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1. INTRODUCTION

Third-order differential equations arise in a variety of different areas of applied

mathematics and physics, for example, in the deflection of a curved beam having

a constant or varying cross section, a three-layer beam, electromagnetic waves or

gravity driven flows. In particular, stability, boundedness and asymptotic behavior

of solutions of nonlinear third order differential equations have in the past and also

recently been researched, because of the absence of its complete solution. It still one

of the most burning problems of control theory, dynamical systems, time varying non

linear systems and etc. In many works, the authors dealt with the problems by using

Lyapunov’s functions, and interesting results have been obtained we mention only a

sampling of such papers [1–23] and other references therein.

In 1974, Hara [6] investigated the asymptotic behavior of solutions of the differ-

ential equation without delay of the form

x′′′ + a(t)x′′ + b(t)x′ + c(t)f(x) = e(t), (1.1)
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and showed that all solutions of the equation (1.1) are uniformly bounded and satisfy

x(t) → 0, x′(t) → 0 and x′′(t) → 0 as t→ ∞.

In 2005, Sadek [10], considered the following nonlinear differentiable of third

order, with a constant deviating argument r ensure the stability of system

x′′′ + a(t)x′′ + b(t)x′ + c(t)f(x(t− r)) = 0, (1.2)

the following result was proved

Theorem 1.1 ([10]). Suppose that a(t), b(t), and c(t) are continuously differentiable

on [0,+∞[ and the following conditions are satisfied:

S1) 0 < a0 ≤ a(t) ≤ A, 0 < b0 ≤ b(t) ≤ B and 0 < c0 ≤ c(t) ≤ C; for all

t ∈ [0,+∞[.

S2) 0 < f0 ≤
f(x)

x
with x 6= 0 and f(0) = 0, |f ′(x)| ≤ f1 ≤ 1, for all x.

S3) a0b0 − C > 0.

S4) b′(t) + µa′(t) − 1
µ
c′(t) < a0b0−C

2
, such that µ = a0b0+C

2b0
.

S5)
∫

∞

0
|c′(t)| <∞, c′(t) → 0 as t→ ∞.

Then the zero solution of (1.2) is uniformly asymptotically stable, provided that

r < min

{

2c0f0

f1C
,

a0b0 − C

(1 + a0)b0f1C
,

a0b0 − C + 4a0C(1 − f1)

2f1C(1 + 2µ+ 2a2
0 + a0 + (a0b0 − C)C)

}

.

We shall be concerned here, with asymptotic stability of zero solution and bound-

edness of all solutions of

(q(t)(p(t)x′(t))′)′ + a(t)x′′(t) + b(t)x′(t) + c(t)f(x(t− r)) = 0 (1.3)

and

(q(t)(p(t)x′(t))′)′ + a(t)x′′(t) + b(t)x′(t) + c(t)f(x(t− r)) = e(t), (1.4)

where q(t), p(t), a(t), b(t), c(t), e(t), and f(x) are real valued functions continuous in

their respective arguments and f(0) = 0. The derivatives a′(t), b′(t), c′(t), p(t), p′(t),

q(t), f ′(x), exist and are continuous in their respective arguments. The equation

discussed by Sadek [10] is a special case of equation (1.3) when p(t) = q(t) = 1.

2. PRELIMINARIES

We now give some definitions and important lemma which will play an important

role in the proof of our main results. We consider

x′ = f(t, xt), xt(θ) = x(t+ θ) , −r ≤ θ ≤ 0, t ≥ 0, (2.1)

where f : I × CH → R
n is a continuous mapping, f(t, 0) = 0, CH := {φ ∈

(C[−r, 0], R
n) : ‖φ‖ ≤ H}, and for H1 < H , there exists L(H1) > 0, with |f(t, φ)| <

L(H1) when ‖φ‖ < H1.



QUALITATIVE BEHAVIOR OF SOLUTIONS 55

Definition 2.1 ([2]). An element ψ ∈ C is in the ω − limit set of φ, say Ω(φ), if

x(t, 0, φ) is defined on [0,+∞) and there is a sequence {tn}, tn → ∞, as n→ ∞, with

‖xtn(φ) − ψ‖ → 0 as n→ ∞ where xtn(φ) = x(tn + θ, 0, φ) for −r ≤ θ ≤ 0.

Definition 2.2 ([2]). A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the solution

of (2.1), x(t, 0, φ), is defined on [0,∞) and xt(φ) ∈ Q for t ∈ [0,∞).

Lemma 2.3 ([1]). If φ ∈ CH is such that the solution xt(φ) of (2.1) with x0(φ) = φ

is defined on [0,∞) and ‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞), then Ω(φ) is a non-empty,

compact, invariant set and

dist(xt(φ),Ω(φ)) → 0 as t→ ∞.

Lemma 2.4 ([5]). Let V (t, φ) : I × CH → R be a continuous functional satisfying a

local Lipschitz condition. V (t, 0) = 0, and such that:

(i) W1(|φ(0)|) ≤ V (t, φ) ≤W2(‖φ‖) where W1(r), W2(r) are wedges.

(ii) V ′

(2.1)(t, φ) ≤ 0, for φ ∈ CH .

Then the zero solution of (2.1) is uniformly stable. If Z = {φ ∈ CH : V ′

(2.1)(t, φ) = 0},

then the zero solution of (2.1) is uniformly asymptotically stable, provided that the

largest invariant set in Z is Q = {0}.

3. ASSUMPTIONS AND MAIN RESULTS

Throughout this paper, we will use the following notations

A(t) =
a(t)

p(t)q(t)
, and B(t) =

b(t)p(t) − a(t)p′(t)

p2(t)
.

We assume that there are positive constants a0, b0, c0, m, µ, δ0, δ1, C, L, M , such

that the following conditions hold

i) 0 < a0 ≤ a(t), 0 < b0 ≤ b(t) and 0 < c0 ≤ c(t) ≤ C; for all t ≥ 0.

ii) 0 < m ≤ q(t) ≤ p(t) ≤M , −L ≤ p′(t) ≤ 0, and −L ≤ q′(t) ≤ 0, for all t ≥ 0.

iii) (p(t)c(t))′ ≤ (q(t)c(t))′ for all t ≥ 0.

iv) a0b0 >
M3Cδ1

m
.

v) 0 < δ0 ≤
f(x)

x
with x 6= 0 and f(0) = 0, |f ′(x)| ≤ δ1.

Our main results is the following Theorem.

Theorem 3.1. In addition to conditions (i)–(v) being satisfied, suppose that the fol-

lowing conditions hold

H1) MCδ1
b0

< µ < a0

M
, µ = a0b0+M2Cδ1

2b0M
.

H2) B′(t) + µA′(t) − 1
ρ
c′(t) < 1

2M
(a0b0

M2 − MCδ1
m

) for all t ≥ 0, such that ρ = µ

δ1
.

H3)
∫ t

0
|[q(s)c(s)]′|ds ≤ N <∞.
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Then every solution of (1.3) is uniformly asymptotically stable, provided that

r < min

{

m2a1

Mδ1C(1 + µ+ µm2)
,
2(a0m− µM2)

CMm2δ1

}

,

where a1 = a0b0
M2 − MCδ1

m
.

Remark 3.2. When p(t) = q(t) = 1, the conditions (iv), (H1), (H2) and (H3)

of Theorem 3.1 are an extension of conditions (S3), (S4) and (S5) of Theorem 1.1

for M = m = 1. Remark that in condition (v) of Theorem 3.1 we assume that

|f ′(x)| ≤ δ1, but in assumption (S2) of Theorem 1.1 we have |f ′(x)| ≤ f1 ≤ 1 which

is particularly restrictive.

Proof. We write equation (1.3) as the following equivalent system

x′ =
1

p(t)
y

y′ =
1

q(t)
z (3.1)

z′ = −A(t)z − B(t)y − c(t)f(x) + c(t)

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds.

Consider the Lyapunov functional W (t, xt, yt, zt) = W defined as follows

W = exp

(

−
θ(t)

β

)

V (t, xt, yt, zt), (3.2)

where

V (t, xt, yt, zt) = µp(t)c(t)F (x) + q(t)c(t)f(x)y +
1

2
z2 + µyz

+
q(t)

2

(

µA(t) +B(t)
)

y2 + λ

∫ 0

−r

∫ t

t+s

y2(ξ)dξds, (3.3)

such that F (x) =
∫ x

0
f(u)du. β and λ are positive constants which will be determined

later and θ(t) =
∫ t

0
|[q(s)c(s)]′| ds <∞. We can rewrite (3.3) as follows

V (t, xt, yt, zt) = µp(t)c(t)F (x) + q(t)c(t)f(x)y +
q(t)c(t)

2ρ
y2 +

1

2

(

z + µy
)2

+
q(t)

2

(

B(t) + µA(t) −
c(t)

ρ
−

µ2

q(t)

)

y2 + λ

∫ 0

−r

∫ t

t+s

y2(ξ)dξds.

An easy calculation shows that

V (t, xt, yt, zt) = µ
(

p(t)c(t) − q(t)c(t)
)

F (x) + µq(t)c(t)F (x) + q(t)c(t)f(x)y

+
q(t)c(t)

2ρ
y2 +

q(t)

2

(

B(t) + µA(t) −
c(t)

ρ
−

µ2

q(t)

)

y2

+
1

2

(

z + µy
)2

+ λ

∫ 0

−r

∫ t

t+s

y2(ξ)dξds.
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Since p(t) ≥ q(t) and the fact that the integral
∫ t

t+s
y2(ξ)dξ is nonnegative

V (t, xt, yt, zt) ≥ µq(t)c(t)Ψ(t) +
q(t)

2

(

B(t) + µA(t) −
c(t)

ρ
−

µ2

q(t)

)

y2

+
1

2

(

z + µy
)2
,

where

Ψ(t) = F (x) +
1

µ
f(x)y +

1

2µρ
y2.

From (v) we get

Ψ(t) = F (x) +
1

2µρ
(y + ρf(x))2 −

ρ

2µ
f 2(x)

≥

∫ x

0

(

1 −
ρ

µ
f ′(u)

)

f(u)du

≥
δ0

2

(

1 −
ρδ1

µ

)

x2.

Let

U(t) = B(t) −
c(t)

ρ
+ µ(A(t) −

µ

q(t)
),

using condition (H1) we have U(t) > 0 and according to the conditions (i) and (ii)

we obtain

V (t, xt, yt, zt) ≥
µmc0δ0

2

(

1 −
ρδ1

µ

)

x2 +
m

2
U(t)y2 +

1

2

(

z + µy
)2

≥ 0.

Hence there exists some positive constant k1 such that

V (t, xt, yt, zt) ≥ k1(x
2 + y2 + z2). (3.4)

Therefore, we can find a continuous function W1(|φ(0)|) with

W1(|φ(0)|) ≥ 0 and W1(|φ(0)|) ≤W (t, φ).

The existence of a continuous function W2(‖φ‖) which satisfies the inequality

W (t, φ) ≤W2(‖φ‖), is easily verified.

Let V̇(3.1)(t, xt, yt, zt) = V̇(3.1) denote the time derivative of the Lyapunov func-

tional V (t, xt, yt, zt), along the trajectories of the system (3.1). An easy computation

shows that

V̇(3.1) = µ(p(t)c(t))′F (x) +
1

2ρ
(q(t)c(t))′y2 + (q(t)c(t))′f(x)y +

(

µ

q(t)
− A(t)

)

z2

+

(

q(t)

p(t)
c(t)f ′(x) − µB(t) + λr

)

y2 +
1

2

(

(qB)′(t) + µ(qA)′(t) −
1

ρ
(qc)′(t)

)

y2

+ c(t)(µy + z)

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds− λ

∫ t

t−r

y2(ξ)dξ,
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from which we deduce

V̇(3.1) = µ
(

(p(t)c(t))′ − (q(t)c(t))′
)

F (x) + µ(q(t)c(t))′F (x) +

(

µ

q(t)
− A(t)

)

z2

+(q(t)c(t))′f(x)y +
1

2ρ
(q(t)c(t))′y2 +

(

q(t)

p(t)
c(t)f ′(x) − µB(t) + λr

)

y2

+
1

2

(

(qB)′(t) + µ(qA)′(t) −
1

ρ
(qc)′(t)

)

y2

+c(t)(µy + z)

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds− λ

∫ t

t−r

y2(ξ)dξ.

But

(qB)′(t) + µ(qA)′(t) −
1

ρ
(qc)′(t) = q(t)

[

B′(t) + µA′(t) −
1

ρ
c′(t)

]

+q′(t)

[

B(t) + µA(t) −
1

ρ
c(t)

]

≤ q(t)

[

µA′(t) +B′(t) −
1

ρ
c′(t)

]

,

since µA(t) +B(t) − 1
ρ
c(t) > µA(t) +B(t) − µ2

q(t)
− c(t)

ρ
> 0, and by (iii) we obtain

V̇(3.1) ≤ µ(qc)′(t)F (x) + (qc)′(t)f(x)y +
1

2ρ
(qc)′(t)y2 +

(

µ

q(t)
− A(t)

)

z2

+
1

2
q(t)

(

B′(t) + µA′(t) −
1

ρ
c′(t)

)

y2 +

(

q(t)

p(t)
c(t)f ′(x) − µB(t) + λr

)

y2

+c(t)(µy + z)

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds− λ

∫ t

t−r

y2(ξ)dξ,

we rearrange

V̇(3.1) ≤ µ(qc)′(t)Ψ(t) +
1

2
q(t)

(

B′(t) + µA′(t) −
1

ρ
c′(t)

)

y2

+

(

q(t)

p(t)
c(t)f ′(x) − µB(t) + λr

)

y2 +

(

µ

q(t)
− A(t)

)

z2

+c(t)(µy + z)

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds− λ

∫ t

t−r

y2(ξ)dξ.

Using the Schwartz inequality |uv| ≤ 1
2
(u2 + v2) and since |f ′(x)| ≤ δ1, we obtain

µc(t)y

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds ≤ µ

δ1Cr

2
y2 + µ

δ1C

2m2

∫ t

t−r

y2(ξ)dξ,

and

c(t)z

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds ≤

δ1Cr

2
z2 +

δ1C

2m2

∫ t

t−r

y2(ξ)dξ.
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Hence

V̇(3.1) ≤ µ(q(t)c(t))′Ψ(t) +
1

2
q(t)

(

B′(t) + µA′(t) −
1

ρ
c′(t)

)

y2

+

(

q(t)

p(t)
c(t)f ′(x) − µB(t) + λr +

µCδ1r

2

)

y2

+

(

Cδ1r

2
+

µ

q(t)
−A(t)

)

z2

+

(

µCδ1

2m2
+
Cδ1

2m2
− λ

)
∫ t

t−r

y2(ξ)dξ.

If we take λ = µCδ1
2m2 + Cδ1

2m2 , the last inequality becomes

V̇(3.1) ≤ µ(q(t)c(t))′Ψ(t) +
1

2
q(t)

(

B′(t) + µA′(t) −
1

ρ
c′(t)

)

y2

+

(

q(t)

p(t)
c(t)f ′(x) − µB(t) +

Cδ1

2m2
(µ+ 1 + µm2)r

)

y2 (3.5)

+

(

Cδ1r

2
+

µ

q(t)
− A(t)

)

z2.

Using (3.2) we obtain

Ẇ(3.1) = exp

(

−
θ(t)

β

) [

V̇(3.1)(t, xt, yt, zt) −
|(q(t)c(t))′|

β
V (t, xt, yt, zt)

]

.

By taking β = mc0, using (3.5), (3.4) and since (q(t)c(t))′ − |(q(t)c(t))′| ≤ 0 we have

Ẇ(3.1) ≤ exp

(

−
θ(t)

mc0

) [

1

2
q(t)

(

B′(t) + µA′(t) −
1

ρ
c′(t)

)

y2

+

(

q(t)

p(t)
c(t)f ′(x) − µB(t) +

Cδ1

2m2
(µ+ 1 + µm2)r

)

y2

+

(

Cδ1r

2
+

µ

q(t)
− A(t)

)

z2

]

.

From (i), (ii), (v) and (H1)

q(t)

p(t)
c(t)f ′(x) − µB(t) ≤

MCδ1

p(t)
−

(

a0b0 +M2Cδ1

2b0M

)

b0

p(t)

≤ −
1

2

(

a0b0

M2
−
MCδ1

m

)

≤ 0,

hence using (H2) we get

1

2
q(t)(B′(t) + µA′(t) −

1

ρ
c′(t)) +

q(t)

p(t)
c(t)f ′(x) − µB(t)

< −
1

4

(

a0b0

M2
−
MCδ1

m

)

< 0.
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Thus,

Ẇ(3.1) ≤ exp

(

−
θ(t)

mc0

) [(

−
1

4

(

a0b0

M2
−
MCδ1

m

)

+
Cδ1

2m2
(µ+ 1 + µm2)r

)

y2

+

(

Cδ1r

2
+
µ

m
−

a0

M2

)

z2

]

.

Condition (H3) shows that e−
θ(t)
β ≥ e−

−N
β . Therefore, if

r < min

{

m2a1

2δ1C(1 + µ+ µm2)
,
2(a0m− µM2)

CM2mδ1

}

,

where a1 = a0b0
M2 − MCδ1

m
, thus

Ẇ(3.1)(t, xt, yt, zt) ≤ −γ(y2 + z2), for some γ > 0.

It is clear that the largest invariant set in Z is Q = {0} , where

Z =

{

φ ∈ CH :
d

dt
W (φ) = 0

}

.

That is, the only solution of system (3.1) for which Ẇ(3.1)(t, xt, yt, zt) = 0 is the

solution x = y = z = 0. The above discussion guarantees that the trivial solution

of equation (1.3) is uniformly asymptotically stable and completes the proof of the

Theorem.

In the case e(t) 6= 0 we establish the following result:

Theorem 3.3. In addition to the assumptions of Theorem 3.1, If we assume that

e(t) is continuous in R and

∫ t

0

e(s)ds <∞ for all t ≥ 0,

then all solutions of the perturbed equation (1.4) are bounded.

Proof. The remaining of this proof follows the strategy indicated in the proof of

Theorem 2 in [9] and hence it omitted.

Example. We consider the following third order non-autonomous delay differ-

ential equation

((

1

8(1 + t2)
+

31

8

)((

1

4(1 + t2)
+

31

8

)

x′(t)

)

′
)′

+
(

20 + e−t
)

x′′(t) (3.6)

+
(

36 + e−2t
)

x′(t) +

(

1

20(1 + t)
+

1

20

) (

x(t− r)

200
+

x(t− r)

200(1 + x2(t− r))

)

= 2e3−t.
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We have

31

8
< q(t) =

1

8(1 + t2)
+

31

8
≤ p(t) =

1

4(1 + t2)
+

31

8
≤ 4,

−
1

4
≤ p′(t) < 0, −

1

8
≤ q′(t) < 0, for all t ∈ [1,+∞[.

1

200
≤
f(x)

x
=

1

200
+

1

200(1 + x2)
with x 6= 0, and |f ′(x)| ≤

1

102
= δ1.

It follows easily that

1

20
≤ c(t) =

1

20(1 + t)
+

1

20
≤

1

10
,

36 ≤ b(t) = 36 + e−2t ≤ 37; and 20 ≤ a(t) = 20 + e−t ≤ 21,

−2 ≤ b′(t) ≤ 0; −1 ≤ a′(t) ≤ 0,

−
1

20
≤ c′(t) ≤ 0; for all t ∈ [1,+∞[.

Since p(t) − q(t) =
1

8(1 + t2)
, it is easy to see that

(p(t)c(t))′ − (q(t)c(t))′ = (p(t) − q(t))c′(t) + (p′(t) − q′(t))c(t) ≤ 0,

then (p(t)c(t))′ ≤ (q(t)c(t))′ for all t ∈ [1,+∞[. Now, we verify conditions (H1) and

(H2), we have

B′(t) =
b′(t)p2(t) − [b(t) + a′(t)]p(t)p′(t) − a(t)p(t)p′′(t) + 2a(t)p

′2(t)

p3(t)

≤
−b(t)p(t)p′(t) + 2a(t)p

′2(t)

p3(t)
≤ 0, 68;

A′(t) =
a′(t)p(t)q(t) − a(t)(p′(t)q(t) + p(t)q′(t))

(p(t)q(t))2

≤
−a(t)(p′(t)q(t) + p(t)q′(t))

(p(t)q(t))2
≤ 0.14.

We have µ = a0b0+M2Cδ1
2b0M

= 2.5, we obtain 1
ρ

= δ1
µ

= 0.004. We deduce that

µA′(t) +B′(t) −
1

ρ
c′(t) < 1, 1 <

1

2M

(

a0b0

M2
−
MCδ1

m

)

= 5, 62.

Finally we have
∫

∞

1
2e3−sds < ∞. Hence All the assumptions (i) through (v), are

satisfied, (H1), (H2) and (H3) also hold, we can conclude using Theorem 3.3 that

every solution of (3.6) is bounded.

Remark 3.4. An easy computation of derivatives shows that equation (1.3) can be

rewritten as

x′′′ + α(t)x′′ + β(t)x′ + γ(t)f(x(t− r) = 0, (3.7)
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where

α(t) =
p(t)q′(t) + 2q(t)p′(t) + a(t)

p(t)q(t)
, β(t) =

q′(t)p′(t) + q(t)p′′(t) + b(t)

p(t)q(t)
,

and γ(t) = c(t)
p(t)q(t)

. If we apply Sadek’s Theorem [10] to show that every solution

x(t) of (3.7) is uniform-bounded and satisfies x(t) → 0, x′(t) → 0 and x′′(t) → 0 as

t → ∞, then the differentiability of α and β is needed, which implies the use of the

second derivative of q and the third derivative of p. However in our Theorem this

latter conditions are not required since we just need to deal with p′, p′′ and q′.
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