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ABSTRACT. After stable sale in the second stage of product life cycle, the sale will decrease

gradually. This paper deals with competition in the last stage of product life cycle. A differential

game model will be set up for competition in this stage. We base the dynamics on Lanchester type

competition and natural decrease of sales. Because the length of product life will be affected by

the advertising, the n competitors’ controls/advertising policies will be coupled in the coefficients

of natural decrease. Infinite time horizon will be involved. Besides open-loop and closed-loop

controls, we will discuss another type of competition, in which the roles of competitors are not

symmetric: some competitors adopt open-loop controls and others adopt closed-loop controls. From

Pontryagin optimal condition we derive Two-Point-Boundary-Value Problems(TPBVP). We will

solve the TPBVP by an algorithm based on Newton’s method. In the algorithm we will use random

perturbation technique to generate Jacobian matrix and prevent the Jacobian matrix from being

singular. From numerical results we draw general rules about competition policies in the final stage.

From the numerical results we will also see that in some markets, small companies following the

control/advertising policies of bigger companies is a good strategy.

Keywords. differential games, marketing, competitive strategy
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1. INTRODUCTION

In this paper we deal with optimal competition advertising strategy in the final

stage of a product life cycle. Erickson (2007) [6] deals with competition in the final

stage of product life cycle using dynamics programming technique to solve a general

n-person differential game model. However, in his model, the dynamics and objective

function have special form. It is hard to apply to general problems. In this paper

we give a general algorithm to solve more general differential game models. In this

algorithm, we use random perturbation method to generate a Jacobian matrix in each

iteration. So this algorithm can be said to be random quasi-Newton method.

This paper first introduces “nonsymmetric” differential game. This motivation

is based on the fact that, in real market competition, every company/competitor

cannot afford to current information on state variables. Bigger companies can pay
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to get current sales information while smaller ones cannot. In this paper deal with

optimality conditions taking this fact in consideration, and compare results from

open- or closed-loop controls to get some deeper insight into competition and draw

some useful practical guidelines.

The results strengthen those from Medhin and Wan (2007) [9], that closed-loop

controls are better than open-loop controls, where one can use smaller control to get

better objective value. Further, in “nonsymmetric” case, the result is mixed. Useful

practical general guideline is given based on comparison of the differing differential

game models. In reality, company may choose specific type of (open or closed) optimal

strategy to compete with others.

The results obtained are useful for real marketing decision.

Before we discuss competition in the last stage of a product life cycle, we review

an important technique drawn from dynamic programming to solve differential game

problems in an infinite time horizon environment. The general n-player differential

game is the following:

minui

∫∞

t0
e−rtfi(X, u1, . . . , un)dt

s.t.

Ẋ = g(X, u1, . . . , un)

X(t0) = X0

i = 1, . . . , n

Let

Vi(X0) = min

∫ ∞

t0

e−r(t−t0)fi(X, u1, . . . , un)dt

Then, an optimality condition drawn from dynamic programming is

rVi(X) = min
ui

[fi(X, u1, . . . , un) + ▽XV (X)T · g(X, u1, . . . , un)]

which is called Hamilton-Jacobi-Bellman equation(HJB).

Let us mention a most recent paper from Erickson (2007) [6] which uses the

above technique to solve a differential game problem which deals with competition at

the final stage of product life cycle. The usual sales trajectories in the last stage of

product life cycle are shown in Figure 1.1. There, we can see the decrease of sales in

this stage. The dynamics in this paper (Erickson (2007)) [6] is the following:

max
ai

Vi =

∫ ∞

0

e−rit(qisi − a2
i )dt

subject to

ṡi = −ρisi + βiai

√

√

√

√N −

n
∑

j=i

sj

where

N = maximum sales potential for the market.
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si = i-th company’s sales at time t.

ai = i-th company’s advertising at time t.

βi = the effectiveness of i-th company’s advertising.

ρi = the decay rate of i-th company’s sales.

qi = i-th company contribution.

ri = i-th company discount rate.

Then, the Hamilton-Jacobi-Bellman equations for company i = 1, . . . , n are:

riVi = max
ai



qisi − a2
i +

n
∑

j=1

∂Vi

∂sj



βjaj

√

√

√

√N −
n
∑

k=1

sk − ρjsj









From the first order condition of maximization, we get:

ai =
βi

2

√

√

√

√N −

n
∑

k=1

sk

∂Vi

∂si

Putting ai back into HJB equation, we get the following nonlinear partial differential

equation (PDE):

riVi = qisi−
β2

i

4

(

N −
n
∑

k=1

sk

)

(

∂Vi

∂si

)2

+
n
∑

j=1

(

β2
j

2

(

N −
n
∑

k=1

sk

)

∂Vi

∂sj

∂Vj

∂sj

− ρjsj

∂Vi

∂sj

)

To solve the system of nonlinear partial differential equations Erickson guessed that

Vi has the form:

Vi = Ai +
n
∑

j=1

Bijsj

Putting Vi back into the PDE system, he obtains a set of linear equations. Then,

by solving for Ai, Bij, one can get closed-loop controls. This result comes from the

special form of the dynamics. Using HJB equation and ‘guessing’ the form of Vi is one

of the typical ways to solve differential game problems in the literature. Of course, it

has limitations in practical use. Further, the above dynamics is based on Vidale-Wolfe

model, so the competitors cannot attract sales directly from other competitors, but

attract the loss of others. Other previous works are due to Kenneth R. Deal (1979)

[4], Roberto Cellini(2001) [2], etc.

2. MODEL DEVELOPMENT

Consider a dynamics where n-companies and one product are involved. The

market managers use controls/advertising to minimize cost. Because the sale will

decrease to zero in the long run, managers will not consider market share as their

objectives. We use the index i = 1, 2, . . . , n to represent these n companies. The

main notations are as follows:

xi(t) Market share of company i at time t.
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ui(t) Control/Advertising of company i at time t.

ρ Natural sale decrease factor without advertising.

κ Effectiveness of advertising on the sales decrease rate.

ai Effectiveness of control/advertising of company i.

δi Advertising cost parameter for company i.

p Price of the product.

To describe the dynamics in the final stage of the product life cycle, we consider

two effects: one is natural decrease effect; the other is competition. The dynamics is

the following:

ẋi = −f(u1, . . . , un)xi + aiui(1 − xi) − xi

n
∑

k=1,k 6=i

akuk, i = 1, . . . , n

The first term describes the natural decrease of products. It should satisfy

f(u1, . . . , un) ≥ 0 and f(0, . . . , 0) = ρ, which means, if there is no advertising, then the

sale will keep its natural decrease rate ρ. Further, we impose the rational assumption:

the bigger the advertising, the smaller the decrease rate. Here, in this one-product

market, the combination of all advertising effects will affect the decrease rate, so we

suppose:

f(u1, . . . , un) = ρ

(

1 − κ

n
∑

i=1

ui

)

.

The second term is based on Lanchester [5] competition model. The change of xi is

determined by two factors: one is positive effect, which is from the effect of company

i’s control ui on the others’ market, the other is negative effect, which is from the

effect of competitors’ controls
∑

j 6=i
uj on i’s market. That is:

aiui(1 − xi) − xi

n
∑

k=1,k 6=i

akuk

Let G(u1, u2, . . . , un) =
∑n

i=1 aiui, then we get the following dynamics:

˙







x1

...

xn









=









a1u1

...

anun









−









f + G · · · 0
...

. . .
...

0 · · · f + G

















x1

...

xn









For performance, manager’s performance criteria is minimizing cost and maxi-

mizing profit, so the objective functions are of the form:

min
ui

Ji =

∫ ∞

t0

e−rt[
δi

2
u2

i (t) − pxi(t)]dt, i = 1, 2, . . . , n

where the term δi

2
u2

i (t)− pxi(t) is net cost at time t, which is obtained by the cost of

control/advertising minus income from sale. The term e−rt is discount factor.
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3. OPTIMALITY CONDITIONS

3.1. Competition in Open-loop control case. First we consider open-loop con-

trols. An open-loop control/advertising u(t) is just a function of time, and a player

or competitor sets up his control/advertising policy at the beginning of the game.

From theorem 1.1, we get following optimal conditions for each competitor.

The Hamiltonian for player i is:

Hi = e−rt

[

δi

2
u2

i (t) − pxi(t)

]

+
n
∑

k=1

mik(akuk − (f + G)xk)

Minimizing Hi with respect to ui:

∂Hi

∂ui

= e−rtδiui + aimii − (ai − ρk)

n
∑

k=1

mikxk

Solving for ui explicitly:

ui =
ert

δi

[

(ai − ρk)

n
∑

k=1

mikxk − aimii

]

The costate system for open-loop control comes from

ṁij = −
∂Hi

∂xj

, j 6= i

ṁii = −
∂Hi

∂xi

which is

˙

















mi1

...

mii

...

min



















=



















f + G · · · 0

0
. . . 0

... f + G
...

0
. . . 0

0 · · · f + G





































mi1

...

mii

...

min



















+



















0
...

pe−rt

...

0



















The boundary condition for the costate system is:

lim
T→∞



















mi1(T )
...

mii(T )
...

min(T )



















=



















0
...

0
...

0
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3.2. Competition in Closed-loop control case. A closed-loop control/advertising

ui(t, x) is function of state variables. Thus, we have different co-state system in the

optimality conditions.

The Hamiltonian for player i is:

Hi = e−rt

[

δi

2
u2

i (t) − pxi(t)

]

+

n
∑

k=1

mik(akuk − (f + G)xk)

Minimizing Hi with respect to ui:

∂Hi

∂ui

= e−rtδiui + aimii − (ai − ρk)
n
∑

k=1

mikxk

Solving for ui explicitly:

ui =
ert

δi

[

(ai − ρk)

n
∑

k=1

mikxk − aimii

]

The costate system for closed-loop control comes from:






ṁij = −∂Hi

∂xj
−
∑n

k=1,k 6=i
∂Hi

∂uk

∂uk

∂xj
for j = 1, . . . , n, j 6= i

ṁii = −∂Hi

∂xi
−
∑n

k=1,k 6=i
∂Hi

∂uk

∂uk

∂xi

where






























∂Hi

∂xj
= −mij(f + G) for j = 1, . . . , n, j 6= i

∂Hi

∂xi
= −mii(f + G) + pe−rt

∂Hi

∂uk
= mikak − (ak − ρκ)

∑n
l=1 milxl for k = 1, . . . , n, k 6= i

∂ui

∂xj
= ert

δi
[(ai − ρκ)mij ] for all i, j

The boundary condition for the costate system is:

lim
T→∞



















mi1(T )
...

mii(T )
...

min(T )



















=



















0
...

0
...

0



















3.3. Nonsymmetric competition. In any market, the role of competitors cannot

be same, and a feedback control is not always more beneficial for a competitor. Thus,

in some markets, it is not unusual that different companies adopt different control

types. This motivates us to propose nonsymmetric competitions, which means that in

a competition, some competitors adopt open-loop controls and others adopt closed-

loop controls. In reality, in a market where big and small companies co-exist, small

companies always comply with the price set up by big companies. In other words,

small companies always ‘give’ the right of adjusting prices to the bigger companies.
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We will set up the differential game model from the same dynamics as the above to

explain the reason for this phenomenon.

In the following n-player game, we suppose company l adopts closed-loop control

ul(t, x(t)) and others adopt open-loop controls ui(t), i 6= l. This means that at the

beginning of the game, player i, i = 1, . . . , i 6= l will choose their control policies.

However player l will adjust his control according to the state.

The Hamiltonian for player i is:

Hi = e−rt

[

δi

2
u2

i (t) − pxi(t)

]

+

n
∑

k=1

mik(akuk − (f + G)xk)

Minimizing Hi with respect to ui:

∂Hi

∂ui

= e−rtδiui + aimii − (ai − ρk)
n
∑

k=1

mikxk

Solving for ui explicitly:

ui =
ert

δi

[

(ai − ρk)

n
∑

k=1

mikxk − aimii

]

For player i 6= l, the costate system is:






ṁij = −∂Hi

∂xj
− ∂Hi

∂ul

∂ul

∂xj
for j = 1, . . . , n, j 6= i

ṁii = −∂Hi

∂xi
− ∂Hi

∂ul

∂ul

∂xi

For player l, the costate system is:






ṁlj = −∂Hl

∂xj
, j 6= l

ṁll = −∂Hl

∂xl

where






























∂Hi

∂xj
= −mij(f + G) for j = 1, . . . , n, j 6= i

∂Hi

∂xi
= −mii(f + G) + pe−rt

∂Hi

∂uk
= mikak − (ak − ρκ)

∑n

l=1 milxl for k = 1, . . . , n, k 6= i

∂ui

∂xj
= ert

δi
[(ai − ρκ)mij ] for all i, j

The boundary condition for the costate system is:

lim
T→∞



















mi1(T )
...

mii(T )
...

min(T )



















=



















0
...

0
...

0
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In order to solve our differential game models, we should solve a boundary value

problem (BVP) problem, which is composed of n state equations with initial con-

ditions and n2 costate equations with terminal conditions. In our experiment, we

suppose there are 3 companies selling the same product, that is, n = 3. Thus, we

will pick a terminal time T and increase it gradually.

4. EXISTENCE OF SOLUTION

After solving for control ui explicitly and substituting back into the state and

costate equations, we get the reduced differential equations:
{

ẋi(t) = a(xi(t), mij(t), t)

ṁij(t) = d(xi(t), mij(t), t)

The boundary condition is:
{

xi(0) = xi0

mij(T ) = 0

The initial value problem (IVP) associated with this BVP is
{

ẋi(t) = a(xi(t), mij(t), t)

ṁij(t) = d(xi(t), mij(t), t)

The terminal condition is
{

xi(T ) = s

mij(T ) = 0

where s is a parameter column.

The following theorem can guarantee the existence and uniqueness of solution for

the above nonlinear initial value problem(IVP).

Theorem 3.1 : Suppose that a(x, m, t), d(x, m, t) are continuous on D = {(x, m, t) :

a ≤ t ≤ b, |x − α1| ≤ ρ1, |m − α2| ≤ ρ2}, for some ρ1, ρ2, and suppose that a(x, m, t),

d(x, m, t) is Lipschitz continuous with respect to x, m respectively, that is

|a(x, m, t) − a(x′, m, t)| ≤ L|x − x′|

|d(x, m, t) − d(x′, m, t)| ≤ L|m − m′|

for some constant L and any (x, m, t), (x′, m′, t) in D. If |a(x, m, t)| ≤ M, |d(x, m, t)| ≤

M on D, and c = min{b − a, ρ1

M
, ρ2

M
}, then the above IVP has a unique solution for

a ≤ x ≤ a + c. 2
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The following is explicit formula for state and costate equations in open-loop

differential game.


















































































































ẋi = −x2
i e

rt
∑n

k=1
(ak−ρκ)2

δk
mki

+xi

[

−ρ + ert ai(ai−ρκ)
δi

mii + ert
∑n

k=1
ak(ak−ρκ)

δk
mkk

−ert
∑n

j=1,j 6=i xj

∑n
k=1

(ak−ρκ)2

δk
mkj

]

+ ertai

δi

[

(ai − ρκ)
∑n

j=1,j 6=i mijxj − mii − ai

]

ṁij = m2
ije

rt (ai−ρκ)2

δi
xj

+mij

[

ρ + ert
∑n

k=1

∑n

l=1,(k 6=i and l 6=j)
(ak−ρκ)2

δk
mklxl

−ert
∑n

k=1
ak(ak−ρκ)

δk
mkk

]

ṁii = m2
iie

rt (ai−ρκ)
δi

[xi(ai − ρκ) − ai]

+mii

[

ρ + ert
∑n

k=1

∑n

l=1,(k 6=i and l 6=i)
(ak−ρκ)2

δk
mklxl

−ert
∑n

k=1,k 6=i
ak(ak−ρκ)

δk
mkk

]

+ pe−rt

Then, in the open-loop case, a(x, m, t), d(x, m, t) are continuous in [0, T ], then

uniformly continuous, which means they satisfy Lipschitz continuous condition, and

are bounded, so we can guarantee the existence of local solution for the open-loop

case. And we can draw same conclusion in the other two cases.

So, under the condition of Theorem 3.1, for each s ∈ Rn there is a unique solution

of the above IVP, which is denoted by xi(t; s), mij(t; s), then there is a unique xi(0; s).

So we can say there exist a functional relationship between xi(T ) and xi(0), that is,

xi(0) = fi(xi(T )), for which we cannot, in general, find analytic formula. Now suppose

xi(t; s
∗), mij(t; s

∗) are solved from IVP by s = s∗, then xi(t; s
∗), mij(t; s

∗) satisfy the

ordinary differential equation (ODE) in the above boundary value problem(BVP).

So if s∗ is such that the boundary conditions are satisfied, that is xi(0; s∗) = xi0 or

fi(xi(T ; s∗)) − xi0 = 0, then xi(t; s
∗) is the solution of the BVP. We state this as the

following theorem.

Theorem 3.2 : Suppose that a(x, m, t), d(x, m, t) are continuous on D = {(x, m, t) :

a ≤ t ≤ b, |x| < ∞, |m| < ∞} and satisfy uniform Lipschitz condition in x, m,

then the above BVP has as many solutions as the number of distinct roots s∗ of

fi(xi(T ; s∗)) − xi0 = 0, i = 1, . . . , n. And a solution of the BVP is given by

xi(t) = xi(t; s
∗)

mij(t) = mij(t; s
∗)

2

So, if we can find s∗ satisfying fi(xi(T ; s∗)) − xi0 = 0, i = 1, . . . , n, then, we can

solve the above BVP, then obtain ui and get the solution for the differential game
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model. The next section will give an algorithm to find the solution to our differential

game model based on the analysis of existence.

5. ALGORITHM

In order to get optimal controls, we should find solution for the following differ-

ential equations.
{

ẋi(t) = a(xi(t), mij(t), t)

ṁij(t) = d(xi(t), mij(t), t)

The boundary condition is:
{

xi(0) = xi0

mij(T ) = 0

From the analysis in the previous subsection, we guess a value xi(T )(0), then we

use (xi(T )(0), mij(T )) to solve the above differential equations backward in time and

get xi(0)(0). Now, we suppose xi(0) and xi(T ) have the relationship:






























x1(0) = f1(x1(T ), . . . , xn(T ))

· · · · · ·

xi(0) = fi(x1(T ), . . . , xn(T ))

· · · · · ·

xn(0) = fn(x1(T ), . . . , xn(T ))

Unfortunately, we cannot find an analytical expression for these functions. How-

ever we can use our algorithm to adjust systematically xi(T ) according to the observed

xi(0) to find xi(T ) to satisfy the following equations:






























F1(x1(T ), . . . , xn(T )) = f1(x1(T ), . . . , xn(T )) − x1(0) = 0

· · · · · ·

Fi(x1(T ), . . . , xn(T )) = fi(x1(T ), . . . , xn(T )) − xi(0) = 0

· · · · · ·

Fn(x1(T ), . . . , xn(T )) = fn(x1(T ), . . . , xn(T )) − xn(0) = 0

Our algorithm is based on Newton’s method for solving nonlinear equations. As

to the above functions Fi, using Taylor series expansion up to first-order about some

estimate point x1(T )(k), . . . , xn(T )(k), we have the system of equations:
















F1(x1(T ), . . . , xn(T ))

· · ·

Fi(x1(T ), . . . , xn(T ))

· · ·

Fn(x1(T ), . . . , xn(T ))

















=

















F1(x1(T )(k), . . . , xn(T )(k))

· · ·

Fi(x1(T )(k), . . . , xn(T )(k))

· · ·

Fn(x1(T )(k), . . . , xn(T )(k))
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+

















∂F1

∂x1(T )
· · · ∂F1

∂xn(T )

· · · · · · · · ·
∂Fi

∂x1(T )
· · · ∂Fi

∂xn(T )

· · · · · · · · ·
∂Fn

∂x1(T )
· · · ∂Fn

∂xn(T )

















|(x1(T )(k)),...,xn(T )(k))

∗

















x1(T ) − x1(T )(k)

· · ·

xi(T ) − xi(T )(k)

· · ·

xn(T ) − xn(T )(k)

















=

















0

· · ·

0

· · ·

0

















,

which we solve for (x1(T ), . . . , xn(T )) to get the updated vector estimate:
















x1(T )(k+1)

· · ·

xi(T )(k+1)

· · ·

xn(T )(k+1))

















=

















x1(T )(k)

· · ·

xi(T )(k)

· · ·

xn(T )(k))

















−

















∂F1

∂x1(T )
· · · ∂F1

∂xn(T )

· · · · · · · · ·
∂Fi

∂x1(T )
· · · ∂Fi

∂xn(T )

· · · · · · · · ·
∂Fn

∂x1(T )
· · · ∂Fn

∂xn(T )

















|(x1(T )(k)),...,xn(T )(k))

∗

















F1(x1(T )(k), . . . , xn(T )(k))

· · ·

Fi(x1(T )(k), . . . , xn(T )(k))

· · ·

Fn(x1(T )(k), . . . , xn(T )(k))

















,

that is,

X(k+1)(T ) = X(k)(T ) − J−1
k F (X(k)(T ))

In using Newton’s method, we have the following issues:

1. How do we get initial guess xi(T )(0)? Only when |xi(T )(0) − x∗
i (T )| is small

enough, is there quadratic convergence.

2. How to get the Jacobian matrix of F . Although we know that the Jacobian

matrix exists, we do not have analytic form for it. This is the case if the system

is complex.

For the initial guess, a general way is to use steepest descent algorithm (Algo-

rithm 1.1) to solve the differential game first. Since steepest descent is a first order

convergence algorithm, it will converge slowly. However, it will give us a good hint for

the initial guess of xi(T ). In our differential game model of the final stage of product

life cycle, we can expect that sales will decrease further and further to zero. Thus,

we can use some positive small values as the initial guesses.

To obtain the Jacobian Matrix, the following recipe is one way to approximate it

in each iteration:

Jk =







∂F1

∂x1
· · · ∂F1

∂xn

· · · · · · · · ·
∂Fn

∂x1
· · · ∂Fn

∂xn






,

where ∂Fi

∂xj
≃ Fi(x(k))−Fi(x(k−1))

xj(k)−xj(k−1)
. However, this approach does not work in solving

our model’s optimality condition because of singularity or near singularity of the
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Jacobian. In order to prevent singular situation, at each iteration we calculate each
∂Fi

∂xj
in the following way. First, randomly generate a ∆xj(T ). Second, solve the ODE

backward using the randomly perturbed xj(T )(k)+∆xj(T ) and keeping xi(T )(k), i 6= j

unchanged. Third, calculate ∆Fi, i = 1, . . . , n. Finally, calculate ∆Fi

∆xj(T )
, i = 1, . . . , n,

which is our approximation of ∂Fi

∂xj
. The following algorithm will be set up using this

process.

Algorithm :

1. Guessing xi(T )(0), i = 1, . . . , n, and using the result from steepest descent algo-

rithm.

2. Solving ODE backward using RK4 by xi(T )(0), mij(T )

3. For i = 1, . . . , n

generate ∆xi(T ) randomly from Uniform Distribution in (−ǫ, +ǫ).

Use [x1(T )(0), . . . , xi(T )(0)+∆xi(T ), . . . , xn(T )(0), mij(T )] to solve the ODE back-

ward.

Calculate ∆Fj , and
∆Fj

∆xi(T )
, for j = 1, . . . , n

End. Then, proceed to get J0

4. Solve J0 · y0 = F (X0(T )) for y0.

5. Update xi(T )(0) by X1(T ) = X0(T ) − y0, and let k = 1

6. While ‖ Fj ‖> ε for j = 1, . . . , n and k ≤ MaxIteration, proceed as follows

For i = 1, . . . , n

Generating ∆xi(T ) randomly from Uniform Distribution in (−ǫ, +ǫ).

Using [x1(T )(k), . . . , xi(T )(k) +∆xi(T ), . . . , xn(T )(k), mij(T )] to solve ODE back-

ward.

Calculate ∆Fj , and
∆Fj

∆xi(T )
, for j = 1, . . . , n

End. Then, get Jk.

Solve Jk · yk = F (Xk(T )) for yk

Update xi(T )(k) by Xk+1(T ) = Xk(T ) − yk

Using [x1(T )(k+1), . . . , xi(T )(k+1), . . . , xn(T )(k+1), mij(T )] to solve ODE backward.

Calculate Fj(X(T )(k+1))

End of While statement.

7. Calculate ui(t) and Ji
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6. NUMERICAL RESULTS

In our experiment, we take n = 3, which means that there are three companies.

The values of the coefficients are as follows:

δ1 = 20, δ2 = 18, δ3 = 21

a1 = 0.008, a2 = 0.010, a3 = 0.007

κ = 0.01, ρ = 0.6 p = 5

r = 0.1

x1(0) = 0.3, x2(0) = 0.5, x3(0) = 0.2

This data set means that company 2 is relatively bigger than company 1, and company

1 is relatively bigger than company 3. The qualifier ‘bigger’ here implies that a bigger

company’s advertising cost is lower: δ2 < δ1 < δ3; and a bigger company’s effectiveness

of advertising is larger: a2 > a1 > a3, etc.

In our model, the objective function is minui
Ji =

∫∞

t0
e−rt[ δi

2
u2

i (t) − pxi(t)]dt. So

this is infinite time horizon problem. In our experiment, we will take the time interval

as [0, T ]. From the results of the experiment, we can see the convergence of controls,

state, and objective value as T goes to infinity. Thus we can infer the policies from

finite time interval.

6.1. Finite time interval. In our experiment we will take [0, T ] as the time interval.

Then, we will discuss the results considering three different cases: open-loop, closed-

loop, and nonsymmetric differential game. In the nonsymmetric differential game, we

will suppose that company 2 adopts closed-loop control, and the other two companies

adopt open-loop controls.

Open-loop case:

T = 5 T = 10 T = 20 T = 25

J1 −2.07726113374539 −2.13914327540115 −2.13921481085360 −2.13822037010982

J2 −3.46211263644663 −3.56526554476421 −3.56540121159257 −3.56374755448441

J3 −1.38486455061329 −1.42613692152929 −1.42619951910137 −1.42553988421163

Table 1. Open-loop
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Figure 1. Open-loop: Control trajectories
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Figure 2. Open-loop: State trajectories
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Closed-loop case:
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Figure 3. Closed-loop: Control trajectories
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Figure 4. Closed-loop: State trajectories
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Figure 5. Nonsymmetry: Control trajectories
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Figure 6. Nonsymmetry: State trajectories
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T = 5 T = 10 T = 20 T = 25

J1 −2.07726113374539 −2.13914327540240 −2.13921481085491 −2.13822037011187

J2 −3.46211263644812 −3.56526554476421 −3.56540121159449 −3.56374755448648

J3 −1.38486455062579 −1.42613692154521 −1.42619951911743 −1.42553988422778

Table 2. Closed-loop

T = 5 T = 10 T = 20 T = 25

J1 −2.07726113374539 −2.13914327540132 −2.13921481085382 −2.13822037011061

J2 −3.46211263644809 −3.56526554476421 −3.56540121159438 −3.56374755448636

J3 −1.38486455062385 −1.42613692154275 −1.42619951911494 −1.42553988422526

Table 3. Nonsymmetric

Nonsymmetric case:

In the open-loop case, we can see that

x1(T ) = 0

x2(T ) = 0

x3(T ) = 0

when T = 25. From Figure 1, Table 1 and numerical results, we can see that most

of the time (excepting for the beginning and the end), control for each company is a

constant:
u1(t) = 0.0029

u2(t) = 0.0040

u3(t) = 0.0024

The objective function value is

J1 = −2.13720767706292

J2 = −3.56206198522349

J3 = −1.42486673927475

Thus, we can conclude that in the open-loop differential game model, the optimal

adverting policy for each company is increasing advertising at the beginning, which

can prevent product sales from decreasing fast, then keeping at some constant level,

and when the product is clear out of the market, decreasing advertising to zero at

that instant.

In the closed-loop and nonsymmetric control cases, controls and state haves the

same limit as that of open-loop case, and objective function values have almost the

same values as those of the open-loop case. We will discuss the difference among these

three cases in the following subsection. Here, in all three cases, these three companies

will ‘cooperate’. This cooperation is automatic and not negotiated at the beginning

of the competition. That is, the companies advertise to make the sale decreasing
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speed slower. And then the companies will keep their controls at some constant level

according to the controls’ effectiveness. It is not hard to imagine that people will

migrate to company 1 from others, and the sales of company 1 is the last one to reach

zero.

6.2. Comparison of Controls. In Medhin and Wan [9], we have shown that for

any competitors, closed-loop control in differential game is always smaller than open-

loop control. Now, in the differential game model of this paper, we get the same

conclusion about the relation of closed- and open-loop controls. We can see this result

from Figure 7. We can also observe that for a bigger company the difference between

closed-loop and open-loop controls is smaller. This means when all competitors have

opportunity to exploit the state information, the weaker competitor should pay more

for it. Optimal objective function value for closed-loop control setting is smaller than

the open-loop for any competitor, which means, closed-loop control is better than

open-loop control. We can see this result from Tables 4, 5, 6. And we also observe

that the bigger company’s value gain more with the closed-loop control.

Regarding the relation between closed-loop and nonsymmetric control, from Fig-

ure 8, we can see that closed-loop control is always smaller than nonsymmetric control,

which holds true for all competitors. From Tables 4, 5, 6, we can see that the opti-

mal value of closed-loop control is also better than nonsymmetric control. However,

compared with closed-loop setting, company 2 uses much smaller control than the

other two companies, and the change of optimal objective value is also smaller than

the others. This is because in our nonsymmetric differential game model, company

2 uses closed-loop control, and the others use open-loop controls. Thus the status of

company 2 is superior to the others.

Regarding the relation between nonsymmetric and open-loop control, from Ta-

bles 4, 5, 6 we can see that for every competitor, the optimal value in the nonsymmet-

ric case is better than that in the open-loop case. From Figure 9 we can see that, in

the case of companies 1 and 2, which adopt open-loop controls in nonsymmetric case,

their controls in nonsymmetric case are smaller than that of open-loop case. While

company 2 adopts closed-loop control at the beginning of the game, he uses a bigger

control than in the case of open-loop to exploit the state information, making people

migrate to his product. However, when he finds that the total sale of the product

is approaching to zero, he decreases his control sharply, resulting in a much smaller

control than that initial the case of open-loop control. A company’s behavior says

that he can completely use state information to adjust his control. Further, we find

that company 1 and 3 will get more than what they get in the open-loop game, and

they will not be hurt by the closed-loop type control of company 2 in nonsymmetric

case, which means if company 2 wants to adopt closed-loop control to hurt others
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in an open-loop type game, he cannot achieve his goal. This is because, thinking

from reality, the other companies can ‘follow’ company 2’s control to adjust their own

controls and get more than in the open-loop case. Thus, this result gives us hint in

the n-player differential game: in some situation where the state information is hard

to get or costly, the ‘weaker’ competitors can follow the steps of ‘stronger’ competi-

tors, which can afford to pay for the state information and adopt closed-loop controls.
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T = 5 T = 10 T = 20 T = 25

J
Closed−loop
1 − J

Nonsymmetry
1 −8.8018e−013 −1.0796e−012 −1.0898e−012 −1.2599e−012

J
Nonsymmetry
1 − J

Open−loop
1 −1.3989e−013 −1.7009e−013 −2.1982e−013 −7.9003e−013

Table 4. Difference of J1
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Figure 9. Comparison of Nonsymmetric and Open-loop control

T = 5 T = 10 T = 20 T = 25

J
Closed−loop
2 − J

Nonsymmetry
2 −2.9754e−014 −8.0380e−014 −1.1013e−013 −1.1990e−013

J
Nonsymmetry
2 − J

Open−loop
2 −1.4602e−012 −1.7399e−012 −1.8097e−012 −1.9500e−012

Table 5. Difference of J2

T = 5 T = 10 T = 20 T = 25

J
Closed−loop
3 − J

Nonsymmetry
3 −1.9400e−012 −2.4600e−012 −2.4900e − 012 −2.5200e−012

J
Nonsymmetry
3 − J

Open−loop
3 −1.0560e−011 −1.3460e−011 −1.3570e − 011 −1.3630e−011

Table 6. Difference of J3

6.3. Effect of change of coefficients. In this subsection, we will discuss the effect

of change of coefficients on the optimal value. The coefficients of interest are

δ1, δ2, δ3

a1, a2, a3

ρ, p, r

We want to figure out their effects on the optimal value, that is: ∂Ji

∂r
, ∂Ji

∂p
, ∂Ji

∂ρ
, ∂Ji

∂aj
, ∂Ji

∂δj
.

By keeping other coefficients constant, we calculate ∆Ji

∆r
, etc, and get the results

summarized in Tables 7, 8, 9 for open-, closed- and nonsymmetric cases respectively.

1. r: interest rate. The increase of interest rate will increase the optimal cost

of each company. It has the biggest effect on the bigger company 2. Because

company 2’s sale is largest, the current income will decrease most as r increases.

2. ρ: natural decrease of sale. The positive relation of Ji and ρ is reasonable,

because the more rapid the decrease rate, the less the income from sale. And

company 2 has biggest change for the same reason as above.

3. p: the price of product. The higher the price is, the more income the companies

will get, so Ji has negative relation to p. Company 2 has biggest ∂Ji

∂p
because of

the same reason as in the case of r.



LAST STAGE OF PRODUCT LIFE-CYCLE 133

4. ai: the effectiveness of control/advertising. When company i’s effectiveness of

advertising increases, which means that same amount of advertising will bring

more customers in, thus ∂Ji

∂ai
is negative, and others are positive. The absolute of

∂J2

∂a2
is largest because its status in the competition will bring in more customers

when the effectiveness of the company’s control increases. Status here means

that the company already has more customers, and lower control cost.

5. δi: the cost of control/advertsing. It is natural that the higher cost of advertising,

the higher optimal objective value. We can see that the absolute value of ∂J2

∂δ2
is

largest. In these three companies, company 2 has advantages, one of which is

lower advertising cost, so if his advertising cost increases, then he will lose his

advantage, which will hurt him more than the other companies. On the other

hand, if his advertising cost decreases, which means that his advantage has been

strengthened, thus his cost will decrease more than the others.

Other observations are:

1. Interest rate r has the biggest effect on the objective value Ji than the other

coefficients. The companies cannot affect the value of r, but they should know

this factor.

2. Following r, price p is the second important coefficient. If price does not affect

the demand of the product, companies will ‘cooperate’ to increase the price to

benefit them all.

3. Although the values of coefficients will affect the objective values, these values

cannot affect the quality of optimal controls, which mean that the optimal policy

is still increasing control at the beginning of competition, and keeping control

at some level and decrease to zero at the instant the sale becomes zero.

∆Ji

∆r
∆Ji

∆ρ
∆Ji

∆p
∆Ji

∆a1

∆Ji

∆a2

∆Ji

∆a3

∆Ji

∆δ1

∆Ji

∆δ2

∆Ji

∆δ3

Company 1 3.19 2.85 −0.427 −0.158 0.014 0.008 3.2e
−005 −2.3e

−006 −3.3e
−007

Company 2 5.32 4.75 −0.713 0.017 −0.208 0.013 −1.3e
−006 6.0e

−005 −5.6e
−007

Company 3 2.13 1.90 −0.285 0.006 0.005 −0.133 −5.5e
−007 −1.5e

−006 2.3e
−005

Table 7. Change of coefficients(Open-loop case)

∆Ji

∆r
∆Ji

∆ρ
∆Ji

∆p
∆Ji

∆a1

∆Ji

∆a2

∆Ji

∆a3

∆Ji

∆δ1

∆Ji

∆δ2

∆Ji

∆δ3

Company 1 3.19 3.01 −0.427 −0.158 0.014 0.008 3.2e
−005 −2.3e

−006 −3.3e
−007

Company 2 5.32 5.02 −0.713 0.017 −0.208 0.013 −1.3e
−006 6.0e

−005 −5.6e
−007

Company 3 2.13 2.00 −0.285 0.006 0.005 −0.133 −5.5e
−007 −1.5e

−006 2.3e
−005

Table 8. Change of coefficients(Closed-loop case)
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∆Ji

∆r

∆Ji

∆ρ

∆Ji

∆p

∆Ji

∆a1

∆Ji

∆a2

∆Ji

∆a3

∆Ji

∆δ1

∆Ji

∆δ2

∆Ji

∆δ3

Company 1 3.19 3.01 −0.427 −0.158 0.014 0.008 3.2e−005 −2.3e−006 −3.3e−007

Company 2 5.32 5.02 −0.713 0.017 −0.208 0.013 −1.3e−006 6.0e−005 −5.6e−007

Company 3 2.13 2.00 −0.285 0.006 0.005 −0.133 −5.5e−007 −1.5e−006 2.3e−005

Table 9. Change of coefficients(Nonsymmetric-loop case)

7. CONCLUSION

In this paper we set up general n-person differential game model for competition

in the last stage of product life cycle. Besides open- and closed-loop differential games,

we introduced another type of game, nonsymmetric differential game, in which some

competitors adopt open-loop controls and others adopt closed-loop controls. We

set up Pontryagin optimal conditions for our differential game model, which is a

Two Point Boundary Value Problem(TPBVP). In our algorithm, we used random

perturbation technique to avoid singular Jacobian matrix. This technique is useful

to solve a nonlinear BVP. From our numerical results we find that the closed-loop

controls are better than open-loop controls, as has been stated in Medhin and Wan

[9]. In closed-loop differential game, all competitors have better objective values,

and smaller controls. Thus, if possible, closed-loop controls are a better choice for

the competitors. However, in reality, the status of competitors are not symmetric.

Only bigger companies can pay for the state information, which means that some

competitors cannot get the value of the state variables. By comparing open-loop and

nonsymmetric differential games, we find that all competitors’ objective value will

be better in nonsymmetric control games than in the open-loop games. In this case

adopting an open-loop control is not harmful. In reality, when a company cannot get

instant value of the state variable, following the steps of bigger company is a good

choice. In another paper we will set up ‘Leader-follower’ type differential game model

to get deeper understanding of nonsymmetric status in the marketing competition.

To deal with the type of problem we treated here, Erickson guesses the form of

objective function. In a general differential game model, it is hard to guess the form

of the objective function. Thus adopting more general approach based on Pontryagin

optimal conditions, and the random perturbation technique proposed her is a strong

tool.
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