
Communications in Applied Analysis 12 (2008), no. 1, 23–28

SOME RESULTS ON PERIODIC SOLUTIONS FOR
EVEN ORDER DIFFERENTIAL EQUATIONS

JINHAI CHEN1, DONAL O’REGAN2, AND CHRISTOPHER C. TISDELL3

1Department of Applied Mathematics, The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong

E-mail: cjh maths@yahoo.com.cn

2Department of Mathematics, National University of Ireland

Galway, Ireland

E-mail: donal.oregan@nuigalway.ie

3School of Mathematics and Statistics, The University of New South Wales

Sydney 2052, Australia

E-mail: cct@unsw.edu.au

ABSTRACT. This paper presents some new results for the existence of a unique 2π-periodic

solution of even order differential equations. Here the assumption in [3, J. H. Chen and D. O’Regan,

On periodic solutions for even order differential equations, Nonlinear Anal., (2007),

doi: 10.1016/j.na.2007.06.013] that maximal solution of an initial value problem exists is removed.
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1. INTRODUCTION

In this paper, we continue our study on the existence and uniqueness of periodic

solutions for the following boundary value problem










(

g(t)u(k)
)(k)

+
k−1
∑

j=1

αju
(2j) + (−1)k+1h(t, u) = e(t),

u(i)(0) = u(i)(2π), i = 0, 1, . . . , 2k − 1,

(1.1)

where t ∈ [0, 2π], u ∈ <n, g(t) ∈ Ck(<), e(t) ∈ C1(<n), h(t, u) ∈ C1(< × <n) are

2π-periodic in t and αj, j = 1, . . . , k − 1 are constants.

Throughout this paper we use the following assumption:

(A1) The Jacobian matrix hu = (hiuj
) is a symmetric matrix, g ∈ Ck(<) satisfies

0 < M1 ≤ g(t) ≤ M2 on < for some constants M1 and M2.

In [3], we related (1.1) to an initial value problem, and a new set of sufficient

conditions for the existence of a unique 2π-periodic solution of (1.1) was given. We
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showed that the results of [2, 4, 6, 8, 9, 10] are consequences of Theorem 3.1 (i.e., see

Theorem 1.1 in this paper) in [3].

Let δ : <+ → <+\{0} be defined by

δ(s) = max
‖u‖≤s,t∈[0,2π]

{

(

min
1≤i≤n

{bi(u) − τ(Ni), ω(Ni + 1) − bi(u)}

)−1
}

, (1.2)

where bi(u) are the eigenvalues of hu, i = 1, 2, . . . , n, and

τ(Ni) = M2N
2k
i +

k−1
∑

j=1

(−1)j−kαjN
2j
i ,

ω(Ni + 1) = M1(Ni + 1)2k +

k−1
∑

j=1

(−1)j−kαj(Ni + 1)2j, i = 1, . . . , n,

where Ni are nonnegative integers. Without loss of generality, it is always assumed

that τ(Ni), ω(Ni) are positive nondecreasing sequences in i, respectively, and τ(Ni) <

τ(Ni+1), ω(Ni + 1) < ω(Ni+1 + 1).

Theorem 1.1. [3] Assume that assumption (A1) holds, and the eigenvalues of hu

satisfy

0 < τ(Ni) < λi(hu) < ω(Ni + 1), i = 1, . . . , n.

Suppose also that, for arbitrary η, c0 ∈ <+, the maximal solution y of the initial value

problem
{

y′(r) = ηδ(y(r)), r ∈ [0, 1],

y(0) = c0,
(1.3)

is defined on [0, 1]. Then there exists a unique 2π-periodic solution to system (1.1).

The purpose of this paper is to continue the investigation which began in [3].

Some new sufficient conditions for the existence of a unique 2π-periodic solution of

(1.1) are given. In particular we show that the assumption [3] that the existence of

the maximal solution of the initial value problem (1.3) is unnecessary.

2. REFORMULATION

Consider the linear operator L : D(L) → X where

Lu = (−1)k
(

g(t)u(k)
)(k)

+ (−1)k

k−1
∑

j=1

αju
(2j)

and a continuously Fréchet differentiable operator N : D(L) → X which is defined by

(N(u))(t) = −h(t, u(t)), t ∈ [0, 2π]. (2.1)

Then (1.1) is reformulated as

Lu + N(u) = (−1)ke(t). (2.2)
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Let X = L2
n[0, 2π] be the set of all vector-valued functions u(t) = (ui(t))n×1 on

[0, 2π] such that ui ∈ L2[0, 2π] for i = 1, . . . , n. Then X is a Hilbert space with the

following inner product:

〈u, v〉 =

∫ 2π

0

uT (t)v(t)dt,

and we denote by ‖ · ‖ the norm induced by this inner product. Also, if

D(L) =
{

u(t) = (u1(t), . . . , un(t))
T | u(i)(0) = u(i)(2π), i = 0, 1, . . . , 2k − 1 ,

u
(2k−1)
i (t) absolutely continuous on [0, 2π], and u

(2k)
i (t) ∈ L2[0, 2π]

}

, (2.3)

then L is a closed self-adjoint operator on D(L). Therefore, D(L) is a Banach space

with respect to the graph norm ||| · ||| : X → < defined by |||u||| = ‖u‖ + ‖Lu‖ ( see

[3, 5, 8]).

In the sequel E and F will be a Banach space.

Lemma 2.1. [1, 7, p. 175] f : E → F is a homeomorphism of E onto F if and only

if f is a local homeomorphism and a closed map.

3. EXISTENCE AND UNIQUENESS

As shown in Section 2, the boundary value problem (1.1) is equivalent to the

operator equation

G(u) = Lu + N(u) = (−1)ke(t), u ∈ D(L).

Suppose that assumption (A1) holds. Let Q(u(t)) = (hiuj
(t, u)). Then

(N ′(u)v)(t) = −(hiuj
(t, u))v(t) = −Q(u)v(t), u, v ∈ D(L), t ∈ [0, 2π],

and G′
u = L + N ′(u) = L − Q(u), where Q(u) is a symmetric matrix.

Let b1(u), . . . , bn(u) be eigenvalues of Q(u), and suppose there exist

τ(Ni) = M2N
2k
i +

k−1
∑

j=1

(−1)j−kαjN
2j
i

and

ω(Ni + 1) = M1(Ni + 1)2k +

k−1
∑

j=1

(−1)j−kαj(Ni + 1)2j, i = 1, . . . , n,

such that

0 < τ(Ni) < bi(u) < ω(Ni + 1), i = 1, . . . , n, (3.1)

where u ∈ D(L), and Ni, i = 1, 2, . . . , n are nonnegative integers.

Lemma 3.1. Suppose condition (3.1) holds. Then N is Lipschitz continuous on

D(L).
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Proof. If u, v ∈ D(L) then

hu(t, u) − hu(t, v) = Q(ξ)(u − v),

where ξ(t) = v(t) + θ(t)(u(t) − v(t)), 0 < θ(t) < 1.

By (3.1), we have

< (u − v), Q(ξ)(u − v) > ≤ bn(ξ)‖u− v‖2 ≤ ω(Nn + 1)‖u − v‖2.

Hence, if u 6= v, we have 〈u−v,Q(ξ)(u−v)〉
||u−v||2

≤ ω(Nn + 1) so ||Q(ξ)|| ≤ ω(Nn + 1) , and as

a result ‖hu(t, u) − hu(t, v)‖ ≤ ω(Nn + 1)‖u − v‖.

Note that g ∈ Ck(<) satisfies 0 < M1 ≤ g(t) ≤ M2 on < for some constants

M1 and M2 (see assumption (A1)). Then, the eigenvalues of the operator L satisfy

λi(L) ∈ [µi, νi], where µi ∈ [τ1(Ni), τ(Ni)] and νi ∈ [ω(Ni + 1), ω1(Ni + 1)]; here

τ1(Ni) = M1N
2k
i +

k−1
∑

j=1

(−1)j−kαjN
2j
i

and

ω1(Ni + 1) = M2(Ni + 1)2k +

k−1
∑

j=1

(−1)j−kαj(Ni + 1)2j, i = 1, . . . , n,

where Ni, i = 1, 2, . . . , n are nonnegative integers. Thus, for each fixed point t ∈

[0, 2π], zero is not an eigenvalue of the following eigenvalue problem

Lu − Q(u0)u = γu, (3.2)

where u0 ∈ D(L) is fixed. Hence, L − Q(u0) is invertible at u0 for each fixed point

t ∈ [0, 2π]. If the eigenvalues of Q(u0) are ordered according to b1(u0) ≤ b2(u0) ≤

· · · ≤ bn(u0), then by the spectral theorem [5, 8, 9],

‖(L − Q(u0))
−1‖ = {distance of 0 from the spectrum of L − Q(u0)}

−1

≤

(

min
1≤i≤n

{bi(u0) − τ(Ni), ω(Ni + 1) − bi(u0)}

)−1

. (3.3)

That is, for each u ∈ D(L), G′(u) is invertible and

‖G′(u)−1‖ ≤

(

min
1≤i≤n

{bi(u) − τ(Ni), ω(Ni + 1) − bi(u)}

)−1

. (3.4)

Theorem 3.2. Assume that assumption (A1) holds, and that the eigenvalues of

Q(u) satisfy (3.1) for all u ∈ D(L). Then there exists a unique function u ∈ D(L)

satisfying the operator equation Lu + N(u) = (−1)ke(t) for arbitrary e(t) ∈ X , i.e.,

there exists a unique 2π-periodic solution to system (1.1).
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Proof. Since zero is not an eigenvalue of G′
u = L + N ′(u) for all u ∈ D(L), it follows

that G′
u is invertible at each u. Hence L + N(u) is a local homeomorphism.

Next, let uk ∈ D(L), k = 1, 2, . . . be such that

uk → u, k → ∞ (3.5)

and

G(uk) → y, k → ∞ (3.6)

where u, y ∈ X . From Lemma 3.1 and (3.5), we know that hu(t, uk) → hu(t, u) as

k → ∞. Hence, L(uk) → y +hu(t, u) as k → ∞. Since L is closed on D(L), it follows

that u ∈ D(L). That is, G(u) = y, i.e., G is closed on D(L). Therefore, by Lemma

2.1, G is a homeomorphism of D(L) onto X . Thus, for each e ∈ X , there exists a

unique 2π-periodic solution u to system (1.1). The proof is complete.

Remark 3.3. Theorem 3.2 shows that the assumption of the existence of the maximal

solution of the initial value problem in Theorem 1.1 (i.e., the main result of [3]) is

unnecessary.
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