
Communications in Applied Analysis 20 (2016), 65–76

PULSATILE CONSTANT AND CHARACTERISATION OF FIRST

ORDER NEUTRAL IMPULSIVE DIFFERENTIAL EQUATIONS

A. K. TRIPATHY1 AND S. S. SANTRA2

1Department of Mathematics, Sambalpur University

Sambalpur - 768019, INDIA

E-mail: arun tripathy70@rediffmail.com

2Department of Mathematics, Sambalpur University

Sambalpur - 768019, INDIA

E-mail: shyam01.math@gmail.com
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1. INTRODUCTION

Oscillation and nonoscillation properties of linear impulsive differential equations

with a single delay were first investigated by Gopalsamy and Zhang [5]. Later, papers

devoted to oscillatory behaviour of solutions of linear impulsive differential equations

with one or more delays were carried out by Bainov et al. [1, 2], Berezansky and

Braverman [3], Chen et al. [4], Shen [10], Shen and Wang [9], Zhang et al. [12] and

to mention a few. Indeed, the theory of impulsive differential equations with deviat-

ing arguments, due to the theoretical and practical difficulties, has been developed

slowly. So, in this work an attempt is made to study the oscillation and nonoscillation

properties of the neutral impulsive differential equations of the form:

(y(t) − ry(t− τ))′ + qy(t − σ) = 0, t 6= τk, k ∈ N (1.1)

(E)

∆(y(τk) − ry(τk − τ)) + py(τk − σ) = 0, k ∈ N, (1.2)

where τ > 0, σ ≥ 0 are real constants, r ∈ R\{0}, p, q ∈ R, and τk, k ∈ N with

τ1 < τ2 < · · · < τk < · · · and limk→∞ τk = +∞ are fixed moments of impulsive effect
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with the property max{τk+1−τk} < +∞, k ∈ N. For (E), ∆ is the difference operator

defined by

∆(y(τk) − ry(τk − τ)) = y(τk + 0) − ry(τk − τ + 0) − y(τk − 0) + ry(τk − τ − 0);

y(τk − 0) = y(τk) and y(τk − τ − 0) = y(τk − τ), k ∈ N.

The objective of this work is to study (E) and establish conditions for oscillation

and nonoscillation of solutions of (E) subject to its associated characteristic equation.

We may expect the possible solutions of (E) as

y(t) = e−λtAi(t0,t), t0 ≥ ρ = max{τ, σ}, (1.3)

where i(t0, t) = k = number of impulses τk, k ∈ N, and A 6= 0 is a real number which

is called as the pulsatile constant. A close observation reveals that y(t) = C1e
−λt is a

possible solution of (1.1) when (E) is without impulses and y(n) = C2A
n is a possible

solution of (1.2) when i(t0, t) = n and the impulses are the discrete values only (∵ in

case (1.2), λ = 0). Therefore, (1.3) seems to be the possible choice of solution of (E).

In [11], Tripathy has considered

(y(t) − r(t)y(t− τ))′ + q(t)f(y(t− σ)) = 0, t 6= τk, k ∈ N,

∆(y(τk) − rky(τk − τ)) + qkf(y(τk − σ)) = 0, k ∈ N (1.4)

and studied the oscillatory character of the solutions of the system. For all ranges of

r(t), he has established the oscillation criteria for the impulsive system (1.4) which is

highly nonlinear. It is observed that the study of (1.4) is easier than the study of (E)

subject to its characteristic equations. With our effort, we encounter the linearized

oscillation for the highly nonlinear impulsive system

(y(t) − r(t)g(y(t− τ)))′ + q(t)f(y(t− σ)) = 0, t 6= τk, k ∈ N,

∆(y(τk) − rkg(y(τk − τ))) + p(τk)f(y(τk − σ)) = 0, k ∈ N.

For more details about the theory of impulsive differential equations we refer the

monographs [7] and [8] to the readers.

Definition 1.1. A function y : [−ρ, +∞) → R is said to be a solution of (E) with

initial function ø ∈ C([−ρ, 0], R), y(t) = ø(t) for t ∈ [−ρ, 0], y ∈ PC(R+, R), z(t) =

y(t) + p(t)y(t − τ) and r(t)z′(t) are continuously differentiable for t ∈ R+, and y(t)

satisfies (E) for all sufficiently large t ≥ 0, where ρ = max{τ, σ} and PC(R+, R) is

the set of all functions U : R+ → R which are continuous for t ∈ R+, t 6= τk, k ∈ N,

continuous from the left- side for t ∈ R+, and have discontinuity of the first kind at

the points τk ∈ R+, k ∈ N.

Definition 1.2. A nontrivial solution y(t) of (E) is said to be nonoscillatory, if there

exists a point t0 ≥ 0 such that y(t) has a constant sign for t ≥ t0. Otherwise, the

solution y(t) is said to be oscillatory.
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Definition 1.3. A solution y(t) of (E) is said to be regular, if it is defined on some

interval [Ty, +∞) ⊂ [t0, +∞) and

sup{|y(t)| : t ≥ Ty} > 0

for every Ty ≥ T . A regular solution y(t) of (E) is said to be eventually positive

(eventually negative), if there exists t1 > 0 such that y(t) > 0 (y(t) < 0), for t ≥ t1.

2. MAIN RESULTS

In this section, we study the oscillatory and nonoscillatory behaviour of solutions

of (E) through its associated characteristic equation provided (1.3) holds.

Theorem 2.1. Let τ > σ > 0 and p 6= 0 6= q. Then (E) admits an oscillatory

solution in the exponential impulsive form (1.3) if and only if the algebraic equation

−λ

(

1 − p

q
λ

)L

+ rλeλτ

(

1 − p

q
λ

)L−s

+ qeλσ = 0 (2.1)

has at least one real root λ with λ > q

p
, for pq > 0 and λ < q

p
, for pq < 0, where

i(t − σ, t) = L > 0 is a constant and i(t − τ, t) = s = number of impulses between

t − τ and t.

Proof. Let y(t) be a regular nontrivial solution of the system (E) such that y(t) =

e−λtAi(t0,t), t > t0 > ρ. Then (1.1) becomes

−λe−λtAi(t0,t) + rλe−λteλτAi(t0,t−τ) + qe−λ(t−σ)Ai(t0,t−σ) = 0,

that is,

qeλσ − λAi(t0,t)−i(t0,t−σ) + rλeλτAi(t0,t−τ)−i(t0,t−σ) = 0. (2.2)

Indeed, i(t0, t) − i(t0, t − σ) = i(t − σ, t) = L and

i(t0, t − τ) − i(t0, t − σ) = −i(t − τ, t − σ) = −[i(t − τ, t) − i(t − σ, t)] = L − s

implies that

−λAL + rλeλτAL−s + qeλσ = 0 (2.3)

due to (2.2). Once again we use (1.3) in (1.2) to obtain a relation of the form

y(τk + 0) − ry(τk − τ + 0) − y(τk − 0) + ry(τk − τ − 0) + py(τk − σ) = 0,

that is,

e−λτkAi(t0,τk+0) − re−λ(τk−τ)Ai(t0,τk−τ+0) − e−λτkAi(t0,τk−0)

+ re−λ(τk−τ)Ai(t0,τk−τ−0) + pe−λ(τk−σ)Ai(t0,τk−σ) = 0.

We may note that i(t0, τk + 0)− i(t0, τk − 0) = 1. Hence, the last inequality becomes

A1+i(t0,τk−0) − reλτA1+i(t0,τk−τ−0) − Ai(t0,τk−0) + reλτAi(t0,τk−τ−0) + peλσAi(t0,τk−σ) = 0,
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that is,

(A − 1)Ai(t0,τk) − r(A − 1)eλτAi(t0,τk−τ) + peλσAi(t0,τk−σ) = 0.

Therefore,

(A − 1)Ai(t0,τk)−i(t0,τk−σ) − r(A − 1)eλτAi(t0,τk−τ)−i(t0,τk−σ) + peλσ = 0. (2.4)

Using the fact

i(t0, τk) − i(t0, τk − σ) = i(τk − σ, τk) = L

and

i(t0, τk − τ)− i(t0, τk − σ) = −i(τk − τ, τk − σ) = −[i(τk − τ, t)− i(τk − σ, t)] = L− s,

we obtain from (2.4) that

(A − 1)AL − r(A − 1)eλτAL−s + peλσ = 0. (2.5)

If we choose A = 1 − p

q
λ, then it is easy to verify that (2.5) reduces to (2.3). Conse-

quently, (2.3) is same as the algebraic equation (2.1). Moreover, (2.1) is the required

characteristic equation for (E). Ultimately, if y(t) is an oscillatory solution of (E)

with the pulsatile constant A = 1 − p

q
λ < 0, where λ > q

p
for pq > 0 and λ < q

p
for

pq < 0, then λ satisfies the characteristic equation (2.1). Conversely, consider the

characteristic equation (2.1) and assume that λ = λ∗ is the real root of (2.1) with

λ∗ > q

p
, for pq > 0 and λ∗ < q

p
, for pq < 0. Then (E) admits an oscillatory solution

y(t) = e−λ∗tAi(t0,t) with the pulsatile constant A = 1 − p

q
λ∗ < 0. This completes the

proof of the theorem.

Theorem 2.2. Let all the assumptions of Theorem 2.1 hold. Then (E) admits an

eventually positive solution in the form of (1.3) if and only if (2.1) has at least one

real root λ with λ < q

p
, for pq > 0 and λ > q

p
, for pq < 0.

Proof. The proof of the theorem follows from the proof of Theorem 2.1 and hence the

details are omitted.

Corollary 2.3. Let p, q, r ∈ R\{0}, and σ, τ ∈ R+ such that σ = τ 6= 0 or σ = 0 6= τ

hold. Then the conclusion of the Theorems 2.1 and 2.2 are hold true.

Corollary 2.4. In Theorem 2.1, let p = q 6= 0. Then (E) admit an oscillatory

solution in the exponential impulsive form (1.3) if and only if λ > 1 and eventually

positive solution if and only if λ < 1.

Remark 2.5. Following to Corollary 2.4, we may note that λ = 1 if and only if

A = 0, that is, (E) has the trivial solution.

Theorem 2.6. Let τ > σ > 0 and p = q = 0. Then

i) for r ∈ (−∞, 0) and s odd or r ∈ (0,∞) and s even, (E) admits an oscillatory

solution if and only if λ∗ ∈ (1,∞) is a root of the characteristic equation of (E);
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ii) for r ∈ (0,∞), (E) admits an eventually positive solution if and only if λ∗ ∈
(−∞, 1) is a root of the characteristic equation of (E).

Proof. Proceeding as in the proof of Theorem 2.1 we have the impulsive system

−λAi(t0,t) + rλeλτAi(t0,t−τ) = 0,

(A − 1)Ai(t0,τk) − r(A − 1)eλτAi(t0,τk−τ) = 0

which in turn implies that

−λAk + rλeλτAk−s = 0,

(A − 1)Ak − r(A − 1)eλτAk−s = 0.

Consequently, the above system becomes

−λAs + rλeλτ = 0,

(A − 1)As − r(A − 1)eλτ = 0

which is equivalent to say that

A = 1 − λ, −λAs + rλeλτ = 0

and hence

−λ(1 − λ)s + rλeλτ = 0 (2.6)

is the resulting characteristic equation for (E). Clearly, λ 6= 1 for r 6= 0 in (2.6).

Hence to solve (2.6), it happens that either λ ∈ (−∞, 1) or λ ∈ (1,∞). If the former

holds, then 1−λ > 0, that is, A > 0 and (2.6) holds true when r ∈ (0,∞). Therefore,

(E) admits an eventually positive solution in the form (1.3) if and only if λ∗ ∈ (−∞, 1)

is a root of (2.6). Assume that the latter holds. Then 1 − λ < 0, that is, A < 0 and

(2.6) holds true when r ∈ (−∞, 0) with odd s or r ∈ (0,∞) with even s. Therefore,

(E) admits an oscillatory solution in the form (1.3) if and only if λ∗ ∈ (1,∞) is a

root of (2.6). This completes the proof of the theorem.

Remark 2.7. Indeed, (2.6) doesn’t hold if r ∈ (−∞, 0) and λ ∈ (−∞, 1).

Theorem 2.8. Let p, r ∈ R\{0} be such that p + r > 0. Assume that τ = σ 6= 0,

q = 0 and i(t − τ, t) = 1. Then for r ∈ (−1,∞), r 6= 1, (E) admits an eventually

positive solution if and only if 4p ≤ (r − 1)2, and for r ∈ (−∞,−1), (E) admits an

oscillatory solution if and only if 4p ≤ (r − 1)2.

Proof. Let y(t) be a regular nontrivial solution of (E) in the form of (1.3). Then

proceeding as in Theorem 2.1, we have the system of equations

−λA + rλeλτ = 0,

(A − 1)A + [p − r(A − 1)]eλτ = 0.
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In the above system of equations, we have λ = 0. Otherwise, A = reλτ and hence

p = 0 which is absurd. Consequently,

2A = (1 + r) ± [(1 + r)2 − 4(p + r)]
1

2 .

Because, we are concerned with the non-zero real roots, then 4p ≤ (r − 1)2. If

4p = (r − 1)2, then 2A = r + 1 > 0, for r ∈ (−1,∞) and r 6= 1, that is, (E) admits

a nonoscillatory solution. For 4p < (r − 1)2, two roots A1 and A2 of A are positive

when r ∈ (−1,∞) with r 6= 1 and r + p > 0. Similar observation can be made when

r ∈ (−∞,−1), for 4p ≤ (r − 1)2. Hence, the theorem is proved.

Corollary 2.9. Let p, r ∈ R\{0}, τ = σ 6= 0, q = 0, 4p = (r−1)2 and i(t−τ, t) = 1.

Then for r ∈ (−1,∞), 6= 1, (E) admits an eventually positive solution if and only if

the algebraic equation A2 −A(1 + r) + p + r = 0 has a real root A∗ ∈ (0,∞)−{1
2
, 1},

and for r ∈ (−∞,−1), (E) admits an oscillatory solution if and only if the algebraic

equation A2 − A(1 + r) + p + r = 0 has a real root A∗ ∈ (−∞, 0).

Corollary 2.10. Let r, p ∈ (0,∞), σ = 0 = q and i(t − τ, t) = 1. Then (E) admit

eventually positive solutions if and only if p ≤ 1 + r −
√

4r and oscillatory solutions

if and only if p ≥ 1 + r +
√

4r.

Remark 2.11. If we denote

F (λ) = −λ

(

1 − p

q
λ

)L

+ rλeλτ

(

1 − p

q
λ

)L−s

+ qeλσ,

then it is easy to verify that F (0) = q > 0,

F

(

q

p

)

−→ +∞, for r > 0, p > 0, q > 0

and

F

(

−q

p

)

=
q

p
2L

[

1 − r2−se
− q

p
τ
]

+ qe
− q

p
σ

> 0,

for r ∈ (0, 1), p > 0 and q > 0. Keeping in view of Theorem 2.1, hence we have

proved the following result:

Theorem 2.12. Let p, q > 0, r ∈ (0, 1) and τ > σ > 0. Then every solution of (E)

which is of the form (1.3) oscillates if and only if (2.1) has no real roots λ∗ ∈
[

− q

p
, q

p

]

.

Example 2.13. Consider the system of equations

(

y(t) − ry

(

t − 1

3

))′

+ qy

(

t − 1

6

)

= 0, t 6= τk, t >
1

3
, k ∈ N

∆

(

y(τk) − ry

(

τk −
1

3

))

+ py

(

τk −
1

6

)

= 0, k ∈ N, (2.7)
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where r = 0.025014234, q = 0.02, p = 0.01. If we choose L = 3 and s = 4, then from

the characteristic equation of (2.7), it follows that A = −0.5, λ = 3 and

y(t) = e−3t(−0.5)i( 1

3
,t)

is an oscillatory solution of (2.7). Hence, by Theorem 2.1, (2.7) admits an oscillatory

solution.

Example 2.14. Consider the system of equations

(y(t) − ry(t− 4))′ + qy(t − 2) = 0, t 6= τk, t > 4, k ∈ N

∆(y(τk) − ry(τk − 4)) + py(τk − 2) = 0, k ∈ N, (2.8)

where r = 0.05801223, q = 0.021, p = 0.012. If we choose L = 1 and s = 2, then

from the characteristic equation of (2.8), it follows that A = 0.714285714, λ = 1
2

and

y(t) = e−
t
2 (0.714285714)i(4,t)

is an eventually positive solution of (2.8). Hence, by Theorem 2.2, (2.8) admits an

eventually positive solution.

3. LINEARIZED OSCILLATION CRITERIA

Consider the nonlinear neutral impulsive delay differential equation of the form:

(y(t) − r(t)g(y(t− τ)))′ + q(t)f(y(t− σ)) = 0, t 6= τk, k ∈ N

∆(y(τk) − r(τk)g(y(τk − τ))) + p(τk)f(y(τk − σ)) = 0, k ∈ N, (3.1)

where r, τ, σ ∈ R+, g, f ∈ C(R, R) and p, q ∈ C(R+, R+). We introduce the following

assumptions for the system (3.1):

(A1) limt→∞ r(t) = r0, r0 ∈ [0, 1); limt→∞ q(t) = q0 ∈ R+, lim inft→∞ p(t) = p0 ∈ R+,

(A2) ug(u) > 0, vf(v) > 0 for u, v 6= 0 and g(u) ≤ u, f(v) ≤ v for u, v ≥ 0;

limu→0
g(u)

u
= 1 = limv→0

f(v)
v

.

With the system of equations (3.1), we associate the linear system of equations

(x(t) − r0x(t − τ))′ + q0x(t − σ) = 0, t 6= τk, k ∈ N

∆(x(τk) − r0x(τk − τ)) + p0x(τk − σ) = 0, k ∈ N. (3.2)

In this section our aim is to establish conditions for the oscillation of solutions of

the system (3.1) in terms of the oscillation of solutions of the limiting equations (3.2).

We note that the associated characteristic equation for the system (3.2) is given by

−λ

(

1 − p0

q0
λ

)L

+ r0λeλτ

(

1 − p0

q0
λ

)L−s

+ q0e
λσ = 0. (3.3)

By Theorem 2.1, (3.2) admits an oscillatory solution in the form (1.3) if and only if

(3.3) has at least one real root λ with λ > q0

p0

.
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Theorem 3.1. Assume that (3.3) has no real roots in
[

− q0

p0

, q0

p0

]

. Furthermore, as-

sume that (A1) and (A2) hold. Then the system (3.1) admits oscillatory solutions.

Proof. Suppose that (3.1) doesn’t admit oscillatory solution and let y(t) be a nonoscil-

latory solution of (3.1). Then there exists t0 ≥ max{σ, τ} such that y(t) > 0,

y(t− τ) > 0 and y(t− σ) > 0, for t ≥ t0. If we set

z(t) = y(t) − r(t)g(y(t− τ)),

then the system (3.1) becomes

z′(t) = −q(t)f(y(t − σ)) ≤ 0, t 6= τk, k ∈ N,

∆z(τk) = −p(τk)f(y(τk − σ)) ≤ 0, k ∈ N,

for t ≥ t1 > t0. As a result, z(t) is nonincreasing on [t2,∞), t2 > t1. We claim

that z(t) is bounded, for t ≥ t2. If not, there exists {ηn} such that limn→∞ ηn = ∞,

limn→∞ x(ηn) = ∞ and x(ηn) = maxt2≤s≤ηn
x(s). Consequently,

z(ηn) = y(ηn) − r(ηn)g(y(ηn − τ))

≥ y(ηn) − r(ηn)y(ηn − τ)

≥ (1 − r(ηn))y(ηn)

→ +∞ as n → ∞

implies that z(t) is non-decreasing, a contradiction. So, our claim holds and z(t) is

bounded ultimately. We assert that limt→∞ y(t) = 0. Integrating (3.1) from t2 to ∞,

we obtain
∫ ∞

t2

q(s)f(y(s − σ))ds −
∑

t2≤τk<∞

∆z(τk) = z(t2) − lim
t→∞

z(t),

that is,
∫ ∞

t2

q(s)f(y(s− σ))ds +
∑

t2≤τk<∞

p(τk)f(y(τk − σ)) < ∞. (3.4)

In view of the conditions on q and f , (3.4) implies that lim inft→∞ y(t) = 0. By

Lemma 1.5.2 [6], it follows that limt→∞ z(t) = 0. Let ε ∈ (0, 1 − r0) be given. Then

for sufficiently large t, it follows that r(t) ≤ r0 + ε < 1. Now,

0 = lim
t→∞

z(t) = lim sup
t→∞

z(t)

≥ lim sup
t→∞

(y(t) − (r0 + ε) y(t− τ))

≥ lim sup
t→∞

y(t) + lim inf
t→∞

(−(r0 + ε) y(t− τ))

= (1 − r0 − ε) lim sup
t→∞

y(t)
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implies that lim supt→∞ y(t) = 0 and hence limt→∞ y(t) = 0. As {y(τk − 0)}∞1 and

{y(τk + 0)}∞1 are sequence of real values, and continuity of y implies that

lim
k→∞

y(τk − 0) = 0, lim
k→∞

y(τk + 0) = 0

due to lim inft→∞ y(t) = 0 and lim supt→∞ y(t) = 0 respectively. Hence, for the system

(3.1), limt→∞ y(t) = 0 = limk→∞ y(τk). Let’s set

Q(t) = q(t)
f(y(t− σ))

y(t − σ)
, P (t) = p(t)

f(y(t− σ))

y(t− σ)
, R(t) = r(t)

g(y(t− τ))

y(t− τ)

for sufficiently large t. Then it is easy to see that limt→∞ Q(t) = q0, limt→∞ R(t) = r0

and lim inft→∞ P (t) = lim inft→∞ p(t) limt→∞
f(y(t−σ))

y(t−σ)
= p0. Ultimately, the system

(3.1) becomes

(y(t) − R(t)y(t− τ))′ + Q(t)y(t− σ) = 0, t 6= τk, k ∈ N

∆(y(τk) − R(τk)y(τk − τ)) + P (τk)y(τk − σ) = 0, k ∈ N, (3.5)

for large t. Let 0 < ε1 < q0 be given such that Q(t) ≥ q0 − ε1, for any large t. Then

integrating (3.5) from t to T (T > t), we get

z(t) = z(T ) +

∫ T

t

Q(s)y(s − σ)ds −
∑

t≤τk<T

∆z(τk),

that is,

y(t) = R(t)y(t− τ) +

∫ ∞

t

Q(s)y(s − σ)ds +
∑

t≤τk<∞

P (τk)y(τk − σ)

≥ (r0 − ε)y(t− τ) + (q0 − ε1)

∫ ∞

t

y(s − σ)ds + p0

∑

t≤τk<∞

y(τk − σ),

for any large t. Let Y = BC([t∗,∞), R) be the space of all real valued bounded

continuous functions defined on R such that Y is a Banach space with respect to the

sup norm defined by

‖x‖ = sup
t≥t∗

|x(t)|.

Let

S = {x ∈ Y : 0 ≤ x(t) ≤ 1, t ≥ t∗}.

Clearly, S is a closed and convex subspace of Y . For ρ = max{σ, τ} and y ∈ S, we

define

Tx(t) =



















Tx(t∗ + ρ), t ∈ [t∗, t∗ + ρ]

α
y(t)

[(r0 − ε)x(t − τ)y(t − τ) + (q0 − ε1)
∫ ∞

t
x(s − σ)y(s − σ)ds

+p0

∑

t≤τk<∞ x(τk − σ)y(τk − σ)], t ≥ t∗ + ρ,
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where α < 1. Clearly, Tx(t) ≥ 0 for t ≥ t∗ and

Tx(t) ≤ α

y(t)

[

(r0 − ε)y(t− τ) + (q0 − ε1)

∫ ∞

t

y(s − σ)ds + p0

∑

t≤τk<∞

y(τk − σ)

]

≤ α < 1

implies that Tx ∈ S and T : S −→ S. For x1, x2 ∈ S,

|Tx1(t) − Tx2(t)| ≤
α

y(t)
[(r0 − ε)y(t− τ)|x1(t − τ) − x2(t − τ)|

+ (q0 − ε1)

∫ ∞

t

y(s − σ)|x1(s − σ) − x2(s − σ)|ds

+ p0

∑

t≤τk<∞

y(τk − σ)|x1(τk − σ) − x2(τk − σ)|]

≤ α‖x1 − x2‖
y(t)

[

(r0 − ε)y(t− τ) + (q0 − ε1)

∫ ∞

t

y(s − σ)ds

+p0

∑

t≤τk<∞

y(τk − σ)

]

≤ α‖x1 − x2‖

implies that T is contraction. By the Banach’s fixed point theorem, T has a unique

fixed point in [0, 1]. Hence,

x(t) =



















Tx(t∗ + ρ), t ∈ [t∗, t∗ + ρ]

α
y(t)

[(r0 − ε)x(t − τ)y(t − τ) + (q0 − ε1)
∫ ∞

t
x(s − σ)y(s − σ)ds

+p0

∑

t≤τk<∞ x(τk − σ)y(τk − σ)], t ≥ t∗ + ρ.

Setting w(t) = x(t)y(t), for t ≥ t∗ + ρ we obtain

(w(t) − α(r0 − ε)w(t− τ))′ + α(q0 − ε1)w(t − σ) = 0, t 6= τk, k ∈ N

∆(w(τk) − α(r0 − ε)w(τk − τ)) + p0 α w(τk − σ)) = 0, k ∈ N, (3.6)

that is, w(t) is a positive solution of (3.6) whose characteristic equation is given by

−λ

[

1 − p0α

α(q0 − ε1)
λ

]L

+ α(r0 − ε)λeλτ

[

1 − p0α

α(q0 − ε1)
λ

]L−s

+ α(q0 − ε1)e
λσ = 0.

From Theorem 2.2, it follows that w(t) is the positive solution of (3.6) if and only if

λ <
α(q0 − ε1)

p0α
=

q0 − ε1

p0

<
q0

p0

which then implies that (3.3) has a real root in
[

− q0

p0

, q0

p0

]

due to Theorem 2.12, a

contradiction. This completes the proof of the theorem.
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Example 3.2. Consider the system of equations

(y(t) − r(t)g(y(t− 2)))′ + q(t)f(y(t− 1)) = 0, t 6= τk, t > 2, k ∈ N

∆(y(τk) − r(τk)g(y(τk − 2))) + p(τk)f(y(τk − 1)) = 0, k ∈ N, (3.7)

where r(t) = 0.172123227 + e−t, q(t) = 0.1 + e−t, p(t) = 0.2(2 + sint), τk = k, k ∈ N,

and g(u) = (2 − e−|u|)u = f(u). The limiting equation for (3.7) is given by

(x(t) − r0x(t − 2))′ + q0x(t − 1) = 0, t 6= τk, k ∈ N

∆(x(τk) − r0x(τk − 2)) + p0x(τk − 1) = 0, k ∈ N, (3.8)

where r0 = 0.172123227, q0 = 0.1 and p0 = 0.2. If we choose L = 5 and s = 6, then

from the characteristic equation of (3.8), it follows that A = −1, λ = 1 and

x(t) = e−t(−1)i(2,t)

is an oscillatory solution of (3.7). Hence, by Theorem 3.1, (3.7) admits an oscillatory

solution.
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