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ABSTRACT. The aim of this note is to show that the following difference equation

xn+1 =
p

xn

+
(xn−2

xn

)α

where p, α > 0, has positive nonoscillatory solutions which converge to the positive equilibrium

x =
1 +

√
1 + 4p

2
. In the proof of the result we use a method developed by L. Berg and S. Stević.
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1. INTRODUCTION AND PRELIMINARIES

Recently, there has been a lot of interest in studying the global attractivity, the

boundedness character and the periodic nature of nonlinear difference equations. For

some recent results see, for example, [1–27].

In [7] the authors have studied the behavior of all positive solutions of the differ-

ence equation

xn+1 =
p + xn−2

xn

, n = 0, 1, 2, . . .

where p is a positive real parameter and the initial values x−2, x−1, x0 are positive

real numbers. For every value of (positive) parameter p, there exists a unique positive

equilibrium x which satisfies the equation

x2 = x + p.

In this note we investigate the behavior of positive solutions of the difference equation

xn+1 =
p

xn

+
(xn−2

xn

)α

, n = 0, 1, 2, . . . (1)

where p, α > 0, and the initial values x−2, x−1, x0 are arbitrary positive real numbers.

Note that the positive equilibrium of Eq (1) also satisfies the equation x2 = x + p.
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We say that a solution (xn) of equation (1) is bounded and persists if there exists

positive constants P and Q such that

P ≤ xn ≤ Q for n = −2,−1, 0, 1, . . .

A positive semicycle of a solution (xn) consists of a “string” of terms {xl, xl+1, . . . , xm},
all greater than or equal to x, with l ≥ −2 and m ≤ +∞ and such that

either l = −2, or l > −2 and xl−1 < x,

and

either m = ∞, or m < ∞ and xm+1 < x.

A negative semicycle of a solution (xn) consists of a “string” of terms {xl, xl+1, . . . , xm},
all less than to x, with l ≥ −2 and m ≤ ∞ and such that

either l = −2, or l > −2 and xl−1 ≥ x,

and

either m = ∞, or m < ∞ and xm+1 ≥ x.

The first semicycle of a solution starts with the term x−2 and is positive if x−2 ≥ x.

We now investigate oscillation and nonoscillation of positive solutions of the difference

equation (1). We shall prove two following theorems, which are similar to the results

from paper [7] (see also [19]).

Theorem 1.1. Let {xn}+∞

n=−2 be a positive solution of Eq (1) for which there exists

N ≥ −2 such that xN < x and xN+1 ≥ x, or xN ≥ x and xN+1 < x. Then the solution

{xn}+∞

n=−2 oscillates about the equilibrium x with every semicycle (except possibly the

first) having at most two terms.

Proof. Let N ≥ −2 such that xN < x ≤ xN+1. The case where xN+1 < x ≤ xN is

similar and will be omitted. Now suppose that the positive semicycle beginning with

the term xN+1 has two terms. Then xN < x ≤ xN+2 and so

xN+3 =
p

xN+2
+

(

xN

xN+2

)α

<
p

x
+ 1 = x.

The proof is completed.

Theorem 1.2. All nonoscillatory solutions of Eq (1) converge to the positive equi-

librium x.

Proof. We will show the proof of the theorem in the case of a single positive semicycle.

The case of a single negative semicycle is similar and will be omitted. Assume that

xn ≥ x for all n ≥ −2. We first claim that for this solution

xn−2 ≥ xn for all n = 0, 1, 2, . . .
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For the sake of contradiction assume that there exists N ≥ 0 such that xN−2 < xN .

Using Eq (1) we have

xN+1 =
p

xN

+

(

xN−2

xN

)α

<
p

xN

+ 1 ≤ p

x
+ 1 = x

which is a contradiction and so

x ≤ xn ≤ xn−2 for n = 0, 1, 2, . . .

In addition for i = 0, 1 there exists α0, α1 such that

lim
n→∞

x2n+i = αi; i = 0, 1.

It follows that {α0, α1, α0, α1, . . .} is a periodic solution of not necessarily prime period

two. On the other hand Eq (1) has no prime period two solutions, and so α0 = α1 = x.

The proof is completed.

2. ON POSITIVE NONOSCILLATORY SOLUTIONS OF THE

DIFFERENCE EQUATION (1)

Our aim in this note is to solve the following problem. Do there exists nonoscil-

latory solutions of Eq (1)? We will solve this problem by a method due to L. Berg

and S. Stević, see, for example, [1]–[5], [20, 22, 23, 24, 26, 27].

Note that the linearized equation for Eq (1) about the positive equilibrium x is

yn+1 = −p + αx

x2 yn +
α

x
yn−2

yn+1 +
p + αx

x2 yn − α

x
yn−2 = 0 (2)

From Eq (1) we have x =
p

x
+ 1, x2 = x + p, and

yn+1 +
x2 − x + αx

x2 yn − α

x
yn−2 = 0

xyn+1 + (x + α − 1)yn − αyn−2 = 0 (3)

The characteristic polynomial associated with Eq (3) is

p(t) = xt3 + (x + α − 1)t2 − α = 0 (4)

Since p(0) = −α < 0, p(1) = 2x − 1 > 0 with x =
1 +

√
1 + 4p

2
> 1 for every

p > 0, α > 0 and

p′(t) = 3xt2 + 2(x + α − 1)t > 0

when t ∈ (0, 1], it follows that for each p > 0, α > 0, there is unique positive root

t0 of the polynomial belonging to the interval (0, 1). As suggested by Stević in [24],
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this fact motivates us to believe that there are solutions of Eq (1) which have the

following asymptotics

xn = x + atn0 + o(tn0 ) (5)

where a ∈ R and t0 is the above mentioned root of the polynomial (4). Asymptotics

for solutions of difference equations have been investigated by L. Berg and S. Stević,

see, for example, [1–6], [9–27] and the reference therein. The problem is solved by

constructing two appropriate sequences yn and zn with

yn ≤ xn ≤ zn (6)

for sufficiently large n. In [1], [2] some methods can be found for the construction of

these bounds, see, also [3, 4].

From (5) and results in Berg’s paper [3, 4] we expect that for k ≥ 2 such solutions

have the first three members in their asymptotics in the following form

ϕn = x + atn + bt2n. (7)

Since Eq (1) is an autonomous one, the parameter a remains arbitrarily, whereas

b must have the structure b = a2A with A independent from a (see the proof of

Theorem 3.1). We need the following result in the proof of the main theorem. The

proof of the result can be found in [23] and [24].

Theorem 2.1. Let f : Ik+2 → I be a continuous and nondecreasing function in each

argument on the interval I ⊂ R, and let (yn) and (zn) be sequences in I with yn < zn

for n ≥ n0 and such that

yn−k ≤ f(n, yn−k+1, . . . , yn+1), (8)

f(n, zn−k+1, . . . , zn+1) ≤ zn−k, for n > n0 + k − 1.

Then there is a solution of the following difference equation

xn−k = f(n, xn−k+1, . . . , xn+1) (9)

with property (6) for n ≥ n0.

3. THE MAIN RESULT

In this section, we prove the main result in this note.

Theorem 3.1. For each p, α > 0 there is a nonoscillatory solution of Eq (1) con-

verging to the positive equilibrium

x =
1 +

√
1 + 4p

2
,

with the asymptotic behavior (7).
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Proof. First note that Eq (1) can be written in the following equivalent form

xn−2 =

(

xn+1 −
p

xn

)
1

α

xn.

Since

xn+1xn = p + xα
n−2x

1−α
n ,

we have

xn+1xn > p,

xn−2 = (xn+1xn − p)
1

α x
1− 1

α

n

and

F (xn−2, xn−1, xn, xn+1) = (xn+1xn − p)
1

α x
α−1

α

n − xn−2 = 0 (10)

Let

f(x, y) = (xαy − pxα−1)
1

α .

Then it is obvious that f increases in y on the interval (0,∞) for each fixed x ∈ (0,∞).

On the other hand

∂f

∂x
(x, y) =

1

α
(xαy − pxα−1)

1

α
−1(αxα−1y − p(α − 1)xα−2)

=
1

α
(xα−1(xy − p))

1

α
−1xα−2(αxy + p(1 − α)),

which is obviously positive on the set A = {(x, y) ∈ R
2
+ : xy > p}, if α ∈ (0, 1].

On the other hand,

∂f

∂x
(x, y) =

1

α
(xα−1(xy − p))

1

α
−1xα−2(α(xy − p) + p) > 0,

on the set A, also for α > 1.

Let I = [x,∞). Since for x, y ∈ [x,∞), xy ≥ x2 = x + p > p, we have that

[x̄,∞)2 ⊂ A, so that

min
(x,y)∈I2

f(x, y) = f(x, x) = x,

that is,

f : [x,∞)2 → [x,∞),

and f is increasing in both variables on [x,∞).
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We expect that solutions of Eq (1) have the asymptotics approximation (7) with

a > 0. Thus, we can calculate F (ϕn−2, ϕn−1, ϕn, ϕn+1). We have

F = [(x + atn + bt2n)(x + atn+1 + bt2n+2) − p]
1

α (x + atn + bt2n)
α−1

α −
− (x + atn−2 + bt2n−4).

F =
(

x2 + xatn+1 + xbt2n+2 + xatn + a2t2n+1 + abt3n+2+

+ xbt2n + abt3n+1 + b2t4n+2 − p
)

1

α (x)
α−1

α

(

1 +
atn + bt2n

x

)
α−1

α

−

− (x + atn−2 + bt2n−4).

From x2 = p + x, we have

F = (x + xatn+1 + xbt2n+2 + xatn + a2t2n+1 + abt3n+2+

+ xbt2n + abt3n+1 + b2t4n+2)
1

α x
α−1

α

(

1 +
atn + bt2n

x

)
α−1

α

− (x + atn−2 + bt2n−4).

F = x

[

1 +
1

αx
(xatn+1 + xbt2n+2 + xatn + a2t2n+1 + abt3n+2 + xbt2n + abt3n+1+

+ b2t4n+2) +
(1 − α)

2α2x2 (xatn + a2t2n+1 + abt3n+2 + xatn+1 + xbt2n+2 + xbt2n+

+ abt3n+1 + b2t4n+2)2 + · · ·
]

×
[

1 +
α − 1

αx
(atn + bt2n) +

(1 − α)

2α2x2 (atn + bt2n)2 + · · ·
]

−

− (x + atn−2 + bt2n−4).

F = x

[

1 +
1

αx
(xatn+1 + xbt2n+2 + xatn + a2t2n+1 + abt3n+2 + xbt2n + abt3n+1+

+ b2t4n+2) +
1 − α

2α2x2 (x2a2t2n + x2a2t2n+2 + 2x2a2t2n+1) + · · ·
]

×

×
[

1 +
α − 1

αx
atn +

(α − 1)b

αx
t2n +

1 − α

2α2x2a2t2n + · · ·
]

− (x + atn−2 + bt2n−4).

F = a

(

x

α
+

α − 1

α
+

xt

α
− 1

t2

)

tn +

{

b

[

x

α
+

x

α
t2 +

α − 1

α
− 1

t4

]

+

+ a2

[

t

α
+

(1 − α)x

2α2
+

(1 − α)xt

α2
+

(1 − α)x

2α2
t2 +

α − 1

α2
+

α − 1

α2
t

]}

t2n + o(t2n).

F = a

[

(x + α − 1 + xt)t2 − α

αt2

]

tn +

[

b
(x + α − 1 + xt2)t4 − α

αt4
+

+ a2 (1 − α)x + 2α − 2 + (4α − 2 + 2x − 2αx)t + (1 − α)xt2

2α2

]

t2n + o(t2n).

We have

(x + α − 1 + xt)t2 − α

αt2
=

xt3 + (x + α − 1)t2 − α

αt2
=

p(t)

αt2
,
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where p(t) is the characteristic polynomial (4). We know that there exists the unique

root t0 ∈ (0, 1) such that p(t0) = 0. Let

p(t20)

αt40
=

(x + α − 1 + xt20)t
4
0 − α

αt40
=

xt60 + (x + α − 1)t40 − α

αt40
.

From this, with t = t0, we have

F =

{

b
p(t20)

αt40
+ a2

[

(1 − α)x + 2α − 2 + (4α − 2 + 2x − 2αx)t0 + (1 − α)xt20
2α2

]}

t2n
0 +

+ o(t2n
0 ), 0 < t20 < t0 < 1, p(t20) < p(t0) = 0.

Thus, the coefficient of b is negative:
p(t20)

αt40
< 0.

We set

A =
(1 − α)x + 2α − 2 + (4α − 2 + 2x − 2αx)t0 + (1 − α)xt20

2α2
.

Then

F =

[

b
p(t20)

αt40
+ a2A

]

t2n
0 + o(t2n

0 ).

Set

q = −a2Aαt40
p(t20)

and Ht0(q) = q
p(t20)

αt40
+ a2A.

Note that

H ′

t0
(q) =

p(t20)

αt40
< 0.

If

ϕ̂n = x + atn0 + bt2n
0 =

1 +
√

4p + 1

2
+ atn0 + bt2n

0 ,

we obtain

F (ϕ̂n−2, ϕ̂n−1, ϕ̂n, ϕ̂n+1) ∼
[

b
p(t20)

αt40
+ a2A

]

t2n
0 = Ht0(b)t

2n
0 .

Since H ′

t0
(q) =

p(t20)

αt40
< 0, we obtain that there are q1 < b and q2 > b such that

Ht0(q1) > 0 and Ht0(q2) < 0.

With the notations

yn = x + atn0 + q1t
2n
0 , zn = x + atn0 + q2t

2n
0 .

We get

F (yn−2, yn−1, yn, yn+1) ∼
[

q1
p(t20)

αt40
+ a2A

]

t2n
0 > 0

F (zn−2, zn−1, zn, zn+1) ∼
[

q2
p(t20)

αt40
+ a2A

]

t2n
0 < 0.

These relations show that inequalities (8) are satisfied for sufficiently large n, where

f = F +xn−2 and F is given by (10). Since for all n, yn > 0, we can apply Theorem 2.1
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with I = [x,∞) and see that there is an n0 > 0 and a solution of Eq (1) with the

asymptotics xn = ϕ̂n + o(t2n
0 ), for n ≥ n0, where ϕ̂n is defined by (7) and b = q. In

particular, the solution converges monotonically to the positive equilibrium

x =
1 +

√
1 + 4p

2
, for n ≥ n0.

Hence, the solution xn+n0+2 is also such a solution when n ≥ −2.
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[20] S. Stević, Asymptotic behaviour of a class of nonlinear difference equations, Discrete Dyn.

Nat. Soc. Vol. 2006, Article ID 47156, pp. 10.
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