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1. INTRODUCTION

Fractional calculus is a generalization of differentiation and integration to an ar-

bitrary order. The first work devoted exclusively to the subject of fractional calculus

is the book by Oldham and Spanier [17]. A rigorous study of fractional calculus can

be found in [20]. Fractional differential equations have recently been proved to be

valuable tools in the modeling of many phenomena in various fields of engineering,

physics, economics, and science. We can find numerous applications in viscoelasticity,

electrochemistry, control, porous media, electromagnetic, etc. [8, 10, 11, 12, 18, 21].

In recent years, there has been a significant development in fractional differential

equations. One can see the monographs of Abbas et al. [1, 2], Kilbas et al. [15],

Lakshmikantham et al. [16], and the references therein. Agarwal et al. [5] proposed

the concept of solution for fractional differential equation with uncertainty. They

considered the Riemman-Liouville’s differentiability to solve fuzzy fractional differ-

ential equations; which is a combination of the Hukuhara difference and Riemman-

Liouville’s derivative; see also Arshad and Lupulescu [7] and the references therein.
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In this paper, we investigate the solution of Caputo’s fuzzy fractional differential

equations. This paper is organized as follow. In Section 2 we recall some basic knowl-

edge of fuzzy calculus and fractional calculus. In Section 3 several basic concepts and

properties of fuzzy fractional calculus are presented. We use the fixed point approach.

For an application of the above cited approach to fuzzy differential equations see [6].

Our aim in this paper is to study the existence of solution for fuzzy partial hy-

perbolic differential equations involving Caputo derivatives. The Banach contraction

principle and a fixed point theorem for absolute retract spaces are used to investigate

the existence of fuzzy solutions for the fractional differential equation

(cD
q
0u)(x, y) = f(x, y, u(x, y), (cD

q
0u)(x, y)), if (x, y) ∈ J := [0, a] × [0, b], (1.1)






u(x, 0) = ϕ(x), x ∈ [0, a],

u(0, y) = ψ(y), y ∈ [0, b],

ϕ(0) = ψ(0),

(1.2)

where a, b > 0, cD
q
0 is the Caputo’s fractional derivative of order q = (q1, q2) ∈

(0, 1] × (0, 1], f : J × En × En → En is a given continuous function, ϕ : [0, a] →

En, ψ : [0, b] → En are given absolutely continuous functions with ψ(0) = ϕ(0).

We present two results for the problem (1.1)–(1.2); the first one is based on the

Banach contraction principle and the second one on a fixed point theorem for absolute

retract spaces.

To our knowledge, fuzzy solutions for the problem (1.1)–(1.2) have not been

considered yet. So the present paper initiates the concept of fuzzy solutions for

implicit fractional differential equations.

2. PRELIMINARIES

We introduce notations, definitions, and preliminary facts which are used through-

out this paper.

Definition 2.1. Let X be a nonempty set. A fuzzy set A in X is characterized by

its membership function A : X → [0, 1] and A(x), called the membership function of

fuzzy set A, is interpreted as the degree of membership of element x in fuzzy set A

for each x ∈ X.

The value zero is used to represent complete non-membership, the value one is

used to represent complete membership and values between them are used to represent

intermediate degrees of membership. Let Pk(R
n) denote the collection of all nonempty

compact convex subsets of R
n and define the addition and scalar multiplication in

Pk(R
n) as usual. Let A and B be two nonempty bounded subsets of R

n. The distance
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between A and B is defined by the Hausdorff metric

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}

where d(b, A) = inf{d(b, a) : a ∈ A}. It is clear that (Pk(R
n), Hd) is a complete metric

space [13].

Denote by

En = {y : R
n → [0, 1] such that they satisfy (i) to (iv) mentioned below},

(i) y is normal, that is there exists an x0 ∈ R
n such that y(x0) = 1;

(ii) y is fuzzy convex, that is for x, z ∈ R
n and 0 < λ ≤ 1,

y(λx+ (1 − λ)z) ≥ min[y(x), y(z)];

(iii) y is upper semi-continuous;

(iv) [y]0 = {x ∈ Rn : y(x) > 0} is compact.

For 0 < α ≤ 1, we denote [y]α = {x ∈ R
n : y(x) ≥ α}. Then from (i) to (iv), it

follows that the α−level sets [y]α ∈ Pk(R
n).

We define the supremum metric D on En by

D(u, u) = sup
0<γ≤1

Hd([u]
γ, [u]γ)

for all u, u ∈ En. (En, D) is a complete metric space [19].

The supremum metric H1 on the space of continuous fuzzy-valued functions from

J into En denoted by C(J,En) is defined by

H1(u, u) = sup
(x,y)∈J

D(u(x, y), u(x, y)).

(C(J,En), H1) is a complete metric space.

We define 0̂ ∈ En as 0̂(x) = 1 if x = 0 and 0̂(x) = 0 if x 6= 0.

Proposition 2.2. If x ∈ En then the following properties hold:

(i) [u]β ⊂ [u]α if 0 ≤ β ≤ α ≤ 1;

(ii) if {αn} ⊂ [0, 1] is a nondecreasing sequence that converges to α̂ , then

[u]α =
⋂

n≥1

[u]αn .

Conversely, if Aα = {[uα
1 , u

α
2 ];α ∈ [0, 1]} is a family of closed real intervals

satisfying (i) and (ii), then {Aα} defines a fuzzy number u ∈ En such that

[u]α = Aα.
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Proposition 2.3. If ϕ : [0, a] → En, ψ : [0, b] → En are given absolutely continuous

functions, then for all level α ∈ [0, 1] we have

[ϕ(x)]α = [ϕα
1 (x), ϕα

2 (x)] , 0 ≤ α ≤ 1,

and

[ψ(y)]α = [ψα
1 (y), ψα

2 (y)] , 0 ≤ α ≤ 1.

Definition 2.4. Let x, y ∈ En. If there exists z ∈ En such that x = y + z, then z is

called the H-difference of x and y and is denoted by z = x⊖ y.

We denote by L1(T,En) the space of all fuzzy function f : I → En that are

Lebesgue integrable on the bounded interval I. Also, by AC(J) we denote the space

of absolutely continuous functions f : I → En.

Definition 2.5. Let f : [a, b] → En, x0 ∈ (a, b) and Φ(x) = 1
Γ(1−q)

∫ x

a

f(t)
(x−t)q dt. We

say that f is Riemann-Liouville H-differentiable of order 0 ≤ q ≤ 1 at x0, if there

exists an element RLD
q

a+f(x0) ∈ C([0, a], En)
⋂
L1([0, a], En), 0 ≤ q ≤ 1, such that

for all h > 0,

(1)

RLD
q

a+f(x0) = lim
h→0+

Φ(x0 + h) ⊖ Φ(x0)

h
= lim

h→0+

Φ(x0) ⊖ Φ(x0 − h)

h

or

(2)

RLD
q

a+f(x0) = lim
h→0+

Φ(x0) ⊖ Φ(x0 + h)

−h
= lim

h→0+

Φ(x0 − h) ⊖ Φ(x0)

−h
.

For sake of simplicity, we say that a fuzzy-valued function f is [1, q]-differentiable

if it is differentiable as in case (1), and is [2, q]-differentiable if it is differentiable as

in case (2).

Let x : I → En be a fuzzy function; we have

[x(t)]α = [xα
1 (t), xα

2 (t)], t ∈ I, α ∈ [0, 1].

Let x ∈ C([0, a];En)
⋂
L1([0, a];En), and define the fuzzy fractional primitive of

order q for x by

I
q
a+x(t) =

1

Γ(q)

∫ t

a

(t− s)q−1x(s)ds, t ∈ [0, a],

and let

[Iqx(t)]α =
1

Γ(q)

[∫ t

0

(t− s)q−1xα
1 (s)ds,

∫ t

0

(t− s)q−1xα
2 (s)ds

]
, t ∈ [0, a].

Also, the following properties are obvious:

(i) Iq(cx)(t) = cIqx(t) for each c ∈ En
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(ii) Iq(x+ y)(t) = Iqx(t) + Iqy(t).

Theorem 2.6 ([4]). Let f(t) ∈ C([0, a], En)
⋂
L1([0, a], En), t ∈ [0, a], 0 < q ≤ 1,

and 0 ≤ α ≤ 1. The Caputo H-differentiable function of fuzzy-valued is defined as

following:

i) The case c[(i) − q]:

cD
q
a+f

α(t) = [cDq
a+f

α
1 (t),cDq

a+f
α
2 (t)] .

ii) The case c[(ii) − q]

(cD
q
a+f)(t;α) = [cDq

a+f
α
2 (t),cDq

a+f
α
1 (t)] ,

where

cD
q
a+f

α
1 (t) = RLD

q
a+

[
fα

1 (t) −
n−1∑

k=0

xk

k!
f

α(k)
1 (a)

]
(x)

=
1

Γ(n− q)

dn

dxn

∫ x

a

(x− t)n−q−1

[
fα

1 (t) −
n−1∑

k=0

tk

k!
f

α(k)
1 (a)

]
dt,

and

cD
q
a+f

α
2 (t) = RLD

q
a+

[

fα
2 (t) −

n−1∑

k=0

xk

k!
f

α(k)
2 (a)

]

(x)

=
1

Γ(n− q)

dn

dxn

∫ x

a

(x− t)n−q−1

[
fα

2 (t) −
n−1∑

k=0

tk

k!
f

α(k)
2 (a)

]
dt.

Theorem 2.7 ([14]). Let x : [0, a] → En be a Caputo fractional differentiable function

and let

[u(t)]α = [uα
1 (t), uα

2 (t)].

Then the boundary function uα
1 (t), uα

2 (t) are Caputo differentiable and:

1) Case c[(i) − q], we have

[cDqu(t)]α = [cDquα
1 (t),c Dquα

2 (t)].

2) Case c[(ii) − q], we have

[cDqu(t)]α = [cDquα
2 (t),c Dquα

1 (t)].

Definition 2.8 ([22]). Let q = (q1, q2) ∈ (0,∞) × (0,∞), θ = (0, 0) and u ∈ L1(J).

The left-sided mixed Riemann-Liouville integral of order q of u is defined by

(Iq
θu)(x, y) =

1

Γ(q1)Γ(q2)

∫ x

0

∫ y

0

(x− s)q1−1(y − t)q2−1u(s, t)dt ds.

In particular,

(Iq
θu)(x, y) = u(x, y), (Iσ

θ u)(x, y) =

∫ x

0

∫ y

0

u(s, t)dt ds

for almost all (x, y) ∈ J , where σ = (1, 1).
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For instance, Iq
θu exists for all q1, q2 ∈ (0,∞), if u ∈ L1(J). Note also that if

u ∈ C(J), then (Iq
θu) ∈ C(J), and moreover

(Iq
θu)(x, 0) = (Iq

θu)(0, y) = 0, x ∈ [0, a] y ∈ [0, b].

Definition 2.9. A space Z is called an absolute retract (written Z ∈ AR) if Z is

metrizable and for any metrizable space W and any embedding h : Z → W the set

h(Z) is a retract of W .

Theorem 2.10 ([9]). Let X ∈ AR and F : X → X a continuous and completely

continuous map. Then F has a fixed point.

3. THE MAIN RESULTS

Let us start by defining what we mean by a solution of the problem (1.1)–(1.2).

Definition 3.1. A function u ∈ C(J) such that u(x, y), Dq1

(0,x)u(x, y), D
q2

(0,y)u(x, y),

and Dq

(0,0)u(x, y) are continuous for (x, y) ∈ J and I1−q

(0,0)u(x, y) ∈ AC(J) is said to be

a solution of (1.1)–(1.2) if u satisfies equation (1.1) and conditions (1.2) on J .

For the existence of solutions for the problem (1.1)–(1.2) we need the following

lemma.

Lemma 3.2 ([3]). Let f(x, y, u, z) : J×En ×En → En be continuous. Then problem

(1.1)–(1.2) is equivalent to the problem

g(x, y) = f(x, y, µ(x, y) + I
q
0g(x, y), g(x, y)),

and if g ∈ C(J) is a solution of this equation, then u(x, y) = µ(x, y)+Iq
0g(x, y), where

µ(x, y) = ϕ(x) + ψ(y) − ϕ(0).

Next, we present conditions for the existence and uniqueness of a solution of

problem (1.1)–(1.2).

Theorem 3.3. Assume that the following hypotheses hold:

(H1) f : J × En × En → En is a continuous function;

(H2) there exist constants k > 0, and 0 < l < 1 such that

D(f(x, y, u, z); f(x, y, v, w)) ≤ kD(u; v)+ lD(z;w), for any u, v ∈ En and (x, y) ∈ J.

If
kaq1bq2

(1 − l)Γ(q1 + 1)Γ(q2 + 1)
< 1, (3.1)

then there exists a unique solution to IV P (1.1)–(1.2) on J .
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Proof. Transform the problem (1.1)–(1.2) into a fixed point problem. Consider the

operator N : C(J) → C(J) defined by,

N(u)(x, y) = µ(x, y) + I
q

(0,0)g(x, y),

where g ∈ C(J) is such that

g(x, y) = f(x, y, u(x, y), g(x, y)).

By Lemma 3.2, the problem of finding the solutions of the IVP (1.1)–(1.2) is reduced

to finding the solutions of the operator equation N(u) = u. To apply Theorem 2.7,

we proceed as follows.

Case c[i− q] H-differentiability: The problem (1.1)–(1.2) is equivalent to the

fractional differential system
{

(cD
q
0u

α
1 )(x, y) = fα(x, y, uα

1 (x, y), uα
2 (x, y)), if (x, y) ∈ J,

uα
1 (x, 0) = ϕα

1 (x), uα
1 (0, y) = ψα

1 (y), if x ∈ [0, a], y ∈ [0, b],
(3.2)

and {
(cD

q
0u

α
2 )(x, y) = gα(x, y, uα

1 (x, y), uα
2 (x, y)), if (x, y) ∈ J,

uα
2 (x, 0) = ϕα

2 (x), uα
2 (0, y) = ψα

2 (y), if x ∈ [0, a], y ∈ [0, b].
(3.3)

We define the operator N by

N(vα
1 )(x, y) = µα

1 (x, y) + I
q

(0,0)g(x, y)

with

µα
1 (x, y) = ϕα

1 (x) + ψα
1 (y) − ϕ1(0).

Let v, w ∈ C(J). Then, for (x, y) ∈ J, we have

D(N(vα
1 )(x, y);N(wα

1 )(x, y)) ≤
1

Γ(q1)Γ(q2)

∫ x

0

∫ y

0

(x− s)q1−1(y − t)q2−1

×D(g(s, t), h(s, t))dt ds,
(3.4)

where g, h ∈ C(J) such that

g(x, y) = f(x, y, v(x, y), g(x, y))

and

h(x, y) = f(x, y, w(x, y), h(x, y)).

By (H2), we get

D(g(x, y), h(x, y)) ≤ kD(v(x, y);w(x, y)) + lD(g(x, y), h(x, y)).

Then,

D(g(x, y), h(x, y)) ≤
k

1 − l
D(v(x, y);w(x, y)).

Thus, (3.4) implies that

D(N(vα
1 )(x, y);N(wα

1 )(x, y)) ≤
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≤
1

Γ(q1)Γ(q2)

∫ x

0

∫ y

0

D(g(x, y), h(x, y))(x− s)q1−1(y − t)q2−1dt ds

≤
k

(1 − l)Γ(q1)Γ(q2)

∫ x

0

∫ y

0

(x− s)q1−1(y − t)q2−1D(vα
1 (s, t);wα

1 (s, t))dt ds

≤
k

(1 − l)Γ(q1)Γ(q2)
H1(v

α
1 ;wα

1 )

∫ x

0

∫ y

0

(x− s)q1−1(y − t)q2−1dt ds

≤
kaq1bq2

(1 − l)Γ(q1 + 1)Γ(q2 + 1)
H1(v

α
1 ;wα

1 ).

Consequently,

H1(N(vα
1 );N(wα

1 )) ≤
kaq1bq2

(1 − l)Γ(q1 + 1)Γ(q2 + 1)
H1(v

α
1 ;wα

1 ).

By (3.1), N is a contraction, and hence N has a unique fixed point by Banach’s

contraction principle.

We now transform the problem (3.3) into fixed a point problem; consider the

operator N such that

N(vα
2 )(x, y) = µα

2 (x, y) + I
q

(0,0)g(x, y)

with

µα
2 (x, y) = ϕα

2 (x) + ψα
2 (y) − ϕ2(0).

The fixed point of the operator N is a solution of the problem (3.3). So in this

case there is a unique solution to the problem (1.1)–(1.2).

Case c[ii− q] H-differentiability: The problem (1.1)–(1.2) is equivalent to the

fractional differential system
{

(cD
q
0u

α
1 )(x, y) = gα(x, y, uα

1 (x, y), uα
2 (x, y)), if (x, y) ∈ J,

uα
1 (x, 0) = ϕα

1 (x), uα
1 (0, y) = ψα

1 (y), if x ∈ [0, a], y ∈ [0, b],
(3.5)

and {
(cD

q
0u

α
2 )(x, y) = fα(x, y, uα

1 (x, y), uα
2 (x, y)), if (x, y) ∈ J,

uα
2 (x, 0) = ϕα

2 (x), uα
2 (0, y) = ψα

2 (y), if x ∈ [0, a], y ∈ [0, b].
(3.6)

To transform the problem (3.5) into fixed point problem, consider the operator

N(uα
1 )(x, y) = µα

1 (x, y) ⊖ I
q

(0,0)gα(s, t)

with

µα
1 (x, y) = ϕα

1 (x) + ψα
1 (y).

By the same technique, we can prove that there exists at least one solution for

the problem (1.1)–(1.2). This completes the proof of the theorem.

Our second result in this section is based on a fixed point theorem for absolute

retract spaces.
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Theorem 3.4. Assume that (H1) and the following conditions hold:

(H3) There exist A,B,C ∈ C(J,R+) with ‖C‖∞ < 1, such that

D(f(x, y, u(x, y), v(x, y)); 0̂) ≤ A(x, y) +B(x, y)D(u(x, y); 0̂) + C(x, y)D(v(x, y); 0̂);

(H4) For all (x, y) ∈ J , the set
{
µ(x, y) + I

q

(0,0)g(x, y), u ∈ Θ
}

is a totally bounded subset of En, where

Θ =
{
u ∈ C(J,En) : D(u(x, y), 0̂) ≤M, (x, y) ∈ J

}
,

with M a suitable positive constant,

g(x, y) = f(x, y, u(x, y), g(x, y)),

and

µ(x, y) = ϕ(x) + ψ(y) − ϕ(0).

If
‖B‖∞a

q1bq2

(1 − ‖C‖∞))Γ(q1)Γ(q2)
< 1,

then the IV P (1.1)–(1.2) has at least one solution on J .

Proof. It is clear that the solutions of the problem (1.1)–(1.2) are fixed points of the

operator

N : C(J,En) → C(J,En)

defined by:

N(u)(x, y) = µ(x, y) + I
q

(0,0)g(x, y)

We make

Θ = {u ∈ C(J,En) and D(u(x, y), 0̂) ≤ M, (x, y) ∈ J}.

We see that Θ is a convex subset of the Banach space C(J,En), so in particular Θ is

an absolute retract.

Case c[i− q] H-differentiability: The problem (1.1)–(1.2) is equivalent to the

fractional differential system
{

(cD
q
0u

α
1 )(x, y) = gα(x, y, uα

1 (x, y), uα
2 (x, y)), if (x, y) ∈ J,

uα
1 (x, 0) = ϕα

1 (x), uα
1 (0, y) = ψα

1 (y), if x ∈ [0, a], y ∈ [0, b],
(3.7)

and {
(cD

q
0u

α
2 )(x, y) = fα(x, y, uα

1 (x, y), uα
2 (x, y)), if (x, y) ∈ J,

uα
2 (x, 0) = ϕα

2 (x), uα
2 (0, y) = ψα

2 (y), if x ∈ [0, a], y ∈ [0, b].
(3.8)

We want to transform the problem (3.7) into a fixed point problem. Consider the

operator N : C(J,En) → C(J,En) defined by

N(uα
1 )(x, y) = µα

1 (x, y) + I
q

(0,0)fα(x, y)
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with

µα
1 (x, y) = ϕα

1 (x) + ψα
1 (y) − ϕ1(0).

Clearly the fixed points of the operator N : C(J,En) → C(J,En) are solutions of

the problem (1.2). We shall show that N : C(J,En) → C(J,En) is continuous and

completely continuous. The proof will be given in several steps.

Step 1. N(Θ) ⊂ Θ.

Let u ∈ Θ and (x, y) ∈ J . By (H3), we have

D(g(x, y), 0̂) ≤ A(x, y) + B(x, y)D(u; 0̂) + C(x, y)D(g(x, y); 0̂)

≤ ‖A‖∞ + ‖B‖∞D(u(x, y); 0̂) + ‖C‖∞D(g(x, y); 0̂).

Then

D(g(x, y), 0̂) ≤
‖A‖∞ + ‖B‖∞M

1 − ‖C‖∞
.

Thus,

D(Nuα
1 ((x, y)), 0̂) ≤ D(µα

1 (x, y), 0̂)

+D

(
1

Γ(q1)Γ(q2)

∫ x

0

∫ y

0

(x− s)q1−1(y − t)q2−1fα(s, t)dt ds, 0̂

)

≤ D(µα
1 (x, y), 0̂)

+
1

Γ(q1)Γ(q2)

(∫ x

0

∫ y

0

(x− s)q1−1(y − t)q2−1D(fα(s, t), 0̂)dt ds

)

≤ D(µα
1 (x, y), 0̂) +

‖A‖∞ +M‖B‖∞
(1 − ‖C‖∞)Γ(q1)Γ(q2)

aq1bq2 ≤ M.

Step 2: N is continuous.

Let the sequence [Un(x; y)]α = [Uα
n,1(x; y), U

α
n,2(x; y)] in Θ be such that Uα

n,1 → Uα
1

is an element of Θ in C(J,En) and Uα
n,2 → Uα

2 is an element of Θ in C(J,En). Let {un}

be a sequence such that un → u in C(J,En). Let η > 0 be such that H1(un; 0̂) ≤ η.

Then,

D(N(uα
n,1)(x, y);N(uα

1 )(x, y)) ≤

≤
1

Γ(q1)Γ(q2)

∫ x

0

∫ y

0

(x− s)q1−1(y − t)q2−1D(f(s, t, uα
n,1(s, t)); f(s, t, uα

1 (s, t)))dt ds

≤
‖A‖∞ +M‖B‖∞

(1 − ‖C‖∞)q1q2Γ(q1)Γ(q2)
aq1bq2H1(f(., ., uα

n,1(., .)); f(., ., uα
1 (., .))).

Since f is a continuous function, we have

H1(N(uα
n,1);N(uα

1 )) ≤
‖A‖∞ +M‖B‖∞
Γ(q1 + 1)Γ(q2 + 1)

aq1bq2H1(f(., ., uα
n,1)(., .); f(., ., uα

1 (., .))

→ 0 as n→ ∞.

Thus, N is a continuous.

Step 3: The operator N is equicontinuous.
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Let (x1, y1), (x2, y2) ∈ (0, a] × (0, b], x1 < x2, y1 < y2, u ∈ Θ. Then,

D(N(uα
1 )(x2, y2);N(uα

1 )(x1, y1)) ≤ D(µ(x1, y1);µ(x2, y2))

+
1

Γ(q1)Γ(q2)

∫ x1

0

∫ y1

0

[(x2 − s)q1−1(y2 − t)q2−1 − (x1 − s)q1−1(y1 − t)q2−1]

×D(f(s, t); 0̂)dt ds+
1

Γ(q1)Γ(q2)

∫ x2

x1

∫ y2

y1

(x2 − s)q1−1(y2 − t)q2−1

D
(
f(s, t); 0̂

)
dt ds

+
1

Γ(q1)Γ(q2)

∫ x1

0

∫ y2

y1

(x2 − s)q1−1(y2 − t)q2−1D(f(s, t); 0̂)dt ds

+
1

Γ(q1)Γ(q2)

∫ x2

x1

∫ y1

0

(x2 − s)q1−1(y2 − t)q2−1D(f(s, t); 0̂)dt ds

≤ D(µ(x1, y1);µ(x2, y2)) +
‖A‖∞ + ‖B‖∞M

(1 − ‖C‖∞)Γ(q1)Γ(q2)

×

∫ x1

0

∫ y1

0

[(x1 − s)q1−1(y1 − t)q2−1 − (x2 − s)q1−1(y2 − t)q2−1]dt ds

+
‖A‖∞ + ‖B‖∞M

(1 − ‖C‖∞)Γ(q1)Γ(q2)

∫ x2

x1

∫ y2

y1

(x2 − s)q1−1(y2 − t)q2−1dt ds

+
‖A‖∞ + ‖B‖∞M

(1 − ‖C‖∞)Γ(q1)Γ(q2)

∫ x1

0

∫ y2

y1

(x2 − s)q1−1(y2 − t)q2−1dt ds

+
‖A‖∞ + ‖B‖∞M

(1 − ‖C‖∞)Γ(q1)Γ(q2)

∫ x2

x1

∫ y1

0

(x2 − s)q1−1(y2 − t)q2−1dt ds

≤ D(µ(x1, y1);µ(x2, y2))

+
‖A‖∞ + ‖B‖∞M

(1 − ‖C‖∞)Γ(q1)Γ(q2)
[2yq2

2 (x2 − x1)
q1 + 2xq1

2 (y2 − y1)
q2

+ x
q1

1 y
q2

1 − x
q1

2 y
q2

2 − 2(x2 − x1)
q1(y2 − y1)

q2].

As x1 → x2, y1 → y2 the right-hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we can

conclude that N is continuous and completely continuous. As above, can show that

the operator N is a contraction, and so it has a unique fixed point.

Case c[ii− q] H-differentiability: The problem (1.1)–(1.2) is equivalent to the

fractional differential system
{

(cD
q
0u

α
1 )(x, y) = gα(x, y, u1(x, y)

α, uα
2 (x, y)), if (x, y) ∈ J,

uα
1 (x, 0) = ϕα

1 (x), uα
1 (0, y) = ψα

1 (y), if x ∈ [0, a], y ∈ [0, b],
(3.9)

and
{

(cD
q
0u

α
2 )(x, y) = fα(x, y, uα

1(x,y), u
α
2 (x, y)), if (x, y) ∈ J,

uα
2 (x, 0) = ϕα

2 (x), uα
2 (0, y) = ψ2(y), if x ∈ [0, a], y ∈ [0, b].

(3.10)



88 M. BENCHOHRA AND A. BOUKENKOUL

To transform the problem (3.9) into fixed point problem, consider the operator

N(uα
1 )(x, y)

= µα
1 (x, y) ⊖

1

Γ(q1)Γ(q2)

∫ x

0

∫ y

0

(x− s)q1−1(y − t)q2−1gα(s, t, uα
1 (s, t), uα

2 (s, t))dt ds.

By the same technique we can prove that there exists at least one solution to the

problem (3.9) and finally the IVP(1.1)–(1.2) has at least one solution.

4. AN EXAMPLE

As an application of our results we consider the following fuzzy partial hyperbolic

functional differential equations of the form

(cD
q
0u)(x, y) =

1

(5ex+y+2)(1 +D(u(x, y), 0̂) +D(cD
q
0u(x, y), 0̂))

, (x, y) ∈ [0, 1]× [0, 1],

(4.1)

u(x, 0) = x, x ∈ [0, 1], u(0, y) = y2, y ∈ [0, 1]. (4.2)

For (x, y) ∈ [0, 1] × [0, 1], set

f(x, y, u(x, y),cDq
0u(x, y)) =

1

(5ex+y+2)(1 +D(u(x, y), 0̂) +D(cD
q
0u(x, y), 0̂))

.

For each u, u, v, v ∈ E1 and (x, y) ∈ [0, 1] × [0, 1], we have

D(f(x, y, u(x, y), v(x, y)); f(x, y, u(x, y), v(x, y)))

≤
1

5e2
(D(u(x, y); u(x, y)) +D(v(x, y); v(x, y))).

Hence, condition (H2) is satisfied with k = l = 1
5e2 . We shall show that condition

(3.1) holds with a = b = 1. Indeed

kaq1bq2

(1 − l)Γ(q1 + 1)Γ(q2 + 1)
=

1

(5e2 − 1)Γ(q1 + 1)Γ(q2 + 1)
< 1,

which is satisfied for each (q1, q2) ∈ (0, 1]× (0, 1]. Consequently Theorem 3.3 implies

that problem (4.1)–(4.2) has a unique solution defined on [0, 1] × [0, 1].
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[1] S. Abbas, M. Benchohra, and G. M. N’Guérékata, Topics in Fractional Differential Equations,

Springer, New York, 2012.
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