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ABSTRACT. The paper is concerned with oscillation of certain class of second-order nonlinear

neutral delay dynamic equations on time scales. We will use a unified approach on time scales

and employing the Riccati techniques to establish some new criteria for oscillation. The results

represent further improvements on those given for the superlinear neutral dynamic equations and in

the sublinear case the results are essentially new. An example is considered to illustrate the main

results.
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1. INTRODUCTION

In this paper, we are concerned with oscillation of the second-order nonlinear

neutral delay dynamic equation
[

a(t)
(

[y(t) + p(t)y(τ(t))]∆
)γ]∆

+ q(t)yγ(δ(t)) = 0, (1.1)

on a time scale T, where γ > 0 is a quotient of odd positive integers,

(h1) τ(t) : T → T, δ(t) : T → T, τ(t) ≤ t, δ(t) ≤ t for all t ∈ T and limt→∞ δ(t) =

limt→∞ τ(t) = ∞;

(h2)
∫

∞

t0

(

1
a(t)

)
1

γ

∆t = ∞, a∆(t) ≥ 0, and 0 ≤ p(t) < 1.

Since we are interested in the oscillatory and asymptotic behavior of solutions

near infinity, we assume that sup T = ∞, and define the time scale interval [t0,∞)T

by [t0,∞)T := [t0,∞) ∩ T. Throughout this paper these assumptions will be sup-

posed to hold. Let τ ∗(t) = min{τ(t), δ(t)} and let T0 = min{τ ∗(t) : t ≥ 0} and

τ ∗

−1(t) = sup{s ≥ 0 : τ ∗(s) ≤ t} for t ≥ T0. Clearly τ ∗

−1(t) ≥ t for t ≥ T0, τ ∗

−1(t) is

nondecreasing and coincides with the inverse of τ ∗(t) when the latter exists.

By a solution of (1.1) we mean a nontrivial real-valued function y(t) which has

the properties [y(t) + p(t)y(τ(t))] ∈ C1
rd[τ

∗

−1(t0),∞), and a(t) [y(t) + p(t)y(τ(t))]∆ ∈
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C1
rd[τ

∗

−1(t0),∞). Our attention is restricted to those solutions of (1.1) which exist on

some half line [ty,∞) and satisfy sup{|y(t)| : t > t1} > 0 for any t1 ≥ ty. A solution

y(t) of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually

negative. Otherwise it is called nonoscillatory. The equation itself is called oscillatory

if all its solutions are oscillatory.

The study of dynamic equations on time scales, which goes back to Stefan Hilger

[7], is an area of mathematics that has recently received a lot of attention. It has

been created to unify the study of differential and difference equations. Many results

concerning differential equations carry over quite easily to corresponding results for

difference equations, while other results seem to be completely different from their

continuous counterparts. Several authors have expounded on various aspects of this

new theory, see the survey paper by Agarwal, Bohner, O’Regan, and Peterson [1] and

the references cited therein. The three most popular examples of calculus on time

scales are differential calculus, difference calculus and quantum calculus (see Kac and

Cheung [9]), i.e, when T = R, T = N and T = qN0 = {qt : t ∈ N0}, where q > 1. There

are applications of dynamic equations on time scales to quantum mechanics, electrical

engineering, neural networks, heat transfer, and combinatorics. A recent cover story

article in New Scientist [16] discusses several possible applications. The books on the

subject of time scales by Bohner and Peterson [5] summarizes and organizes much of

time scale calculus and some applications.

Recently there has been much research activity concerning the oscillation and

nonoscillation of solutions of neutral delay dynamic equations on time scales. The

oscillation results not only unify the oscillation results of differential and difference

equations but also involve the oscillation conditions for different types of equations

on different time scales which the oscillation behavior of the solutions is not known

before.

In 2004 Agarwal et al. [2] considered the second-order nonlinear neutral delay

dynamic equation

[

a(t)([y(t) + p(t)y(t− τ)]∆)γ
]∆

+ f(t, y(t− δ)) = 0, (1.2)

on a time scale T; here γ > 0 is a quotient of odd positive integers, τ and δ are positive

constants such that the delay functions τ(t) := t− τ < t and δ(t) := t− δ < t satisfy

τ(t) : T → T and δ(t) : T → T for all t ∈ T, a(t) and p(t) are real valued rd-continuous

positive functions defined on T, and the following conditions are satisfied:

(A1)
∫

∞

t0

(

1
a(t)

)
1
γ

∆t = ∞, 0 ≤ p(t) < 1,

(A2) f(t, u) : T × R → R is continuous function such that uf(t, u) > 0 for all u 6= 0

and there exists a positive rd-continuous function q(t) defined on T such that

|f(t, u)| ≥ q(t) |uγ|.
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In [2] the authors considered the case when γ > 0 is an odd positive integer

and proved that the oscillation of (1.2) is equivalent to the oscillation of a first order

delay dynamic inequality and established some sufficient conditions for oscillation.

Also they considered the case when γ ≥ 1 and established some sufficient conditions

for oscillation by employing the Riccati technique. The results were applied only in

discrete time scales, i.e., when the graininess function µ(t) 6= 0.

In 2006 Saker [13] considered (1.2) where γ ≥ 1 is an odd positive integer, (A1)−
(A2) hold and established some new sufficient conditions for oscillation of (1.2) by

employed the Riccati transformation technique. However the results established in

[2, 13] can be applied only on the time scales T = R, T = N, T = hN and T = qN = {t :

t = qk, k ∈ N, q > 1}, and cannot be applied on the time scales T = N
2 = {t2 : t ∈ N},

T2 = {√n : n ∈ N0}, T3 = { 3
√

n : n ∈ N0}, and T = Tn = {tn : n ∈ N0} where

tn} is the set of harmonic numbers. This follows from the fact that when t ∈ T , the

functions t − τ and t − δ may be not belong to the time scales T = N
2, T = T2,

T = T3 and T = Tn.

In 2006 also Saker [12] considered the second-order superlinear neutral delay

dynamic equation of Emden-Fowler type

[

a(t)(y(t) + r(t)y(τ(t)))∆
]∆

+ p(t) |y(δ(t))|γ signy(δ(t)) = 0,

on a time scale T; where γ > 1, a(t), r(t), τ(t), p(t) and δ(t) real-valued positive

functions defined on T and established some oscillation results which improved the

oscillation results for that has been established for superlinear neutral delay differen-

tial equations.

In 2006 Şahiner [11] considered the general equation

[

a(t)
(

[y(t) + p(t)y(τ(t))]∆
)γ]∆

+ f(t, y(δ(t))) = 0, (1.3)

on a time scale T and followed the argument in [2] by reducing the oscillation of (1.3)

to oscillation of a first order delay dynamic inequality and established some sufficient

conditions for oscillation, when the following conditions are satisfied:

(B1) δ, τ are positive rd-continuous functions, δ, τ : T → T,

(B2)
∫

∞

t0

(

1
a(t)

)
1
γ

∆t = ∞, γ ≥ 1, and 0 ≤ p(t) < 1;

(B3) f(t, u) : T × R → R is a continuous function with uf(t, u) > 0 for all u 6= 0

and there exists a positive rd-continuous function q(t) defined on T such that

|f(t, u)| ≥ q(t) |uγ|.

However one can easily see that the two examples presented in [11] to illustrate the

main results are valid only when T = R and cannot be applied when T = N since the

delay functions that are considered in his paper are given by t/2,
√

t and t/64 which
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are not in Crd(T, T) for a general time scale T. Also the results cannot give a sharp

sufficient condition for oscillation of (1.3) when q(t) = γ/t2.

In 2006 Wu et al. [17] considered also (1.3) on a time scale T. They followed the

argument in [2] by using the Riccati transformation technique and the Chain rule

(u ◦ ν)∆(t) = (u
−

∆ ◦ ν)ν∆,

where
−

∆ is the delta derivative defined on
−

T and ν(t) is strictly increasing, and estab-

lished some sufficient conditions for oscillation of (1.3), when the following conditions

are satisfied:

(C1) δ : R → R is continuous δ : T → R is strictly increasing and
−

T = δ(T) ⊂ T is a

time scale;

(C2) (δ ◦ σ)(t) = (σ ◦ δ)(t);

(C3)
∫

∞

t0

(

1
a(t)

)
1

γ

∆t = ∞, γ ≥ 1, and 0 ≤ p(t) < 1;

(C4) f(t, u) : T × R → R is a continuous function with uf(t, u) > 0 for all u 6= 0

and there exists a positive rd-continuous function q(t) defined on T such that

|f(t, u)| ≥ q(t) |uγ|.

We note that the results in [17], which are based on the Chain rule, can only be

applied if
−

T is a time scale and if τ(t) ≤ t and δ(t) ≥ τ(δ(t)). The condition (C2) also

is a restrictive condition, since on the time scale T = qN by choosing δ(t) = t − qn0

one can easily see that δ(σ(t)) = δ(qt) = qt− qn0 6= σ(δ(t)) = q(t− qn0) = qt− qn0+1,

so the results in [17] cannot be applied on the time scale T = qN when δ(t) = t− qn0.

Also in the proof of the main results in [17] in Lemma 2.5, the authors used the Chain

rule (f(g(t)))∆ = f∆(g(t))g∆(t) which is not true on general time scales. Of course

trivially (x ◦ τ)∆ = (x∆ ◦ τ)τ∆ if δ is a constant with τ(t) = t − δ ∈ T for t ∈ T.

Agarwal, O’Regan and Saker [3] considered the general nonlinear neutral delay

dynamic equation (1.3) where γ ≥ 1 is an odd positive integer,

(D1) τ(t) : T → T, δ(t) : T → T, τ(t) ≤ t, δ(t) ≤ t for all t ∈ T and limt→∞ δ(t) =

limt→∞ τ(t) = ∞;

(D2)
∫

∞

t0

(

1
a(t)

)
1
γ

∆t = ∞, a∆(t) ≥ 0 , 0 ≤ p(t) < 1;

(D3) f(t, u) : T × R → R is continuous function such that uf(t, u) > 0 for all u 6= 0

and there exists a positive rd-continuous function q(t) defined on T such that

|f(t, u)| ≥ q(t) |uγ|,

and employed the Riccati technique and established some new oscillation criteria

which can be applied on any time scale T and improved the results established in [2],

[11] and [17].
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Recently Agarwal, O’Regan and Saker [4] considered the second-order nonlinear

neutral delay dynamic equation
[

a(t) [y(t) + p(t)y(τ(t))]∆
]∆

+ q(t)f(y(δ(t))) = 0, (1.4)

on a time scale T where the delay functions τ(t) ≤ t and δ(t) ≤ t satisfy τ(t) : T → T

and δ(t) : T → T for all t ∈ T and limt→∞ δ(t) = limt→∞ τ(t) = ∞, a(t), p(t) and

q(t) are real valued rd-continuous positive functions defined on T, and 0 ≤ p(t) < 1,

f(u) : R → R is continuous function such that uf(u) > 0 and f(u)/u ≥ K > 0

for all u 6= 0 and employed a different technique which is the generalized Riccati

transformation technique and established some new criteria for oscillation and studied

the asymptotic behavior of the nonoscillatory solutions.

In oscillation theory of differential equations there are two important conditions

established by Hille and Nehari since more than 50 years. In 1948 Hille [8] considered

the second-order differential equation

x
′′

(t) + p(t)x(t) = 0, (1.5)

and proved that if

lim inf
t→∞

t

∞
∫

t

p(s)ds >
1

4
, (1.6)

then every solution of (1.5) oscillates. In 1957 Nehari [10] also considered (1.5) and

proved that if

lim inf
t→∞

1

t

t
∫

t0

s2p(s)ds >
1

4
, (1.7)

then every solution oscillates. We note that the inequalities (1.6) and (1.7) are sharp

and cannot be weakened. Indeed, let p(t) = 1/4t2 for t ≥ 1, then, we have

lim inf
t→∞

1

t

t
∫

t0

s2p(s)ds = lim inf
t→∞

t

∞
∫

t

p(s)ds =
1

4
, (1.8)

and the second-order Euler differential equation

x
′′

(t) +
1

4t2
x(t) = 0, t ≥ 1, (1.9)

has a nonoscillatory solution x(t) =
√

t.

Saker in [14, 15] considered the linear equation

[y(t) + p(t)y(τ(t))]∆∆ + q(t)y(δ(t)) = 0, (1.10)

by employed the Riccati transformation technique and established some new oscilla-

tion criteria of Hille and Nehari types and also established some alternative oscillation

criteria when the Hille and Nehari types criteria fail to apply.
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We note that in all the above results the condition γ ≥ 1 is required. In this

paper the study is free of this restriction and contain the case when 0 < γ < 1.

The main aim of this paper is to extend the oscillation results that has been

established by Saker [14, 15] for linear neutral dynamic equations to the equation

(1.1). Our results improve the results established by Agarwal et al. [2], Şahiner [11]

and Wu et al. [17], since our results are sharp because the results of Hille and Nehari

are sharp results. The main results are proved in the next section which is organized

as follows: First, we will employ the Riccati technique to establish the main oscillation

criteria for ( 1.1) when γ ≥ 1 and then consider the case when 0 < γ < 1 and establish

some criteria for oscillation which are essentially new. An example is considered to

illustrate the main results.

2. MAIN RESULTS

In what follows and later, we assume
∫

∞

t0

δγ(s)q(s)[1 − p(δ(s))]γ∆s = ∞. (2.1)

Before we state the main results we present the following Lemma which plays an

important role in the proof of the main results and its proof is similar to the proof of

Lemma 2.1 in [3] and hence is omitted. Also note that this lemma can be applied in

the sublinear case as well as in the superlinear case.

Lemma 2.1. Assume that (h1) − (h2) hold and (1.1) has a positive solution y(t) on

[t0, ∞)T. Define

x(t) := y(t) + p(t)y(τ(t)). (2.2)

Then there exists a T ∈ [t0, ∞)T, sufficiently large, so that x(t) satisfies the inequality

(a(t)
(

x∆(t)
)γ

)∆ + q(t)(1 − p(δ(t)))γxγ(δ(t)) ≤ 0, for t ≥ t2, (2.3)

and

(i) x∆(t) > 0, x(t) > tx∆(t) for t ∈ [T,∞)T;

(ii) x(t)/t is strictly decreasing on [T, ∞)T.

In the following, we consider the case γ ≥ 1 and establish new oscillation criteria

for (1.1) of Hille and Nehari types. To simplify the calculations we introduce the

following notation.

p∗ := lim inf
t→∞

tγ

a(t)

∫

∞

σ(t)

Q(s)∆s, q∗ := lim inf
t→∞

1

t

∫ t

t0

sγ+1

a(s)
Q(s)∆s, (2.4)

where Q(t) := q(t)(1 − p(δ(t)))γ
(

τ(t)
σ(t)

)γ

and assume that l := lim inft→∞

t
σ(t)

.
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Theorem 2.1. Assume that (h1) − (h2) hold and (1.1) has a positive or a negative

solution y(t) on [t0, ∞)T such that y(t) and y(τ(t)) > 0 for t ≥ t1 > t0. Let x(t) be

as defined by (2.2) and let ω(t) = a(t)
(

x∆(t)
x(t)

)γ

,

r∗ := lim inf
t→∞

tγωσ(t)

a(t)
, and R := lim sup

t→∞

tγωσ(t)

a(t)
. (2.5)

Then

p∗ ≤ r − lγr1+ 1
γ and p∗ + q∗ ≤

1

lγ(γ+1)
. (2.6)

Proof. From Lemma 2.1 there is a T ∈ [t1,∞)T, sufficiently large, so that x(t)

satisfies the conclusions of Lemma 2.1. From the definition of ω(t) we see that ω(t) is

a positive function and after using the quotient rule and inequality (2.3), we see that

ω(t) satisfies

ω∆(t) ≤ −
(

x(τ(t))

xσ(t)

)γ

q(t)(1 − p(δ(t)))γ −
(

a(t)x∆(t)
)γ

(xγ(t))∆

xγ(t) (xσ(t))γ .

Since
x(τ(t))

τ(t)
≥ x(t)

t
≥ xσ(t)

σ(t)
and x∆(t) ≥ aσ

a
x∆σ(t),

we get the inequality

ω∆(t) ≤ −
(

τ(t)

σ(t)

)γ

q(t)(1 − p(δ(t)))γ −
(

aσx∆σ(t)
)γ

(xγ(t))∆

xγ(t) (xσ(t))γ , (2.7)

since x∆∆(t) < 0. By the Pötzsche chain rule, and the fact that x∆(t) > 0, we obtain

when γ > 1, that

(xγ(t))∆ = γ

∫ 1

0

[

x(t) + hµ(t)x∆(t)
]γ−1

dh x∆(t)

≥ γ

∫ 1

0

(x(t))γ−1 dh x∆(t) = γ(x(t))γ−1x∆(t). (2.8)

It follows from (2.7) and (2.8) that

ω∆(t) ≤ −Q(t) −
(

x∆σ(t)
)γ

γ(xσ(t))γ−1x∆(t)

xγ(t)(xσ(t))γ
= −Q(t) − γ

a
1

γ

(ωσ)
γ+1

γ .

Then ω(t) satisfies the dynamic Riccati inequality

ω∆(t) + Q(t) +
γ

a
1
γ

(ωσ)
γ+1

γ ≤ 0, for t ∈ [T,∞)T. (2.9)

Since Q(t) > 0 and ω(t) > 0 for t ≥ T , it follows from (2.9) that ω∆(t) < 0 and hence

ω(t) is strictly decreasing for t ∈ [T,∞)T. Then ω(t) satisfies the dynamic inequality

ω∆(t) + Q(t) +
γ

a
1
γ (t)

ωσω
1
γ (t) ≤ 0, for t ≥ T. (2.10)

We have from (2.10) that

−
(

ω∆(t)/γωσω
1

γ (t)
)

> 1/a
1

γ (t), for t ≥ T. (2.11)
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Now, since fσ = f(t)+µ(t)f∆(t) when f is differentiable, we see (using f = 1/ω
1
γ (t))

that
(

1/ω
1

γ (t)
)∆

=
1

σ − t

ω
1
γ (t) − (ωσ)

1
γ

ω
1
γ (t)(ωσ)

1
γ

.

Using the inequality (see p. 39 in [6])

xβ − yβ
> βxβ−1(x − y) for all x > y > 0 and 0 < β ≤ 1,

and the fact that ω(t) is nonincreasing, we see that
(

1/ω
1
γ (t)

)∆

≥ 1

σ − t

1

γω
1
γ (t)(ωσ)

1
γ

ω
1
γ
−1(t)(ω(t) − ωσ)

≥ 1

σ − t

1

γω
1
γ (t)(ωσ)

1
γ

(ωσ)
1
γ
−1(ω(t) − ωσ)

= −ωσ − ω(t)

σ − t

1

γω
1

γ (t)(ωσ)
1

γ

(ωσ)
1
γ
−1

=
−1

γ

ω∆

ωσω
1
γ (t)

.

This and (2.11) imply that
(

1/ω
1
γ (t)

)∆

>
1

a
1
γ (t)

. (2.12)

Integrating the last inequality from T to t, we obtain

ω(t) <
1

(

∫ t

T
∆s

a
1
γ (t)

)γ , (2.13)

which implies by (h2) that limt→∞ ω(t) = 0, and that

0 ≤ r ≤ R < 1. (2.14)

Now, we prove that the first inequality in (2.6) holds. Let ǫ > 0, then from the

definitions of p∗ and r∗ we can pick t2 ∈ [T,∞)T, sufficiently large, so that

tγ

a(t)

∫

∞

σ(t)

Q(s)∆s ≥ p∗ − ǫ, and
tγωσ(t)

a(t)
≥ r∗ − ǫ, for t ∈ [t2,∞)T.

Integrating (2.10) from σ(t) to ∞ and using limt→∞ ω(t) = 0, we have

ωσ(t) ≥
∫

∞

σ(t)

Q(s)∆s + γ

∫

∞

σ(t)

ω
1
γ (s)ωσ(s)

a
1
γ (s)

∆s, t ∈ [t2,∞)T. (2.15)

It follows from (2.15) and the fact a∆(t) ≥ 0, that

tγ

a(t)
ωσ(t) ≥ tγ

a(t)

∫

∞

σ(t)

Q(s)∆s + γ
tγ

a(t)

∫

∞

σ(t)

s(ωσ)
1
γ sγωσ

sγ+1a
1
γ (s)

∆s

≥ (p∗ − ǫ) +
tγ (r∗ − ǫ)1+ 1

γ

a(t)

∫

∞

σ(t)

γr(s)

sγ+1
∆s



NEUTRAL DELAY DYNAMIC EQUATIONS 181

≥ (p∗ − ǫ) + (r∗ − ǫ)1+ 1
γ tγ

∫

∞

σ(t)

γ

sγ+1
∆s,

so that
tγ

a(t)
ωσ(t) ≥ (p∗ − ǫ) + (r∗ − ǫ)1+ 1

γ tγ
∫

∞

σ(t)

γ

sγ+1
∆s. (2.16)

Using the Pötzsche chain rule, we get
(−1

sγ

)∆

= γ

∫ 1

0

1

[s + hµ(s)]γ+1
dh ≤

∫ 1

0

( γ

sγ+1

)

dh =
γ

sγ+1
. (2.17)

From (2.16) and (2.17), we have

tγωσ(t)

a(t)
≥ (p∗ − ǫ) + (r − ǫ)1+ 1

γ

(

t

σ(t)

)γ

.

Taking the lim inf of both sides as t → ∞, we get

r∗ ≥ p∗ − ǫ + (r∗ − ǫ)1+ 1
γ lγ .

Since ǫ > 0 is arbitrary, we get the desired result

p∗ ≤ r∗ − (r∗)
1+ 1

γ lγ.

To complete the proof it remains to prove the second inequality in (2.6). To do this

we will use the inequality (2.9 ). Multiplying (2.9) by tγ+1

a(t)
, and integrating from t2

to t (t ≥ t2), we get

∫ t

t2

sγ+1

a(s)
ω∆(s)∆s ≤ −

∫ t

t2

sγ+1

a(s)
Q(s)∆s − γ

∫ t

t2

(

sγωσ(s)

a(s)

)
γ+1

γ

∆s. (2.18)

Using integration by parts, we obtain

tγ+1

a(t)
ω(t) ≤ tγ+1

2 ω(t2)

a(t2)
−
∫ t

t2

sγ+1

a(s)
Q(s)∆s − γ

∫ t

t2

(

sγωσ(s)

a(s)

)
γ+1

γ

∆s

+

∫ t

t2

(

sγ+1

a(s)

)∆

ωσ(s)∆s.

But, by the Pötzsche chain rule and a∆(t) ≥ 0, we have

(

sγ+1

a(s)

)∆

=
1

σ(s) − s

[

σγ+1

aσ(s)
− sγ+1

a(s)

]

≤ 1

a(s)(σ(s) − s)

[

σγ+1 − sγ+1
]

≤ (γ + 1)σγ(s)

a(s)
.

Hence

tγ+1

a(t)
ω(t) ≤ tγ+1

2 ω(t2)

a(t2)
−
∫ t

t2

sγ+1

r(s)
Q(s)∆s +

∫ t

t2

(γ + 1)
(σ(s))γωσ(s)

a(s)
∆s

− γ

∫ t

t2

(

sγωσ(s)

a(s)

)
γ+1

γ

∆s.



182 S. H. SAKER

Let ǫ > 0 be given, then using the definition of l, we can assume, without loss of

generality, that t2 is sufficiently large so that s
σ(s)

> l − ǫ, s ≥ t2. It follows that

σ(s) ≤ Ks, s ≥ t2 and K := 1
l−ǫ

. We then get that

tγ+1

a(t)
ω(t) ≤ tγ+1

2 ω(t2)

a(t2)
−
∫ t

t2

sγ+1

r(s)
Q(s)∆s

+

∫ t

t2

[(γ + 1)Kγ sγωσ(s)

a(s)
− γ

(

sγωσ(s)

a(s)

)
γ+1

γ

]∆s.

Let u(s) := sγωσ(s)
a(s)

, then (u(s))
γ+1

γ =
(

sγωσ(s)
a(s)

)
γ+1

γ

. It follows that

tγ+1

a(t)
ω(t) ≤ tγ+1

2 ω(t2)

a(t2)
−
∫ t

t2

sγ+1Q(s)

a(s)
∆s +

∫ t

t2

[(γ + 1)Kγu(s) − γ[u(s)]
γ+1

γ ]∆s.

Using the inequality

Bu − Au
γ+1

γ ≤ γγ

(γ + 1)γ+1

Bγ+1

Aγ
,

where A, B are constants, we get

tγ

a(t)
ω(t) ≤ tγ+1

2 ω(t2)

a(t2)
−
∫ t

t2

sγ+1

a(s)
Q(s)∆s +

∫ t

t2

γγ

(γ + 1)γ+1

[(γ + 1)Kγ ]γ+1

γ
∆s

=
tγ+1
2 ω(t2)

t2a(t2)
− 1

t2

∫ t

t2

sγ+1Q(s)∆s +
Kγ(γ+1)(t2 − t2)

t2
.

It follows from this that

tγ

a(t)
ω(t) ≤ tγ+1

2 ω(t2)

a(t2)t
− 1

t

∫ t

t2

sγ+1

a(s)
Q(s)∆s + Kγ(γ+1) (t − t2)

t
.

Since ωσ(t) ≤ ω(t), we get

tγ

a(t)
ω(t) ≤ tγ+1

2 ω(t2)

a(t2)t
− 1

t

∫ t

t2

sγ+1

a(s)
Q(s)∆s + Kγ(γ+1) (t − t2)

t
.

Taking the lim sup of both sides as t → ∞, we obtain

R ≤ −q∗ + Kγ(γ+1) = −q∗ +
1

(l − ǫ)γ(γ+1)
.

Since ǫ > 0 is an arbitrary, we get that

R ≤ −q∗ +
1

lγ(γ+1)
.

Using this and the first inequality in (2.14), we get

p∗ ≤ r∗ − lγr1+ 1
γ ≤ r∗ ≤ R ≤ −q∗ +

1

lγ(γ+1)

which gives us the desired second inequality in (2.6). The proof is complete.

As a consequence of Theorem 2.1 we have the following oscillation results.
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Theorem 2.2. Assume that (h1) − (h2) hold. If

p∗ = lim inf
t→∞

tγ
∫

∞

σ(t)

Q(s)∆s >
γγ

lγ2(γ + 1)γ+1
, (2.19)

then (1.1) is oscillatory on [t0,∞)T.

Proof. Assume (1.1) is nonoscillatory on [t0,∞)T, then the hypotheses of Theo-

rem 2.1 hold. From the first inequality in (2.6), we have that

p∗ ≤ r∗ − lγr
γ+1

γ

∗ .

Using the inequality

Bu − Au
γ+1

γ ≤ γγ

(γ + 1)γ+1

Bγ+1

Aγ

with B = 1 and A = lγ we get that

p∗ ≤
γγ

lγ2(γ + 1)γ+1
,

which contradicts (2.19). The proof is complete.

Also as a consequence of Theorem 2.1 we have the following oscillation results and

since the proof is similar to that of Theorem 2.2 by using the results in Theorem 2.1

we omitted it.

Theorem 2.3. Assume that (h1) − (h2) hold. If

p∗ + q∗ >
1

lγ(γ+1)
,

then (1.1) is oscillatory on [t0,∞)T.

As a consequence of Theorem 2.3, we have the following result.

Corollary 2.1. Assume that (h1) − (h2) hold. If

p∗ >
1

lγ(γ+1)
, or q∗ >

1

lγ(γ+1)
,

then (1.1) is oscillatory on [t0,∞)T.

The following theorem gives sufficient condition for oscillation of (1.1) in the

superlinear and sublinear cases.

Theorem 2.4. Assume that (h1) − (h2) hold. If

lim sup
t→∞

tγ

r(t)

∫

∞

t

q(s)(1 − p(δ(s)))γ

(

τ(s)

s

)γ

∆s > 1. (2.20)

Then every solution of (1.1) is oscillatory on [t0,∞)T.
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Proof. Assume y is an eventually positive solution of (1.1) on [t0,∞)T and let

x(t) be as defined by (2.2 ). Then by Lemma 2.1 there is a t1 ∈ [t0,∞)T such that

x(t) is a solution of the inequality (2.3) and

x(t) > 0, x(τ(t)) > 0, x∆(t) > 0, x∆∆(t) < 0,
x(t)

t
> x∆(t),

on [t1,∞)T and x(t)
t

is strictly decreasing on [t1,∞)T. Integrating (2.3) from t to T ,

T ≥ t ≥ t1 we obtain
∫ T

t

q(s)(1 − p(δ(s)))γxγ(τ(s))∆s ≤ r(t)(x∆(t))γ − r(T )(x∆(T ))γ.

Since x∆(t) > 0, we get that

1

r(t)

∫ T

t

q(s)(1 − p(δ(s)))γxγ(τ(s))∆s ≤ (x∆(t))γ.

Since x(t)
t

is strictly decreasing and using x∆(t) < x(t)
t

we obtain

1

r(t)

∫ T

t

q(s)(1 − p(δ(s)))γ

(

τ(s)

s

)γ

xγ(s)∆s ≤ xγ(t)

tγ
.

Since x(t) is increasing we get

tγ

r(t)

∫ T

t

q(s)(1 − p(δ(s)))γ

(

τ(s)

s

)γ

∆s ≤ 1,

which implies that

tγ

r(t)

∫

∞

t

q(s)(1 − p(δ(s)))γ

(

τ(s)

s

)γ

∆s ≤ 1,

which gives us the contradiction

lim sup
t→∞

tγ

r(t)

∫

∞

t

q(s)(1 − p(δ(s)))γ

(

τ(s)

s

)γ

∆s ≤ 1.

The proof is complete.

In the following, we consider the case 0 < γ < 1 and establish new oscillation

criteria for (1.1) of Hille and Nehari types.

Theorem 2.5. Assume that (h1) − (h2) hold and (1.1) has a positive or a negative

solution y(t) on [t0, ∞)T such that y(t) and y(τ(t)) > 0 for t ≥ t1 > t0. Let x(t) be

as defined by (2.2) and let ω(t), r∗ and p∗ be as defined in Theorem 2.1. Then (2.6)

holds.

Proof. From Lemma 2.1 there is a T ∈ [t1,∞)T, sufficiently large, so that x(t)

satisfies the conclusions of Lemma 2.1. This implies that ω(t) is positive. Proceeding

as in the proof of we get the inequality

ω∆(t) ≤ −
(

τ(t)

σ(t)

)γ

Q(t) −
(

aσx∆σ(t)
)γ

(xγ(t))∆

xγ(t) (xσ(t))γ . (2.21)
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By the Pötzsche chain rule, and the fact that x∆(t) > 0, we obtain

(xγ(t))∆ = γ

∫ 1

0

[

x(t) + hµ(t)x∆(t)
]γ−1

dh x∆(t)

= γ

∫ 1

0

[(1 − h)x(t) + hxσ(t)]γ−1 dh x∆(t)

≥ γ

∫ 1

0

(xσ(t))γ−1 dh x∆(t) = γ(xσ(t))γ−1x∆(t),

so that

(xγ(t))∆ ≥ γ

∫ 1

0

(xσ(t))γ−1 dh x∆(t) = γ(xσ(t))γ−1x∆(t). (2.22)

It follows from (2.21) and (2.22) that

ω∆(t) ≤ −Q(t) −
(

x∆σ(t)
)γ

γ(xσ(t))γ−1x∆(t)

xγ(t)(xσ(t))γ
= −Q(t) − γ

a
1

γ

(ωσ)
γ+1

γ .

Then ω(t) satisfies the dynamic Riccati inequality

ω∆(t) + Q(t) +
γ

a
1
γ

(ωσ)
γ+1

γ ≤ 0, for t ∈ [T,∞)T. (2.23)

We have from (2.23) that

−
(

ω∆(t)/γωσω
1
γ (t)

)

> 1/a
1
γ (t), for t ≥ T. (2.24)

As in the proof of Theorem 2.1, we see that

(

1/ω
1

γ (t)
)∆

=
1

σ − t

ω
1
γ (t) − (ωσ)

1
γ

ω
1
γ (t)(ωσ)

1
γ

.

Using the inequality (see p. 39 in [6])

xβ − yβ
> βyβ−1(x − y) for all x > y > 0 and β ≥ 1,

and the fact that ω(t) is nonincreasing, we see that

(

1/ω
1

γ (t)
)∆

≥ 1

σ − t

1

γω
1
γ (t)(ωσ)

1
γ

(ωσ)
1

γ
−1(ω(t) − ωσ)

= −ωσ − ω(t)

σ − t

1

γω
1
γ (t)(ωσ)

1
γ

(ωσ)
1
γ
−1

=
−1

γ

ω∆

ωσω
1
γ (t)

.

This and (2.24) imply again that

(

1/ω
1
γ (t)

)∆

>
1

a
1
γ (t)

.

The remainder of the proof is similar to the proof of Theorem 2.1 and hence is omitted.
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Remark 1. It is clear that the inequality (2.23) is similar to the inequality (2.10)

in Theorem 2.1. So as a consequence of Theorem 2.5 and as proved in Theorem 2.2

and Theorem 2.3, we can prove the similar results for equation (1.1) in the case when

0 < γ < 1. So the results in Theorem 2.2 and Theorem 2.3 can be applied in the case

when 0 < γ < 1 as well as in the case when γ > 1.

In the following, we give an example to illustrate the main results.

Example 2.1. Consider the following second-order neutral delay dynamic equation
([

(

y(t) +
δ−1(t) − 1

δ−1(t)
y(τ(t))

)∆
]γ)∆

+
βσγ(s)

tτγ(t)
yγ(δ(t)) = 0, (2.25)

for t ∈ [t0,∞)T, t0 > 0. Here r(t) = 1, q(t) = β

tτγ(t)
, and τ(t) and δ(t) are delay

functions satisfy τ(t) = T → T, δ(t) : T → T for all t ∈ T, and limt→∞ τ(t) =

limt→∞ δ(t) = ∞, τ(t) ≤ t, δ(t) ≤ t. It is clear that (h1), (h2) and (2.1) hold. To

apply Theorem 2.2 it remains to prove that the condition (2.19 ) holds. In this case

(2.19) reads

lim inf
t→∞

tγ
∫

∞

σ(t)

Q(s)∆s = lim inf
t→∞

tγ
∫

∞

σ(t)

βσγ(s)

sτγ(s)
(
1

s
)γ

(

τ(s)

σ(s)

)γ

∆s

= lim inf
t→∞

tγ
∫

∞

σ(t)

β

sγ+1
∆s ≥ lim inf

t→∞

tγ
∫

∞

σ(t)

β

sγσ(s)
∆s

≥ β lim inf
t→∞

tγ
∫

∞

σ(t)

(
−1

sγ
)∆∆s = β lim inf

t→∞

tγ

σγ(t)
= βlγ

where Q(t) := q(t)(1 − p(δ(t)))γ
(

τ(t)
σ(t)

)γ

. Then by Theorem 2.2 the equation (2.25)

is oscillatory on [t0,∞)T if βlγ > γγ

lγ
2 (γ+1)γ+1

. In particular, if T = R, t0 > 0, and the

delay is the constant delay δ(t) = t− α, where α > 0 , then if β > γγ

(γ+1)γ+1 , equation

(2.25) is oscillatory; if T = Z, t0 = 1, and the delay is the constant delay δ(t) = t−n,

n a positive integer, then if β > γγ

(γ+1)γ+1 , equation (2.25) is oscillatory.
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