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ABSTRACT. We present an existence and uniqueness theorem for integral equations of fractional

order involving fuzzy set valued mappings of a real variable whose values are normal, convex, upper

semicontinuous and compactly supported fuzzy sets in R
n. The method of successive approximation

is the main tool in our analysis.
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1. INTRODUCTION

Dubois and Prade [8, 9] introduced the concept of integration of fuzzy functions.

Alternative approaches were later suggested by Goetschel and Voxman [11], Kaleva

[13], Nanda [17] and others. While Goetschel and Voxman preferred a Riemann

integral type approach, Kaleva chose to define the integral of fuzzy function, using

the Lebesgue-type concept of integration. For more information about integration

of fuzzy functions and fuzzy integral equations, for instance, see ([1]–[5], [8]–[11],

[13]–[17], [19], [21], [23]) and references therein. On the other hand, the first serious

attempt to give a logical definition of a fractional derivative is due to Liouville, see

[12] and references therein. Now, the fractional calculus topic is enjoying growing

interest among scientists and engineers, see [6, 7, 12, 18, 20, 22].

By means of the fuzzy integral due to Kaleva [13], we investigate the fractional

fuzzy integral equation, for the fuzzy set-valued mappings of a real variable whose

values are normal, convex, upper semi-continuous and compactly supported fuzzy

sets in R
n. This equation takes the form

y(t) = f(t) +
1

Γ(α)

∫ t

0

g(s, y(s))

(t − s)1−α
ds, t ∈ [0, T ], (1.1)
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where f : [0, T ] → En and g : [0, T ] × En → En, the definition of En is given in

Section 2.

Definition 1.1. Let f ∈ L1(a, b), 0 ≤ a < b < ∞, and let α > 0 be a real number.

The fractional integral of order α of Riemann-Liouville type is defined by (see [20, 22])

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t − s)1−α
ds.

Rewrite Eq.(1.1) in the form

y(t) = f(t) + Iαg(t, y(t)), t ≥ 0, (1.2)

where Iα is the standard Riemann-Liouville fractional integral operator.

In this paper, we prove an existence and uniqueness theorem of a solution to the

fuzzy integral equation (1.2). The method of successive approximation is the main

tool in our analysis.

2. AUXILIARY FACTS AND RESULTS

This section is devoted to collect some definitions and results which will be needed

further on.

Definition 2.1. Let X be a nonempty set. A fuzzy set A in X is characterized by

its membership function A : X → [0, 1] and A(x), called the membership function of

fuzzy set A, is interpreted as the degree of membership of element x in fuzzy set A

for each x ∈ X.

The value zero is used to represent complete non-membership, the value one is

used to represent complete membership and values between them are used to represent

intermediate degrees of membership.

Example 2.2. The membership function of fuzzy set of real numbers, close to zero,

can be defined as follows

A(x) =
1

1 + x3
.

Using this function, we can determine the membership grade of each real number in

this fuzzy set, which signifies the degree to which that number is close to zero. For

instance, the number 3 is assigned a grade of 0.035, the number 1 a grade of 0.5 and

the number 0 a grade of 1.

Example 2.3. Let the membership function of fuzzy set of real numbers, close to

one defined as follows

B(x) = exp(−γ(x − 1)2),

where γ is a positive real number.
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Let Pk(R
n) denote the collection of all nonempty compact convex subsets of R

n

and define the addition and scalar multiplication in Pk(R
n) as usual. Let A and B

be two nonempty bounded subsets of R
n. The distance between A and B is defined

by the Hausdorff metric

Hd(A, B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}

where d(b, A) = inf{d(b, a) : a ∈ A}. It is clear that (Pk(R
n), d) is a complete metric

space [14].

A fuzzy set u ∈ En is a function u : R
n → [0, 1] for which

(i) u is normal, i.e., there exists an x0 ∈ R
n such that u(x0) = 1,

(ii) u is fuzzy convex, i.e., for x, y ∈ R
n and β ∈ [0, 1],

u(βx + (1 − β)y) ≥ min(u(x), u(y))

(iii) u is upper semi-continuous, and

(iv) the closure of {x ∈ R
n : u(x) > 0}, denoted by [u]0, is compact.

For 0 < γ ≤ 1, the α−level set [u]γ is define by [u]γ = {x ∈ R
n : u(x) ≥ γ}. Then

from (i) − (iv), it follows that [u]γ ∈ Pk(R
n) for all 0 ≤ γ ≤ 1.

By Zadeh’s extension principle, we can define addition and scalar multiplication

in En as follows:

[u + v]γ = [u]γ + [v]γ,

[λ u]γ = λ [u]γ ,

where u, v ∈ En, λ ∈ R and 0 ≤ γ ≤ 1. Define 0̂ : R
n → [0, 1] by

0̂(t) =

{

1 if t = 0

0 otherwise

We call 0̂ the null element of En.

Let D : En × En → [0,∞) be define by

D(u, v) = sup
0≤γ≤1

d ([u]γ, [v]γ)

where d is the Hausdorff metric defined in Pk(R
n). Then (En, D) is a complete metric

space [21]. Also, we know that [13]

(1) D(u + w, v + w) = D(u, v) for u, v, w ∈ En

(2) D(λu, λv) = |λ| D(u, v) for all u, v ∈ En and λ ∈ R

Now, we recall some definitions and theorems concerning integrability properties

for the set-valued mapping of a real variable whose values are in (En, D) [13, 21].
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Definition 2.4. A mapping F : J → En is strongly measurable if for γ ∈ [0, 1]

the set-valued mapping Fγ : J → Pk(R
n) defined by Fγ(t) = [f(t)]γ is Lebesgue

measurable, when Pk(R
n) is endowed with the topology generated by the Hausdorff

metric d.

Definition 2.5. A mapping F : J → En is called strongly bounded if there exists an

integrable function h such that ‖y‖ ≤ h(t) for all y ∈ F0(t).

Definition 2.6. Let F : J → En. The integral of F over J , defined by
∫

J

F (t) dt, is

defined levelwise by
(

∫

J

F (t) dt

)γ

=

∫

J

Fγ(t) dt

= {f(t) dt | f : J → R
n is a measurable selection for Fγ}

A strongly measurable and integrably bounded mapping F : J → En ia said to

be integrable over J if
∫

J

F (t) dt ∈ En.

Theorem 2.7. If F : J → En is strongly measurable and integrably bounded, then

F is integrable.

Theorem 2.8. If F : J → En is continuous then it is integrable.

Theorem 2.9. If F : J → En is integrable and b ∈ J . Then
∫ t0+a

t0

F (t) dt =

∫ b

t0

F (t) dt +

∫ t0+a

b

F (t) dt

Theorem 2.10. If F, G : J → En be integrable and λ ∈ R. Then

(1)
∫

J

(F (t) + G(t)) dt =
∫

J

F (t) dt +
∫

J

G(t) dt,

(2)
∫

J
λ F (t) dt = λ

∫

J

F (t) dt,

(3) D(F, G) is integrable,

(4) D

(

∫

J

F (t) dt,
∫

J

G(t) dt

)

≤
∫

J

D(F (t), G(t)) dt.

3. MAIN THEOREM

In this section, we will study Eq.(1.2) assuming that the following assumptions

are satisfied, Let L and T be positive numbers:

(a1) f : [0, T ] → En is continuous and bounded.

(a2) g : [0, T ] × En → En is continuous and satisfies the Lipschitz condition, i.e.,

D (g(t, y2(t)), g(t, y1(t))) ≤ L D (y2(t), y1(t)) , t ∈ [0, T ],

where yi : [0, T ] → En, i = 1, 2.

(a3) g(t, 0̂) is bounded on [0, T ].
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Now, we are in a position to state and prove our main result in paper

Theorem 3.1. Let the assumptions (a1) − (a3) be satisfied. If

T <

(

Γ(α + 1)

L

)
1

α

,

then Eq.(1.2) has a unique solution y on [0, T ] and the successive iterations

y0(t) = f(t)

yn+1(t) = f(t) + Iαg(t, yn(t)), n = 0, 1, 2, ... (3.1)

are uniformly convergent to y on [0, T ].

Proof: First we prove that yn are bounded on [0, T ]. We have y0 = f(t) is

bounded, thanks (a1). Assume that yn−1 is bounded. From (3.1) we have

D(yn(t), 0̂) = D
(

f(t) + Iαg(t, yn−1(t)), 0̂
)

≤ D
(

f(t), 0̂
)

+ D
(

Iαg(t, yn−1(t)), 0̂
)

≤ D
(

f(t), 0̂
)

+
1

Γ(α)

∫ t

0

D

(

g(s, yn−1(s))

(t − s)1−α
, 0̂

)

ds

≤ D
(

f(t), 0̂
)

+
1

Γ(α)
sup

0≤t≤T

D(g(t, yn−1(t)), 0̂)

∫ t

0

ds

(t − s)1−α
.

But

D(g(t, yn−1(t)), 0̂) ≤ D(g(t, yn−1(t)), g(t, 0̂)) + D(g(t, 0̂), 0̂)

≤ L D(yn−1(t), 0̂) + D(g(t, 0̂), 0̂).

So

D(yn(t), 0̂) ≤ D
(

f(t), 0̂
)

+
T α

Γ(α + 1)
sup

0≤t≤T

[L D(yn−1(t), 0̂) + D(g(t, 0̂), 0̂)]

≤ D
(

f(t), 0̂
)

+ sup
0≤t≤T

D(yn−1(t), 0̂) +
T α

Γ(α + 1)
sup

0≤t≤T

D(g(t, 0̂), 0̂).

This proves that yn is bounded. Therefore, {yn} is a sequence of bounded functions

on [0, T ].

Second we prove that yn are continuous on [0, T ]. For 0 ≤ t ≤ τ ≤ T , we have

D(yn(t), yn(τ)) ≤ D(f(t), f(τ)) +
1

Γ(α)
D

(
∫ t

0

g(s, yn−1(s))

(t − s)1−α
ds,

∫ τ

0

g(s, yn−1(s))

(τ − s)1−α
ds

)

≤ D (f(t), f(τ)) +
1

Γ(α)
D

(
∫ t

0

g(s, yn−1(s))

(t − s)1−α
ds,

∫ t

0

g(s, yn−1(s))

(τ − s)1−α
ds

)

+
1

Γ(α)
D

(
∫ τ

t

g(s, yn−1(s))

(τ − s)1−α
ds, 0̂

)

≤ D (f(t), f(τ)) +
1

Γ(α)

∫ t

0

D

(

g(s, yn−1(s))

(t − s)1−α
,
g(s, yn−1(s))

(τ − s)1−α

)

ds
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+
1

Γ(α)

∫ τ

t

D

(

g(s, yn−1(s))

(τ − s)1−α
, 0̂

)

ds

≤ D (f(t), f(τ)) +
1

Γ(α)
sup

0≤t≤T

D(g(t, yn−1(t)), 0̂)

∫ t

0

|(t − s)α−1 − (τ − s)α−1| ds

+
1

Γ(α)
sup

0≤t≤T

D(g(t, yn−1(t)), 0̂)

∫ τ

t

ds

(τ − s)1−α
ds

≤ D (f(t), f(τ)) +
1

Γ(α + 1)
[|t − τ |α − |tα − τα|]

sup
0≤t≤T

D(g(t, yn−1(t)), 0̂)

+
1

Γ(α + 1)
|t − τ |α sup

0≤t≤T

D(g(t, yn−1(t)), 0̂)

≤ D (f(t), f(τ)) +
1

Γ(α + 1)
[2 |t − τ |α − |tα − τα|]

sup
0≤t≤T

D(g(t, yn−1(t)), 0̂)

≤ D (f(t), f(τ)) +
1

Γ(α + 1)
[2 |t − τ |α − |tα − τα|]

sup
0≤t≤T

[L D(g(yn−1(t)), 0̂) + D(g(t, 0̂), 0̂)].

The last inequality, by symmetry, is valid for all t, τ ∈ [0, T ] regardless whether or

not t ≤ τ . Thus, D(yn(t), yn(τ)) → 0 as t → τ . Therefore, the sequence {yn} is

continuous on [0, T ].

For n ≥ 1, we have

D(yn+1(t), yn(t)) =
1

Γ(α)
D

(
∫ t

0

g(s, yn(s))

(t − s)1−α
ds,

∫ t

0

g(s, yn−1(s))

(t − s)1−α
ds

)

≤
1

Γ(α)

∫ t

0

D

(

g(s, yn(s))

(t − s)1−α
,

∫ t

0

g(s, yn−1(s))

(t − s)1−α

)

ds

≤
1

Γ(α)

∫ t

0

D (g(s, yn(s)), g(s, yn−1(s)))
ds

(t − s)1−α

≤
1

Γ(α)
sup

0≤t≤T

D(g(t, yn(t)), g(t, yn−1(t)))

∫ t

0

ds

(t − s)1−α

≤
L T α

Γ(α + 1)
sup

0≤t≤T

D(yn(t), yn−1(t))

≤

(

L T α

Γ(α + 1)

)2

sup
0≤t≤T

D(yn−1(t), yn−2(t))

...

≤

(

L T α

Γ(α + 1)

)n

sup
0≤t≤T

D(y1(t), y0(t)). (3.2)
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But

D(y1(t), y0(t)) =
1

Γ(α)
D

(
∫ t

0

g(s, f(s))

(t − s)1−α
ds, 0̂

)

≤
1

Γ(α)

∫ t

0

D

(

g(s, f(s))

(t − s)1−α
, 0̂

)

ds

≤
1

Γ(α)
sup

0≤t≤T

D(g(t, f(t)), 0̂)

∫ t

0

ds

(t − s)1−α
.

Thus

sup
0≤t≤T

D(y1(t), y0(t)) ≤
T α

Γ(α + 1)
[LM + N ] := R,

where

M = sup
0≤t≤T

D(f(t), 0̂) and N = sup
0≤t≤T

D(g(t, 0̂), 0̂).

Therefore (3.2) takes the form

D(yn+1(t), yn(t)) ≤ R

(

L T α

Γ(α + 1)

)n

. (3.3)

Next, we show that for each t ∈ [0, T ] the sequence {yn(t)} is a Cauchy sequence in

En. Let p, q be such that q > p and t ∈ [0, T ]. Then, by using (3.3), we have

D(yq(t), yp(t)) ≤ D(yq(t), yq−1(t)) + D(yq−1(t), yq−2(t)) + . . . + D(yp+1(t), yp(t))

≤ R

(

L T α

Γ(α + 1)

)q−1

+ R

(

L T α

Γ(α + 1)

)q−2

+ . . . + R

(

L T α

Γ(α + 1)

)p

= R

(

L T α

Γ(α + 1)

)q−1
[

1 +
Γ(α + 1)

L T α
+

(

Γ(α + 1)

L T α

)2

+ . . .

+

(

Γ(α + 1)

L T α

)q−p−1
]

= R

(

L T α

Γ(α + 1)

)q−1







1 −
(

Γ(α+1)
L T α

)q−p

1 − Γ(α+1)
L T α






.

The right hand side of the last inequality tends to zero as p, q → ∞. This implies

that {yn(t)} is a Cauchy sequence. Consequently, the sequence {yn(t)} is convergent,

thanks to the completeness of the metric space (En, D). If we denote y(t) = lim
n→∞

yn(t),

then y(t) satisfies (1.2). It is continuous and bounded on [0, T ].

To prove the uniqueness, let x(t) be a continuous solution of (1.2) on [0, T ]. Then

x(t) = f(t) + Iαg(t, x(t)), t ≥ 0.

Now, for n ≥ 1, we have

D(x(t), yn(t)) = D (Iαg(t, x(t)), Iαg(t, yn(t)))

≤
1

Γ(α)

∫ t

0

D

(

g(s, x(s))

(t − s)1−α
,

∫ t

0

g(s, yn(s))

(t − s)1−α

)

ds
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≤
1

Γ(α)

∫ t

0

D (g(s, x(s)), g(s, yn(s)))
ds

(t − s)1−α

≤
1

Γ(α)
sup

0≤t≤T

D(g(t, x(t)), g(t, yn(t)))

∫ t

0

ds

(t − s)1−α

≤
L T α

Γ(α + 1)
sup

0≤t≤T

D(x(t), yn(t))

...

≤

(

L T α

Γ(α + 1)

)n

sup
0≤t≤T

D(x(t), y0(t)).

Since L T α

Γ(α+1)
< 1

lim
n→∞

yn(t) = x(t) = y(t), t ∈ [0, T ].

This completes the proof.
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