone in a Banach space.

2. PRELIMINARIES AND AUXILIARY LEMMAS

The main results of this paper are obatained by means of the following Kras-

noselskii’s fixed point theorem.

Theorem 2.1 ([6]). Let X be a real Banch space, K a cone of X and let Ω1, Ω2 be

open bounded subsets of X such that 0 ∈ Ω1 ⊂ Ω̄1 ⊂ Ω2. If T : K ∩
(

Ω̄2\Ω1

)

→ K is

a completely countinuous operator such that, either

1. ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or

2. ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩
(

Ω̄2\Ω1

)

.

Now, let us introduce some spaces and operators needed for proofs of the main

results. Hereafter, in this paper, E is the Banach space of all continuous functions

from [0, 1] into R equipped with the norm

‖u‖ = sup {|u(t)|, 0 ≤ t ≤ 1} ,

K and P are the cones of E given by

K = {u ∈ E : u(t) ≥ 0 for all t ∈ [0, 1]} ,

P = {u ∈ E : u(t) ≥ ρ(t)‖u‖ for all t ∈ [0, 1]} , (2.1)
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where for t ∈ [0, 1],

ρ(t) =



























1

∆
min (cΦab (t) , aΨcd (t)) , if ac 6= 0,

Ψcd (t)

Ψcd (0)
, if a = 0,

Φab (t)

Φab (1)
, if c = 0.

Note that Hypothesis (1.3) implies that the situation a = c = 0 is not possible

and also makes ρ > 0 on (0, 1).

In all this paper, we write u > v for u, v ∈ E if u(t) > v(t) for all t ∈ (0, 1).

It is well known that the Green’s function G satisfies

G(t, s) ≤ G(s, s), for 0 ≤ t, s ≤ 1, (2.2)

Therefore, for all u ∈ L1
G,

∣

∣

∣

∣

∫ 1

0

G (t, s)u (s) ds

∣

∣

∣

∣

≤
∫ 1

0

G (s, s) |u (s)| ds <∞.

Lemma 2.2. Assume that (1.2) and (1.3) hold. Then the operator £ : L1
G → E

defined for u ∈ L1
G by

£u (t) =

∫ 1

0

G (t, s) u (s) ds

is linear, continuous, and maps KG into P .

Proof. Let, for n = 3, 4, . . ., and u ∈ L1
G,

£nu (t) =

∫ 1

0

G (t, s) γn (s) u (s) ds,

where

γn (s) =

{

0 if s ∈ (0, 1/n) ∪ (1 − 1/n, 1) ,

1 if s ∈ (1/n, 1 − 1/n) .
(2.3)

Since L1
G ⊂ L1

loc (0, 1), we have that γnu ∈ L1 [0, 1]. Hence, £nu ∈ E for all u ∈ L1
G

and £n maps L1
G into E.

Clearly, we have for all u ∈ L1
G

‖£nu‖ ≤
∫ 1

0

G (s, s) γn (s) |u (s)| ds = |u|G ,

and £n : L1
G → E is a linear continuous operator.

Now, since for u ∈ L1
G, £nu ∈ E and

sup
t∈[0,1]

|£u (t) − £nu (t)| ≤
∫ 1

0

G (s, s) |u (s)| (1 − γn (s)) ds,

we obtain from the Lebesgue dominated convergence theorem that lim ‖£u− £nu‖ =

0. Therefore, £u ∈ E for all u ∈ L1
G and £ : L1

G → E is well defined.
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Also, we have for all u ∈ L1
G

‖£u‖ = sup
t∈[0,1]

|£u (t)| ≤
∫ 1

0

G (s, s) |u (s)| ds = |u|G .

This shows that £ : L1
G → E is a linear continuous operator.

At the end, the proof of T (KG) ⊂ P is similar to that of Lemma 2.8 in [2].

It is easy to prove the following Lemma.

Lemma 2.3. Assume that (1.2) and (1.3) hold. Then for all u ∈ L1
G, £u is the

unique solution of










− (pv′)′ (t) = u(t), a.e. t ∈ (0, 1) ,

av(0) − b limt→0 p(t)v
′(t) = 0,

cv(1) + d limt→1 p(t)v
′(t) = 0.

Following Lemma 2.3, £q is the unique solution of the bvp











− (pu′)′ (t) = q(t), a.e. t ∈ (0, 1) ,

au(0) − b limt→0 p(t)u
′(t) = 0,

cu(1) + d limt→1 p(t)u
′(t) = 0.

(2.4)

Throughout this paper, we denote φ = £q, and we have that

φ (t) =
∫ 1

0
G(t, s)q(s)ds =

1

∆

∫ t

0
Φab(s)Ψcd(t)q(s)ds

+
1

∆

∫ 1

t
Φab(t)Ψcd(s)q(s)ds.

(2.5)

Lemma 2.4. Assume that (1.2) and (1.3) hold, then φ satisfies the following upper

bound:

φ(t) ≤ φ∗ρ (t) for all t ∈ [0, 1],

where

φ∗ =



























max

(

1

c

∫ 1

0
Ψcd(s)q(s)ds,

1

a

∫ 1

0
Φab(s)q(s)ds

)

if ac 6= 0,

Φab(1)

∆

∫ 1

0
Ψcd(s)q(s)ds if c = 0,

Ψcd(0)

∆

∫ 1

0
Φab(s)q(s)ds if a = 0.

Proof. The proof is based on the fact that the functions Φab and Ψcd are, respectively,

increasing and decreasing on [0, 1]. We distinguish the following cases:
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• a = 0: In this case we have ρ (t) = Ψcd(t)
Ψcd(0)

and cΦab (t) = bc > 0. Thus, we have

from (2.5),

φ (t) ≤ 1

∆
Ψcd (t)

∫ t

0

bq(s)ds+
1

∆
Ψcd (t)

∫ 1

t

bq(s)ds

=
1

∆
Ψcd (t)

∫ t

0

Φab(s)q(s)ds+
1

∆
Ψcd (t)

∫ 1

t

Φab(s)q(s)ds

=
Ψcd (0)

∆
ρ (t)

∫ 1

0

Φab(s)q(s)ds = φ∗ρ (t) .

• c = 0: In this case we have ρ (t) = Φab(t)
Φab(1)

and aΨcd (t) = ad > 0. Thus, we have

from (2.5),

φ (t) ≤ 1

∆
Φab (t)

∫ t

0

dq(s)ds+
1

∆
Φab (t)

∫ 1

t

dq(s)ds

=
1

∆
Φab (t)

∫ t

0

Ψcd(s)q(s)ds+
1

∆
Φab (t)

∫ 1

t

Ψcd(s)q(s)ds

=
Φab (1)

∆
ρ (t)

∫ 1

0

Ψcd(s)q(s)ds = φ∗ρ (t) .

• ac 6= 0: In this case, and because the function cΦab − aΨcd is increasing on

[0, 1] , we distinguish the following three possibilities.

i) cΦab (t) ≤ aΨcd (t) for all t ∈ [0, 1]. In this subcase ρ(t) = c
∆

Φab (t). Thus,

we have from (2.5),

φ (t) ≤ 1

∆
Φab (t)

∫ t

0

Ψcd(s)q(s)ds+
1

∆
Φab (t)

∫ 1

t

Ψcd(s)q(s)ds

=
1

∆
Φab (t)

∫ 1

0

Ψcd(s)q(s)ds = φ∗ρ (t) .

ii) aΨcd (t) ≤ cΦab (t) for all t ∈ [0, 1]. In this subcase ρ(t) = a
∆

Ψcd (t). Thus,

we have from (2.5),

φ (t) ≤ 1

∆
Ψcd (t)

∫ t

0

Φab(s)q(s)ds+
1

∆
Ψcd (t)

∫ 1

t

Φab(s)q(s)ds

=
1

∆
Ψcd (t)

∫ 1

0

Φab(s)q(s)ds = φ∗ρ (t) .

iii) There exists a unique t∗ ∈ (0, 1) such that cΦab (t) < aΨcd (t) for all

t ∈ (0, t∗) and cΦab (t) > aΨcd (t) for all t ∈ (t∗, 1). In this subcase

ρ(t) =

{

c
∆

Φab (t) if t ∈ [0, t∗] ,
a
∆

Ψcd (t) if t ∈ [t∗, 1] .
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Thus, we have from (2.5), if t ∈ [0, t∗],

φ (t) ≤ 1

∆
Φab (t)

∫ t

0

Ψcd(s)q(s)ds+
1

∆
Φab (t)

∫ 1

t

Ψcd(s)q(s)ds

=
1

c

( c

∆
Φab (t)

)

∫ 1

0

Ψcd(s)q(s)ds ≤ φ∗ρ (t) ,

and if t ∈ [t∗, 1],

φ (t) ≤ 1

∆
Ψcd (t)

∫ t

0

Φab(s)q(s)ds+
1

∆
Ψcd (t)

∫ 1

t

Φab(s)q(s)ds

=
1

a

( a

∆
Ψcd (t)

)

∫ 1

0

Φab(s)q(s)ds ≤ φ∗ρ (t) .

Therefore, for all t ∈ [0, 1],

φ (t) ≤ φ∗ρ (t) .

The proof is complete.

Let r, R be two real numbers such that R > r > φ∗. We have from the definition

of the cone P and Lemma 2.4 that, for all v ∈ P ∩
(

B (0, R) \B (0, r)
)

,

v(t) − φ (t) ≥ (‖v‖ − φ∗) ρ (t) ≥ (r − φ∗) ρ (t) > 0.

Therefore, for all v ∈ P ∩
(

B (0, R) \B (0, r)
)

the expression

Fr,R,φv (t) = f (t, v (t) − φ (t)) + q (t) (2.6)

is defined for all t ∈ (0, 1).

Lemma 2.5. Assume that (1.4) and (1.5) hold and

f(t, ·) is continuous at u = 0 a.e. t ∈ (0, 1) and f(·, 0) ∈ L1
G. (2.7)

Then for all r, R ∈ R with R > r > φ∗ and all v ∈ P ∩
(

B (0, R) \B (0, r)
)

, Fr,R,φv ∈
KG and the operator Fφ defined by expression (2.6) maps P ∩

(

B (0, R) \B (0, r)
)

into

KG. Moreover if (1.2), (1.3) hold, then the operator

Tr,R,φ = £Fr,R,φ : P ∩
(

B (0, R) \B (0, r)
)

→ P

is compact and for any fixed point v of Tr,R,φ, satisfying v > φ, u = v−φ is a positive

solution of bvp (1.1).

Proof. Fix R, r ∈ R with R > r > φ∗ and set Ω = P ∩
(

B (0, R) \B (0, r)
)

. Note

that Hypotheses (1.4) and (2.7) imply that the nonlinearity f is an L1
G-Carathéodory

function, and there exists ψR ∈ KG such that

|f (t, z)| ≤ ψR (t) for all z ∈ [0, R] and a.e. t ∈ (0, 1) . (2.8)

Since, for all v ∈ Ω,

0 ≤ (r − φ∗) ρ (t) ≤ v (t) − φ (t) ≤ R,
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we have that

0 ≤ Fr,R,φv (t) = f (t, v (t) − φ (t)) + q (t) ≤ ψR (t) + q (t) a.e. t ∈ (0, 1) ,

and this shows that Fr,R,φv ∈ KG.

Now, if Hypotheses (1.2) and (1.3) hold, then Lemma 2.2 guarantees that for

v ∈ Ω, £Fr,R,φv ∈ P and the operator Tr,R,φ = £Fr,R,φ : Ω → P is well defined.

Consider the linear continuous operator £1 : L1 [0, 1] → C1 [0, 1] defined for

u ∈ L1 [0, 1] by

£1u (t) =

∫ 1

0

G (t, s)u (s) ds,

and let, for n = 3, 4, . . . and u ∈ Ω, Fnu be defined by

Fnu (t) = γn (t)Fr,R,φu (t) ,

where γn is the function defined by (2.3). Since L1
G ⊂ L1

loc (0, 1), the mapping Fn :

Ω → KG ∩ L1 [0, 1] is well defined. Furthermore, since for all u, v ∈ Ω

∫ 1

0

|Fnu (t) − Fnv (t)| dt =

∫ 1− 1

n

1

n

|Fr,R,φu (t) − Fr,R,φv (t)| dt

=

∫ 1− 1

n

1

n

|f (t, u (t) − φ (t)) − f (t, v (t) − φ (t))| dt,

we obtain from (2.8) and the Lebesgue dominated convergence theorem that Fn is a

continuous and bounded mapping.

Now, let Tn = i ◦ £1 ◦ Fn where i is the compact embedding of C1 [0, 1] into E.

Clearly, Tn is a compact mapping.

We have from (2.2), (1.4) and (2.7) that, for all u ∈ Ω,

|Tr,R,φu (t) − Tnu (t)| ≤
∫ 1

0

G (s, s) (1 − γn (s)) |f (s, u (s) − φ (s)) + q(s)| ds

≤
∫ 1

0

G (s, s) (1 − γn (s)) (ψR (s) + q(s)) ds.

Thus, we obtain by means of the Lebesgue dominated convergence theorem that

‖Tu− Tnu‖Cb(Ω,E) → 0 as n → ∞ and this shows that T ∈ Cb (Ω, E) and T is

compact. Here Cb (Ω, E) is the Banach space of all continuous bounded maps from

Ω into E equipped with the sup-norm.

Finally, if v is a fixed point of Tr,R,φ with v > φ, then u = v − φ is positive and

satisfies u+ φ = £Fr,R,φ (u+ φ). That is,










− (pu′)′ (t) − (pφ′)′ (t) = f(t, u(t)) + q (t) , a.e. t ∈ (0, 1) ,

a (u+ φ) (0) − b limt→0 p(t) (u+ φ)′ (t) = 0,

c (u+ φ) (1) + d limt→1 p(t) (u+ φ)′ (t) = 0.
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Taking into consideration that φ = £q is the unique solution of (2.4), we obtain that

u = v − φ is a positive solution of bvp (1.1).

Lemma 2.6. Assume that (1.4) and (1.5) hold and there exist functions m1, m2 ∈
KG, a continuous decreasing function g : (0,+∞) → (0,+∞), a continuous increasing

function h : R
+ → R

+ and r0 > φ∗ such that

{

|f (t, u)| ≤ m1 (t) g (u) +m2 (t)h (u) and all u > 0 and a.e. t ∈ (0, 1) , and
∫ 1

0
G (s, s)m1 (s) g (ρ (s) (r0 − φ∗)) ds <∞.

Then for all R > r0 and all v ∈ P ∩
(

B (0, R) \B (0, r0)
)

, Fφv ∈ KG and the

operator Fr0,R,φ defined by expression (2.6) maps P ∩
(

B (0, R) \B (0, r0)
)

into KG.

Moreover if (1.2), (1.3) hold, then the operator

Tr0,R,φ = £Fr0,R,φ : P ∩
(

B (0, R) \B (0, r0)
)

→ P

is compact and for any fixed point v of Tr0,R,φ, satisfying v > φ, u = v−φ is a positive

solution of bvp (1.1).

Proof. Fix R > r0 and set Ω = P ∩
(

B (0, R) \B (0, r)
)

. Since, for all v ∈ Ω,

0 ≤ (r0 − φ∗) ρ (t) ≤ v (t) − φ (t) ≤ R,

we have that

0 ≤ Fr0,R,φv (t) = f (t, v (t) − φ (t)) + q (t)

≤ m1 (t) g ((r0 − φ∗) ρ (t)) +m2 (t) h (R) + q (t) a.e. t ∈ (0, 1) ,

from which it follows that

∫ 1

0
G (s, s)Fr0,R,φv (s) ds ≤

∫ 1

0
G (s, s)m1 (s) g (ρ (s) (r0 − φ∗)) ds

+
∫ 1

0
G (s, s) (h (R)m2 (s) + q (s)) <∞.

All the above estimates show that Fr0,R,φv ∈ KG.

As in the proof Lemma 2.5, if Hypotheses (1.2) and (1.3) hold, then the operator

Tr0,R,φ = £Fr0,R,φ : Ω → P is well defined

Now, let Fn be as defined in proof of Lemma 2.5. We have, for all v ∈ Ω,

v (s) − φ (s) ≥ (r0 − φ∗) ρ (s) > 0 for all s ∈ [0, 1] ,

and this, together with Hypothesis (1.4), leads to

lim
n→∞

γn (s) f (s, v (s) − φ (s)) = f (s, v (s) − φ (s)) a.e. s ∈ (0, 1) .
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Also, we have for all v ∈ Ω,

‖Tr0,R,φv − Tnv‖ = sup
t∈[0,1]

|Tr0,R,φv (t) − Tnv (t)|

≤
∫ 1

0

G(s, s) (1 − γn (s)) |f (s, v (s) − φ (s)) + q(s)| ds

≤
∫ 1

0

G(s, s) (1 − γn (s)) (m1 (s) g ((r0 − φ∗) ρ (s))

+h (R)m2 (s) + q(s)) ds.

Thus, we obtain by means of the Lebesgue dominated convergence theorem that

‖Tu− Tnu‖Cb(Ω,E) → 0 as n→ ∞. As in the proof of Lemma 2.5, if v is a fixed point

of Tr0,R,φ, with v > φ, then u = v − φ is a positive solution of bvp (1.1). This ends

the proof.

3. MAIN RESULTS

3.1. The regular case.

Theorem 3.1. Suppose that Hypotheses (1.2), (1.3), (1.4), (1.5) and (2.7) hold and

(a): there exist a function α ∈ KG and R1 > max (φ∗, ‖£α‖) such that

f(t, u) + q(t) ≤ α (t)

for a.e. t ∈ (0, 1) and all u ∈ [0, R1],

(b): there exist σ ∈
(

0, 1
2

)

, a function β ∈ KG and a constant R2, with R2 6= R1,

such that

φ∗ < R2 ≤ max
t∈[0,1]

∫ 1−σ

σ

G (t, s)β (s) ds,

f(t, u) + q(t) ≥ β (t) ,

for a.e. t ∈ [σ, 1−σ] and all u ∈ [ρσ (R2 − φ∗) , R2], where ρσ = mins∈[σ,1−σ] ρ (s).

Then, bvp (1.1) has at least one positive solution.

Proof. Let TR1,R2,φ be the operator defined in Lemma 2.5, where R1 and R2 are those

in Theorem 3.1. We have for all v ∈ P ∩ ∂B (0, R1) and t ∈ [0, 1]

0 ≤ (R1 − φ∗) ρ(t) ≤ v(t) − φ(t) ≤ R1.

Therefore, the following estimates hold, for all u ∈ P ∩ ∂B (0, R1) and all t ∈ [0, 1],

TR1,R2,φv(t) =

∫ 1

0

G(t, s) (f(s, v(s) − φ(s)) + q(s)) ds

≤
∫ 1

0

G (t, s)α (s) ds ≤ max
t∈[0,1]

∫ 1

0

G (t, s)α (s) ds ≤ R1 = ‖v‖.
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Passing to the supremum in the above estimates, we get

‖TR1,R2,φv‖ ≤ ‖v‖ for all v ∈ P ∩ ∂B (0, R1) .

Now, we have, for all v ∈ P ∩ ∂B (0, R2) and t ∈ [σ, 1 − σ],

v(t) ≥ v(t) − φ(s) ≥ (R2 − φ∗) ρ(s) = (R2 − φ∗) ρσ > 0. (3.1)

Assumption (b) and (3.1) lead to the following estimates

‖TR1,R2,φu‖ ≥ max
t∈[0,1]

∫ 1−σ

σ

G(t, s) (f(s, v(s) − φ(s)) + q(s)) ds

≥ max
t∈[0,1]

∫ 1−σ

σ

G(t, s)β (s) ds ≥ R2 = ‖u‖.

Therefore,

‖TR1,R2,φv‖ ≥ ‖v‖ for all v ∈ P ∩ ∂B (0, R2) .

Thus, it follows from Theorem A that TR1,R2,φ has a fixed point v such that

min(R1, R2) ≤ ‖v‖ ≤ max(R1, R2).

Moreover, since v ∈ P , we have for all t ∈ [0, 1],

v(t) ≥ p(t)‖v‖ ≥ p(t) min(R1, R2) > φ∗p(t) ≥ φ(t).

So, we deduce from Lemma 2.5 that u = v−φ is a positive solution to bvp (1.1).

In what follows, we consider the particular case where the nonlinearity f is con-

tinuous and we suppose that,

there exists M > 0 such that

f(t, u) +M ≥ 0 for all t ∈ [0, 1] and u ≥ 0,
(3.2)

there exists r > φ∗, such that
Sf(r) +M

r

(

max
t∈[0,1]

∫ 1

0

G(t, s)ds

)

≤ 1 (3.3)

where

Sf(r) = max{f(t, u), t ∈ [0, 1], u ∈ [0, r]},
and

there exists σ ∈
(

0, 1
2

)

such that

f∞ (σ) = lim x→ +∞ inf

(

mint∈[σ,1−σ]
f(t, x)

x

)

> (ρσGσ)
−1 ,

(3.4)

where for σ ∈
(

0, 1
2

)

Gσ = max
t∈[0,1]

∫ 1−σ

σ

G (t, s) ds.

Corollary 3.2. Suppose that f is continuous, and Hypotheses (1.2), (1.3), (3.2),

(3.3) and (3.4) hold. Then bvp (1.1) has at least one positive solution.
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Proof. We have to show the conditions in Theorem 3.1 are satisfied. Clearly, if the

nonlinearity f is continuous, then Hypotheses (1.4) and (2.7) are satisfied.

Now, let us prove that if Hypothesis (3.3) hold then Condition (a) in Theorem 3.1

is satisfied. Take R1 = r and α (t) = Sf (r) +M . We have then

f(t, u) +M ≤ α (t)

for all t ∈ [0, 1] and u ∈ [0, R1].

In this case, we have

‖£α‖ = max
t∈[0,1]

∫ 1

0

G (t, s)α (s) ds

= (Sf (R1) +M) max
t∈[0,1]

∫ 1

0

G (t, s) ds < R1.

It remains to show that if Hypothesis (3.4) holds, then Condition (b) of Theorem 3.1

is satisfied. Let ǫ > 0 be small enough such that f∞ (σ) − ǫ > (ρσGσ)−1. Hypothesis

(3.4) implies that there exists R∞ > 0 such that

f(t, x) +M ≥ (f∞ (σ) − ǫ) x+M,

for all t ∈ [σ, 1 − σ] and x ≥ R∞.

Let

R2 > max

(

φ∗ +
R∞

ρσ

,
ρσGσ (f∞(σ) − ǫ)φ∗ −MGσ

(f∞(σ) − ǫ) ρσGσ − 1

)

and

β (t) = (f(σ) − ǫ) ρσ (R2−φ
∗) +M.

We have from the choice of R2,

max
t∈[σ,1−σ]

∫ 1−σ

σ

G (t, s)β (s) ds = Gσ ((f(σ) − ǫ) ρσ (R2 − φ∗) +M)

> (R2 +Gσ (f(σ) − ǫ) ρσφ
∗ −GσM)

−Gσ (f(σ) − ǫ) ρσφ
∗ +GσM

= R2.

This ends the proof.

3.2. The singular case.

Theorem 3.3. Suppose that Hypotheses (1.2)–(1.5) hold and

(c): there exist functions m1, m2 ∈ KG, a continuous decreasing function g :

(0,+∞) → (0,+∞), a continuous increasing function h : R
+ → R

+ and R1 > φ∗

such that
{

|f (t, u)| ≤ m1 (t) g (u) +m2 (t) h (u) and all u > 0 and a.e. t ∈ (0, 1) and
∫ 1

0
G (s, s) (m1 (s) g (ρ (s) (R1 − φ∗)) +m2 (s)h (R1) + q (s)) ds ≤ R1,
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(d): there exist σ ∈
(

0, 1
2

)

, a function β ∈ KG and a constant R2, with R2 6= R1,

such that

φ∗ < R2 ≤ max
t∈[0,1]

∫ 1−σ

σ

G (t, s)β (s) ds,

f(t, u) + q(t) ≥ β (t) ,

for a.e. t ∈ [σ, 1−σ] and all u ∈ [ρσ (R2 − φ∗) , R2] where ρσ = mins∈[σ,1−σ] ρ (s).

Then, bvp (1.1) has at least one positive solution.

Proof. Let TR1,R2,φ be the operator defined in Lemma 2.6 where R1 and R2 are those

of Theorem 3.3. We have, for all v ∈ P ∩ ∂B (0, R1) and t ∈ [0, 1],

0 ≤ (R1 − φ∗) ρ(t) ≤ v(t) − φ(t) ≤ R1.

Taking into account Assumption (c), the following estimates hold, for all u ∈ P ∩
∂B (0, R1) and all t ∈ [0, 1],

TR1,R2,φv(t) =

∫ 1

0

G(t, s) (f(s, v(s) − φ(s)) + q(s)) ds

≤
∫ 1

0

G (s, s) (m1 (s) g (ρ (s) (R1 − φ∗)) +m2 (s)h (R1) + q (s)) ds

≤ R1 = ‖v‖.

Passing to the supremum in the above estimates, we get

‖TR1,R2,φv‖ ≤ ‖v‖ for all u ∈ P ∩ ∂B (0, R1) .

Now, we have, for all v ∈ P∩ ∂B (0, R2) and t ∈ [σ, 1 − σ],

v(t) ≥ v(t) − φ(s) ≥ (R2 − φ∗) ρ(s) = (R2 − φ∗) ρσ > 0.

This together with Assumption (d) leads to the following estimates,

‖TR1,R2,φv‖ ≥ max
t∈[0,1]

∫ 1−σ

σ

G(t, s) (f(s, v(s) − φ(s)) + q(s)) ds

≥ max
t∈[0,1]

∫ 1−σ

σ

G(t, s)β (s) ds ≥ R2 = ‖v‖.

Therefore,

‖TR1,R2,φv‖ ≥ ‖v‖ for all v ∈ P ∩ ∂B (0, R2) .

Thus, it follows from Theorem A that TR1,R2,φ admits a fixed point v such that

min(R1, R2) ≤ ‖v‖ ≤ max(R1, R2).

Moreover, since v ∈ P , we have for all t ∈ (0, 1)

v(t) ≥ p(t)‖v‖ ≥ p(t) min(R1, R2) > φ∗p(t) ≥ φ(t).

So, we deduce from Lemma 2.6 that u = v−φ is a positive solution to bvp (1.1).
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4. EXAMPLES

4.1. Example 1.

Consider the bvp (1.1) with p = 1, a = c = 1, b = d = 0 and

f (t, u) = − 1√
t

+
1

t (1 − t)

u

1 + u
+

Au2

A + u
.

Note that Hypothesis (1.5) is satisfied for q (t) = 1√
t
, and by simple computations, we

obtain φ (t) = 4
3
t
(

1 −
√
t
)

, maxt∈[0,1]

∫ 1

0
G (t, s) ds = 1

8
and φ∗ = 4

3
. We have

f (t, u) + q (t) ≤ 2
3

1
t(1−t)

+ 4 = α (t) for all u ∈ [0, 2] , and

maxt∈[0,1]

∫ 1

0
G (t, s)α (s) ds = 2 ln 2 + 1

2
< 2.

Thus Condition (a) of Theorem 3.1 is satisfied for R1 = 2.

Also, we have

f (t, u) + q (t) ≥ B2

2
= β (t) for u ≥ B.

Choosing σ = 1
3
, we obtain after simple computations maxt∈[0,1]

∫ 1−σ

σ
G (t, s)β (s) ds =

B2

18
.

Taking R2 = 3B + 2
3
, one can see that Condition (b) of Theorem 3.1 is satisfied

for all B satisfying

B2

18
− 3B − 2

3
> 0,

and in this case, bvp (1.1) admits a positive solution.

4.2. Example 2.

Consider the bvp (1.1) with p = 1, a = c = 1, b = d = 0 and

f (t, u) = (−t) u

1 + u
+

Au

A2 + u2
+

Bu2

B + u
,

where A,B are positive real numbers.

Note that Hypothesis (3.2) is satisfied for M = 1 and in this case we have

φ (t) = 1
2
t (1 − t) =

∫ 1

0
G (t, s) ds, maxt∈[0,1]

∫ 1

0
G (t, s) ds = 1

8
and φ∗ = 1

2
. Taking

σ = 1
3
, straightforward computations lead to ρ 1

3

= 1
3
, G 1

3

= 1
9
. Note also that

lim
u→+∞

f (t, u)

u
= B uniformly for t ∈ [0, 1] .

By simple computations, we get Sf (r) = 1
2

+ Br2

B+r
, and Hypothesis (3.3) holds for

r = 1. Thus, we deduce from Corollary 3.2 that bvp (1.1) admits a positive solution

for all A > 0 and B > 27.
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4.3. Example 3. Consider the bvp (1.1) with p = 1, a = c = 1, b = d = 0 and

f (t, u) = (−2t) +
1

u
+

Bu2

B + u
.

Note that Hypothesis (1.5) is satisfied for q (t) = 2t, and by simple computations,

we obtain φ (t) = 1
6
t (1 − t2) , maxt∈[0,1]

∫ 1

0
G (t, s) ds = 1

8
and φ∗ = 2

3
. The first

inequality in Condition (a) of Theorem 3.3 is satisfied for m1 = m2 = 1, g(u) = 1
u

and h(u) = Bu2

B+u
. Thus, we have for all R > φ∗,

∫ 1

0
G (s, s) (m1 (s) g (ρ (s) (R− φ∗)) +m2 (s) h (R) + q (s)) ds

= 3
4

(

R− 2
3

)−1
+ 1

6
BR2

B+R
+ 1

6
,

and the second inequality is satisfied for R1 = 2. Thus Condition (a) of Theorem 3.3

is satisfied for R1 = 2.

Also, in this example we have f (t, u) + q (t) ≥ B2

2
= β (t) for u ≥ B. So, bvp

(1.1) admits a positive solution whenever B2

18
− 3B − 2

3
> 0.

The first named author would like to thank his Laboratory “Fixed point theory

and applications” for supporting this work.
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