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ABSTRACT. This paper studies some existence and uniqueness results in a Banach space for a

fractional integro-differential equation with nonlinear condition

cDqx(t) = f(t, x(t)) +

∫ t

0

k(t, s, x(s))ds, t ∈ [0, T ], 0 < q < 1,

x(0) = x0 − g(x).

The contraction mapping principle and Krasnoselskii’s fixed point theorem are employed to establish

the results.
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1. INTRODUCTION

Integro-differential equations arise in many engineering and scientific disciplines,

often as approximation to partial differential equations, which represent much of the

continuum phenomena. Many forms of these equations are possible. Some of the

applications are unsteady aerodynamics and aero elastic phenomena, visco elasticity,

visco elastic panel in super sonic gas flow, fluid dynamics, electro dynamics of com-

plex medium, many models of population growth, polymer rheology, neural network

modeling, sandwich system identification, materials with fading memory, mathemati-

cal modeling of the diffusion of discrete particles in a turbulent fluid, heat conduction

in materials with memory, theory of lossless transmission lines, theory of population

dynamics, compartmental systems, nuclear reactors and mathematical modeling of a

hereditary phenomena.
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Recently the application of fractional calculus in physics, continuum mechanics,

signal processing, and electromagnetics, with few examples of applications in bio-

engineering are high lighted in the literatures. The methods of fractional calculus,

when defined as a Laplace, Sumudu or Fourier convolution product, are suitable for

solving many problems in emerging biomedical research. The electrical properties

of nerve cell membranes and the propagation of electrical signals are well character-

ized by differential equations of fractional order. The fractional derivative accurately

describes natural phenomena that occur in such common engineering problems as

heat transfer, electrode/electrolyte behavior, and sub-threshold nerve propagation.

Application of fractional derivatives to viscoelastic materials establishes, in a natural

way, hereditary integrals and the power law stress-strain relationship for modeling

biomaterials. Fractional operations by following the original approach of Heaviside,

demonstrate the basic operations of fractional calculus on well-behaved functions such

as step, ramp, pulse, and sinusoidal of engineering interest, and can easily be applied

in electrochemistry, physics, bioengineering, and biophysics.

The differential equations involving Riemann-Liouville differential operators of

fractional order occur in the mathematical modelling of several phenomena in the

fields of physics, chemistry, engineering, etc. For details, see [3, 4, 9, 11, 12] and

the references therein. In consequence, the subject of fractional differential equations

is gaining much importance and attention, see for example [1, 5, 6, 7, 10] and the

references therein.

The definition of Riemann-Liouville fractional derivative, which did certainly play

an important role in the development of theory of fractional derivatives and integrals,

could hardly produce the physical interpretation of the initial conditions required for

the initial value problems involving fractional differential equations. It was Caputo’s

definition of fractional derivative:

cDqx(t) =
1

Γ(n − q)

∫ t

t0

(t − s)n−q−1x(n)(s)ds, n − 1 < q < n,

which solved this problem. In fact, Caputo’derivative becomes the conventional n−th

derivative as q → n and the initial conditions for fractional differential equations

retain the same form as that of ordinary differential equations with integer derivatives.

Another difference is that the Caputo derivative for a constant is zero while the

Riemann-Liouville fractional derivative of a constant is nonzero.

In this paper, we consider a Cauchy problem involving a fractional integro-

differential equation with nonlocal condition given by

{

cDqx(t) = f(t, x(t)) +
∫ t

0
k(t, η, x(η))dη, t ∈ [0, T ], T > 0, 0 < q < 1,

x(0) = x0 − g(x),
(1.1)
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where cDq denotes Caputo fractional derivative of order q, f : [0, T ] × X → X,

k : [0, T ] × [0, T ] × X → X are jointly continuous, g : C → X is continuous.

Here, (X, ‖.‖) is a Banach space and C = C([0, T ], X) denotes the Banach space

of all continuous functions from [0, T ] → X endowed with a topology of uniform

convergence with the norm denoted by ‖ · ‖C.

In passing, we remark that the application of nonlinear condition x(0) = x0−g(x)

in physical problems yields better effect than the initial condition x(0) = x0 [2].

As argued in [5] (see also [8]), the cauchy problem is equivalent to the following

nonlinear integral equation

x(t) = x0 − g(x) +
1

Γ(q)

∫ t

0

(t − s)q−1[f(s, x(s)) +

∫ t

s

k(σ, s, x(s))dσ]ds, (1.2)

where Γ is Gamma function.

Now, we state a known result due to Krasnoselskii which is needed to prove the

existence of at least one solution of (1.1).

Theorem 1.1. Let M be a closed convex and nonempty subset of a Banach space

X. Let A, B be the operators such that (i) Ax + By ∈ M whenever x, y ∈ M (ii) A

is compact and continuous (iii) B is a contraction mapping. Then there exists z ∈ M

such that z = Az + Bz.

2. EXISTENCE RESULTS

Theorem 2.1. Assume that

(A1) ‖f(t, x) − f(t, y)‖ ≤ L1‖x − y‖, ∀t ∈ [0, T ], x, y ∈ X;

(A2) ‖k(t, s, x) − k(t, s, y)‖ ≤ L2‖x − y‖, ∀t, s ∈ [0, T ], x, y ∈ X;

(A2) ‖g(x) − g(y)‖ ≤ b‖x − y‖, ∀x, y ∈ C.

Then the Cauchy problem (1.1) has a unique solution provided b < 1
2
, L1 ≤ Γ(q+1)

4T q ,

L2 ≤
Γ(q+2)
4qT q+1 .

Proof. Define Θ : C → C by

(Θx)(t) = x0 − g(x) +
1

Γ(q)

∫ t

0

(t − s)q−1[f(s, x(s)) +

∫ t

s

k(σ, s, x(s))dσ]ds. (2.1)

Let us set supt∈[0,T ] ‖f(t, 0)‖ = M1, supt,s∈[0,T ] ‖k(t, s, 0)‖ = M2 and supx∈C ‖g(x)‖ =

G. Choosing r ≥ 2(‖x0‖ + G + M1T q

Γ(q+1)
+ qM2T q+1

Γ(q+2)
), it can be shown that ΘBr ⊂ Br,

where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ C, we have

‖(Θx)(t)‖ ≤ ‖x0‖ + G +
1

Γ(q)

∫ t

0

(t − s)q−1[‖f(s, x(s))‖ +

∫ t

s

‖k(σ, s, x(s))‖dσ]ds

≤ ‖x0‖ + G +
1

Γ(q)

∫ t

0

(t − s)q−1[(‖f(s, x(s)) − f(s, 0)‖ + ‖f(s, 0)‖)
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+

∫ t

s

(‖k(σ, s, x(s)) − k(σ, s, 0)‖ + ‖k(σ, s, 0)‖)dσ]ds

≤ ‖x0‖ + G +
L1r + M1

Γ(q)

∫ t

0

(t − s)q−1ds +
L2r + M2

Γ(q)

∫ t

0

(t − s)qds

≤ ‖x0‖ + G +
(L1r + M1)T

q

Γ(q + 1)
+

(L2r + M2)qT
q+1

Γ(q + 2)

≤ r.

Now, for x, y ∈ C, we obtain

‖(Θx)(t) − (Θy)(t)‖ ≤ ‖g(x) − g(y)‖ +
1

Γ(q)

∫ t

0

(t − s)q−1[‖f(s, x(s)) − f(s, y(s))‖

+

∫ t

s

‖k(σ, s, x(s)) − k(σ, s, y(s))‖dσ]ds

≤ Λb,L1,L2,T,q‖x − y‖,

where Λb,L1,L2,T,q = (b + L1T q

Γ(q+1)
+ L2qT q+1

Γ(q+2)
) depends only on the parameters involved

in the problem. As Λb,L1,L2,T,q < 1, so the conclusion of the theorem follows by the

contraction mapping principle.

Theorem 2.2. Assume that

(B1) ‖f(t, x)‖ ≤ µ(t), ∀(t, x) ∈ [0, T ] × X, ‖k(t, s, x)‖ ≤ σ(t), ∀(t, s, x) ∈ [0, T ] ×

[0, T ] × X, where µ, σ ∈ L1([0, T ], R+);

(B2) ‖g(x) − g(y)‖ ≤ b‖x − y‖, ∀x, y ∈ C, b < 1.

Then the Cauchy problem (1.1) has at least one solution on [0, T ].

Proof. Fix r ≥ (‖x0‖ + G +
‖µ‖

L1T q

Γ(q+1)
+

q‖σ‖
L1T q+1

Γ(q+2)
) and consider Br = {x ∈ C :

‖x‖ ≤ r}. We define the operators Φ and Ψ on Br as

(Φx)(t) =
1

Γ(q)

∫ t

0

(t − s)q−1[f(s, x(s)) +

∫ t

s

k(σ, s, x(s))dσ]ds,

(Ψx)(t) = x0 − g(x).

For x, y ∈ Br, we find that

‖Φx + Ψy‖ ≤ ‖x0‖ + G +
‖µ‖L1T q

Γ(q + 1)
+

q‖σ‖L1T q+1

Γ(q + 2)
) ≤ r.

Thus, Φx + Ψy ∈ Br. It follows from the assumption (B2) that Ψ is a contraction

mapping. Continuity of f and k demanded in (1.1) implies that the operator Φ is

continuous. Also, Φ is uniformly bounded on Br as

‖Φx‖ ≤ (
‖µ‖L1T q

Γ(q + 1)
+

q‖σ‖L1T q+1

Γ(q + 2)
).

Now we prove the compactness of the operator Φ. Since f and k are respectively

bounded on the compact sets Ω1 = [0, T ]×X and Ω2 = [0, T ]× [0, T ]×X, therefore,

we define sup(t,x)∈Ω1
‖f(t, x)‖ = C1, sup(t,s,x)∈Ω2

‖k(t, s, x)‖ = C2.
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For t1, t2 ∈ [0, T ], x ∈ Br, we have

‖(Φx)(t1) − (Φx)(t2)‖

=
1

Γ(q)
‖

∫ t1

0

(t1 − s)q−1[f(s, x(s)) +

∫ t1

s

k(σ, s, x(s))dσ]ds

−

∫ t2

0

(t2 − s)q−1[f(s, x(s)) +

∫ t2

s

k(σ, s, x(s))dσ]ds‖

=
1

Γ(q)
‖

∫ t1

t2

(t1 − s)q−1[f(s, x(s)) +

∫ t1

s

k(σ, s, x(s))dσ]ds

−

∫ t2

0

[(t2 − s)q−1 − (t1 − s)q−1]f(s, x(s))ds

−

∫ t2

0

[(t2 − s)q−1

∫ s

t2

k(σ, s, x(s))dσ − (t1 − s)q−1

∫ s

t1

k(σ, s, x(s))dσ]ds‖

≤
C1

Γ(q + 1)
|2(t1 − t2)

q + t
q
2 − t

q
1| +

qC2

Γ(q + 2)
|2(t1 − t2)

q+1 + t
q+1
2 − t

q+1
1 |

≤
2C1

Γ(q + 1)
|t1 − t2|

q +
2qC2

Γ(q + 2)
|t1 − t2|

q+1,

which is independent of x. So Φ is relatively compact on Br. Hence, By Arzela Ascoli

Theorem, Φ is compact on Br. Thus all the assumptions of Theorem 1.1 are satisfied.

Consequently, the conclusion of Theorem 1.1 applies and the Cauchy problem (1.1)

has at least one solution.

Remark. By taking k ≡ 0 in (1.1), the results of reference [10] appear as a

special case of our results. Moreover, the results for an initial value problem involving

fractional integro-differential equations can be obtained if we take g ≡ 0 in (1.1).
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