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ABSTRACT. In this paper, we study the oscillation of second-order nonlinear perturbed delay

dynamic equations on time scales. By using employing the Riccati substitution, we establish some

sufficient conditions for oscillation. We also follow the technique that has been used in [20] and

establish some different sufficient conditions for oscillation which can be considered as the extension

of oscillation criteria established by Hille and Nehari for second-order differential equations and

can be applied on the sublinear and superlinear cases. As a special case the results improve some

oscillation criteria in the literature for perturbed dynamic equations without delay. Some examples

are considered to illustrate the main results.

AMS (MOS) Subject Classification. 34K11, 34C10, 39A13

1. INTRODUCTION

The study of dynamic equations on time scales, which goes back to Stefan Hilger

[11] is an area of mathematics that has recently received a lot of attention. It has

been created to unify the study of differential and difference equations. Many results

concerning differential equations carry over quite easily to corresponding results for

difference equations, while other results seem to be completely different from their

continuous counterparts. There are applications of dynamic equations on time scales

to quantum mechanics, electrical engineering, neural networks, heat transfer, and

combinatorics. A recent cover story article in New Scientist [21] discusses several

possible applications. We suppose that the reader is familiar with the basic theory

of the time scale calculus and for details we refer the reader to the books by Bohner

and Peterson [4, 5] which summarize and organize much of time scale calculus.

Recently there has been much research activity concerning the qualitative theory

of dynamic equations on time scales. One of the main subject of the qualitative

analysis of the dynamic equations is studying oscillation and nonoscillation which

seeks to harmonize the oscillation of the continuous and the discrete, to include
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them in one comprehensive mathematics and to eliminate obscurity from both. For

convenience, we refer the reader to the results in [1, 2, 3, 6, 7, 8, 9, 10, 15, 16, 17, 18,

19, 20, 22] and the references cited therein.

For oscillation of perturbed dynamic equations on time scales, Bohner and Saker

[6] considered the equation

(r(t)
(

x∆
)γ

)∆ + F (t, xσ) = G(t, xσ, x∆), (1.1)

on a time scale T, where xσ = x(σ(t)), and σ(t) is the forward jump operator defined

on T, γ is a quotient of odd positive integers and r is a positive real-valued rd-

continuous function defined on the time scales interval [a, b] (throughout a, b ∈ T

with a < b), and assumed that there exist two positive rd-continuous functions p and

q such that:

(H1) F : T × R → R and G : T × R
2 → R such that

uF (t, u) > 0 and uG(t, u, v) > 0 for all u ∈ R\{0}, v ∈ R, t ∈ T; (1.2)

(H2)
F (t,u)
f(u)

≥ q(t), G(t,u,v)
f(u)

≤ p(t) for all u, v ∈ R\{0}, t ∈ T;

(H3) f : R → R is continuously differentiable and nondecreasing, and uf(u) > 0 for

all u ∈ R\{0},

(H4)
∫ t

t2

∆s

r
1
γ (s)

= ∞

By using elementary calculus on time scales and the Riccati transformation tech-

niques the authors in [6] established some sufficient conditions, in terms of the coef-

ficients and the graininess function, which guarantee that every solution of (1.1) is

oscillatory or converges to zero.

In 2005 Sun and Li [22] considered (1.1) when the conditions (H1)–(H3) hold and

(h1)

∫

∞

t0

[p(t) − q(t)]∆t = ∞,

and established some sufficient conditions which ensure that every solution of (1.1) is

oscillatory or weakly oscillatory. One can easily note that the condition (h1) that has

been established Sun and Li [22] cannot be applied in the case when p(t)−q(t) = α/t2

for α > 0.

In this paper, we are inspired to study the oscillation of second-order nonlinear

delay perturbed dynamic equation

(r(t)
(

x∆
)γ

)∆ + F (t, x(τ(t))) = G(t, x(τ(t)), x∆(t)), (1.3)

on a time scale T, when (H1)–(H3) hold and the delay function satisfies the following

condition:

(H5) τ(t) : T → T τ(t) ≤ t and limt→∞ τ(t) = ∞.

One reason for this upsurge of interest in this types of equations is that the dif-

ferential forms of these equations have important applications and are a powerful tool
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in the study of many problems in the natural sciences and in technology. In fact they

are extensively employed in mechanics, astronomy, physics, and in many problems

of chemistry and biology. The reason for it is the fact that objective laws govern-

ing certain phenomena (processes) can be written as differential equations, difference

equations, so that the equations themselves are a quantitative expression of these

laws. For instance, Newton’s laws of mechanics make it possible to reduce the de-

scription of the motion of mass points or solid bodies to solving differential equations

and to use computer simulations, these equations should be translated to difference

equations. The computation of radiotechnical circuits or satellite trajectories, studies

of the stability of a plane in flight, and explaining the course of chemical reactions

are all carried out by studying and solving such equations. The most interesting and

most important applications of these equations are in the theory of oscillations and

in automatic control theory. Applied problems in turn produce new formulations

of problems in the theory of differential and difference equations; the mathematical

theory of optimal control in fact arose in this manner.

Since, we are interested in the oscillatory and asymptotic behavior of solutions

near infinity, we assume that sup T = ∞, and define the time scale interval [t0,∞)T

by [t0,∞)T := [t0,∞)∩T. Our attention is restricted to those solutions of (1.3) which

exist on some half line [tx,∞) and satisfy sup{|x(t)| : t > t1} > 0 for any t1 ≥ tx. A

solution x(t) of (1.3) is said to be oscillatory if it is neither eventually positive nor

eventually negative. Otherwise it is called nonoscillatory. The equation itself is called

oscillatory if all its solutions are oscillatory.

We note that (1.3) involves some different types of differential and difference

equations depend on the type of the time scale. For example in the case when T = R,

we have σ(t) = t, µ(t) = 0, f∆(t) = f ′(t) and (1.3) becomes the second-order

nonlinear perturbed delay differential equation

(r(t)(x′(t))γ)′ + F (t, x(τ(t))) = G(t, x(τ(t)), x′(t)). (1.4)

When T = N, we have σ(t) = t + 1, µ(t) = 1, y∆(t) = ∆y(t) = y(t + 1) − y(t), and

(1.3) becomes the second-order nonlinear perturbed delay difference equation

∆(r(t)(∆x(t))γ) + F (t, x(τ(t))) = G(t, x(τ(t)), ∆x(t)). (1.5)

When T = hN, h > 0, we have σ(t) = t + h, µ(t) = h, x∆(t) = ∆hx(t) =

(x(t + h) − x(t)) /h, and (1.3) becomes the second-order nonlinear perturbed delay

difference equation

∆h(r(t) (∆hx(t))γ) + F (t, x(τ(t))) = G(t, x(τ(t)), ∆hx(t)). (1.6)
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When T = qN = {t : t = qk, k ∈ N, q > 1}, we have σ(t) = qt, µ(t) = (q − 1)t,

x∆(t) = ∆qx(t) = (x(qt) − x(t)) /(q − 1) t, and (1.3) becomes the second-order q-

perturbed delay difference equation

∆q(r(t) (∆qx(t))γ) + F (t, x(τ(t))) = G(t, x(τ(t)), ∆qx(t)). (1.7)

which has applications in quantum physics, see [13].

The main oscillation results will be proved in the next section which is organized

as follows: First, we use the simple consequence of Keller’s chain rule ([4], Theo-

rem 1.90] and give some information about the properties of the solutions. Second,

by using the Riccati transformation technique, we establish some oscillation criteria

for (1.3). Third, we consider r(t) = 1, and follows the technique that has been used

in [20] establish some sharp oscillation criteria of Hille [12] and Nehari [14] types for

(1.3) and prove that the oscillation condition is given by γγ

(γ+1)γ+1 which as a special

case when γ = 1 becomes the oscillation condition of second order differential equa-

tions. The results can be applied on the sublinear and superlinear cases and improve

the results established in [22] since our results does not require the condition (h1).

Some examples are considered to illustrate the main results.

2. MAIN RESULTS

In what follows, it will be assumed that
∫

∞

t0

τγ(s) [p(s) − q(s)]∆s = ∞, (2.1)

is fulfilled and r∆(t) ≥ 0. Before stating our main results, we begin with the following

lemma which plays an important rule on the proof of our main oscillation results and

gives us some information about the properties of the solutions.

Lemma 2.1. Assume that (H1)–(H5), (2.1) hold and (1.3) has a positive solution x

on [t0,∞)T. Then there exists a T ∈ [t0,∞)T, sufficiently large, so that

(i) x∆(t) > 0, x∆∆(t) < 0, x(t) > tx∆(t) for t ∈ [T,∞)T;

(ii) x is strictly increasing and x(t)/t is strictly decreasing on [T,∞)T.

Proof. Since x(t) is a positive solution of (1.3) on [t0,∞)T, we can pick t1 ∈ [t0,∞)T

so that t1 > t0 and so that x(t) > 0 and x(τ(t)) > 0 on [t1,∞)T. (Note that in the

case when x(t) is negative the proof is similar, since the transformation y(t) = −x(t)

transforms the (1.3) into the same form). Since x(τ(t)) > 0, we have from (1.3) and

(H3) that

(r(t)
(

x∆(t)
)γ

)∆ ≤ −(p(t) − q(t))xγ(τ(t)) < 0, for t ∈ [t1,∞)T. (2.2)
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Then r(t)
(

x∆(t)
)γ

is strictly decreasing on [t1,∞)T. We claim that r(t)
(

x∆(t)
)γ

> 0

on [t1,∞)T. Assume not, then there is a t2 ∈ [t1,∞)T such that r(t2)
(

x∆(t2)
)γ

=:

c < 0. Then r(t)
(

x∆(t)
)γ

≤ r(t2)
(

x∆(t2)
)γ

= c, for t ∈ [t2,∞)T, and therefore

x∆(t) ≤
c

r
1
γ (t)

, for t ∈ [t2,∞)T.

Integrating the last inequality form t2 to t, we find by (H4) that

x(t) = x(t2) +

∫ t

t2

x∆(s)∆s ≤ x(t2) + c

∫ t

t2

∆s

r
1
γ (s)

→ −∞ as t → ∞, (2.3)

which implies that x(t) is eventually negative. This is a contradiction. Hence

r(t)
(

x∆(t)
)γ

> 0 on [t1,∞)T and so x∆(t) > 0 on [t1,∞)T. We now show that

x∆∆(t) < 0. Since (r(t)
(

x∆(t)
)γ

)∆ < 0 on [t1,∞)T, we have after differentiation that

r∆(t)
(

x∆(t)
)γ

+ rσ
((

x∆(t)
)γ)∆

< 0. (2.4)

Using the Keller’s chain rule

(xγ(t))∆ = γ

1
∫

0

[hxσ + (1 − h)x]γ−1 dhx∆(t),

we have

((

x∆(t)
)γ)∆

=
γx∆∆(t)

(rσ)γ−1

1
∫

0

[

hrσ(
(

x∆(t)
)σ

+ rσ(1 − h)
(

x∆(t)
)]γ−1

dh. (2.5)

Using the fact that r(t)
(

x∆(t)
)γ

is nonincreasing and rσ ≥ r(t) we have

x∆(t) ≥

(

rσ

r(t)

)
1
γ
(

x∆(t)
)σ

>
(

x∆(t)
)σ

.

This and (2.5) imply that

((

x∆(t)
)γ)∆

≥
γx∆∆(t)

(rσ)γ−1

1
∫

0

[

hrσ(
(

x∆(t)
)σ

+ rσ(1 − h)
(

x∆(t)
)σ]γ−1

dh

= γ(
(

x∆(t))σ
)γ−1

x∆∆(t) (2.6)

since r∆(t) ≥ 0. From the last inequality and (2.4), we have

r∆(t)
(

x∆(t)
)γ

+ γ(
(

x∆(t))σ
)γ−1

x∆∆(t) < 0, (2.7)

which implies that x∆∆(t) < −
r∆(t)(x∆(t))

γ

γ((x∆(t))σ )γ−1 , for t ∈ [t1,∞)T. Then x∆∆(t) < 0 since

r∆(t) ≥ 0 and x∆(t) > 0. Next, we show that x(t)/t is strictly decreasing. To do

this, let U(t) := x(t) − tx∆(t), so that U∆(t) = −σ(t)x∆∆(t) > 0 for t ∈ [t1,∞)T.

This implies that U(t) is strictly increasing on [t1,∞)T. We claim that there is a
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t2 ∈ [t1,∞)T such that U(t) > 0 on [t2,∞)T. Assume not, then U(t) < 0 on [t1,∞)T.

Therefore,

(

x(t)

t

)∆

=
tx∆(t) − x(t)

tσ(t)
= −

U(t)

tσ(t)
> 0, t ∈ [t2,∞)T, (2.8)

which implies that x(t)/t is strictly increasing on [t2,∞)T. Pick t3 ∈ [t2,∞)T so

that τ(t) ≥ τ(t2), for t ≥ t3. Then x(τ(t))/τ(t) ≥ x(τ(t2))/τ(t2) =: d > 0, so that

x(τ(t)) ≥ dτ(t) for t ≥ t3. Now by integrating both sides of (2.2) from t3 to t, we

have

r(t)
(

x∆(t)
)γ

− r(t3)
(

x∆(t3)
)γ

+

∫ t

t3

[p(s) − q(s)]xγ(τ(s))∆s ≤ 0.

This implies that

r(t3)
(

x∆(t3)
)γ

≥

∫ t

t3

[p(s) − q(s)]xγ(τ(s))∆s ≥ dγ

∫ t

t3

[p(s) − q(s)] τγ(s)∆s, (2.9)

which contradicts (2.1). Hence there is a t2 ∈ [t1,∞)T such that U(t) > 0 on [t2,∞)T.

Consequently,

(

x(t)

t

)∆

=
tx∆(t) − x(t)

tσ(t)
= −

U(t)

tσ(t)
< 0, t ∈ [t2,∞)T,

and we have that x(t)
t

is strictly decreasing on [t2,∞)T. The proof is complete.

In following, we obtain new oscillation criteria which can be considered as the

extension of Kamenev-type oscillation criteria. First, we define ℜ by H ∈ ℜ provided

H : [t0,∞)T × [t0,∞)T → R satisfies

H(t, t) ≥ 0, t ≥ t0, H(t, s) > 0, t > s ≥ t0,

H∆s(t, s) ≤ 0, for t ≥ s ≥ t0, and for each fixed t, H(t, s) is right-dense continuous

with respect to s. As a simple and important example, note that if T = R, then

H(t, s) := (t − s)n is in ℜ.

Theorem 2.1. Assume that (H1)–(H5) and (2.1) hold. Furthermore assume that

there exists a positive rd-continuous ∆-differentiable function α(t) and let H : D → R

be rd-continuous function belonging to the class ℜ such that

lim sup
t→∞

1

H(t, t0)

t
∫

t0

K(t, s) ∆s = ∞, (2.10)

where

K(t, s) = H(t, s)α(s)P (s) −
(ασ)γ+1r(s)

[

H(t, s)α∆(s)
ασ − H∆s(t, s)

]γ+1

αγ(s)(γ + 1)γ+1Hγ(t, s)
. (2.11)

Then every solution of (1.3) is oscillatory on [t0,∞)T.
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Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of (1.3), and

let t1 ≥ t0 be such that x(t) 6= 0 for all t ≥ t1. Without loss of generality, we may

assume that x(t) > 0 and x(τ(t)) > 0 for t ≥ t1. Therefore from Lemma 2.1, we have

x(t) > 0, x∆(t) ≥ 0, (r(t)
(

x∆(t)
)γ

)∆ < 0, t ≥ t1. (2.12)

Define w(t) by

w(t) := α(t)
r(t)

(

x∆(t)
)γ

xγ(t)
, for t ≥ t1. (2.13)

Then w(t) > 0, and satisfies

w∆(t) =
xγ(τ(t))α(t)

xγ(t)

(

r(t)
(

x∆(t)
)γ)∆

xγ(τ(t))
+

(

r
(

x∆
)γ)σ

[

xγ(t)α∆(t) − α(t)(xγ(t))∆

xγ(t)xγ(σ(t))

]

.

(2.14)

In view of Lemma 2.1, since x(t)/t is strictly decreasing, we see that xγ(τ(t))
xγ(t)

≥ τγ(t))
tγ

.

This, (2.2) and (2.14) imply that

w∆(t) ≤ −α(t)P (t) +
α∆(t)

ασ
wσ −

α(t)
(

r
(

x∆
)γ)σ

(xγ(t))∆

xγ(t)xγ(σ(t))
. (2.15)

where P (t) =
(

τ(s)
s

)γ

[p(s) − q(s)]. Using the Keller’s chain rule and the fact that

xσ ≥ x(t), we obtain

(xγ(t))∆ ≥ γ

1
∫

0

[hx + (1 − h)x]γ−1 dhx∆(t) = γ(x(t))γ−1x∆(t), (2.16)

which implies that

(xγ(t))∆ ≥ γxγ−1(t)
(

x∆(t)
)

. (2.17)

From (2.12) since
(

r(t) (xγ(t))∆
)∆

< 0, we have for t ≥ t1 that

r(t)
(

x∆(t)
)γ

≥
(

r
(

x∆
)γ)σ

. (2.18)

It follows from (2.15), (2.17) and (2.18) that

w∆(t) ≤ −α(t)P (t) +
α∆(t)

ασ
wσ −

γα(t)
(

r
(

x∆
)γ+1

)σ

r
1
γ (t)xγ+1(σ(t))

, (2.19)

since x(t) is nondecreasing. From (2.13) and (2.19), we obtain

w∆(t) ≤ −α(t)P (t) +
α∆(t)

ασ
wσ −

γα(t)

r
1
γ (t)(ασ)

γ+1
γ

(wσ)
γ+1

γ . (2.20)

The remainder of the proof is similar to that of the proof of Theorem 2.2 in [2] by

using the inequality (2.20) and hence is omitted.

As an immediate consequence of Theorem 2.1 we can establish some different

sufficient conditions for oscillation by choosing different form of the function H(t, s).

For example by using H(t, s) := 1, we have the following oscillation criteria.
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Corollary 2.1. Assume that (H1)–(H5) and (2.1) hold. Let α(t) be as defined in

Theorem 2.1 and

lim sup
t→∞

∫ t

t0

[

α(s)

(

τ(s)

s

)γ

[p(s) − q(s)] −
r(s)(α∆(s))γ+1

(γ + 1)γ+1αγ(s)

]

∆s = ∞, (2.21)

then every solution of (1.3) is oscillatory on [t0,∞)T.

From Corollary 2.1, we can obtain different conditions for oscillation of all solu-

tions of (1.3) by different choices of α(t). For instance, if α(t) = t for t ≥ t0, we have

the following result.

Corollary 2.2. Assume that (H1)–(H5) and (2.1) hold. Furthermore, assume that

lim sup
t→∞

∫ t

t0

[

s

(

τ(s)

s

)γ

[p(s) − q(s)] −
r(s)

(γ + 1)γ+1sγ

]

∆s = ∞, (2.22)

then, every solution of (1.3) is oscillatory on [t0,∞)T.

To illustrate the above results we consider the following example.

Example 2.1. Consider the following second-order perturbed delay dynamic equa-

tion

(tγ−1
(

x∆(t)
)γ

) +

(

λtγ−2

τγ(t)
+ t2x2(τ(t))

)

xγ(τ(t)) =
βtγ−2x

γ+2
(τ(t))

τγ(t)(1 + x2(τ(t)))(1 + (x∆(t))2)
,

(2.23)

for t ∈ [t0,∞)T = [1,∞) ∩ T where T is a time scale, γ > 1, α and β are positive

constants, r(t) = tγ−1 and τ(t) ≤ t and limt→∞ τ(t) = ∞. We consider

p(t) :=
λtγ−2

τγ(t)
, and q(t) :=

βtγ−2

τγ(t)
. (2.24)

It is clear that the conditions (H1)–(H5) and (2.1) hold. To apply Corollary 2.2, it

remains to prove that the condition (2.22) holds. For (2.23), the condition (2.22)

reads

lim sup
t→∞

∫ t

t0

[

s[p(s) − q(s)s]

(

τ(s)

s

)γ

−
r(s)

(γ + 1)γ+1sγ

]

∆s

= lim sup
t→∞

∫ t

t0

[

(λ − β)(γ + 1)γ+1 − 1

s

]

∆s = ∞, (2.25)

if (λ − β) > 1
(γ+1)γ+1 . Then by Corollary 2.2, every solution of (2.23) is oscillatory

when

(λ − β) >
1

(γ + 1)γ+1
. (2.26)

Remark 1. Note that the results that has been established in [3, 6, 22] cannot be

applied on (2.23).
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In the following, we consider (1.3), when r(t) = 1, i.e., we consider the perturbed

delay equation

(
(

x∆
)γ

)∆ + F (t, x(τ(t))) = G(t, x(τ(t)), x∆(t)), (2.27)

and establish some oscillation criteria of Hille [12] and Nehari [14] types. Note that

when r(t) = 1, the condition (H4) already satisfied, and then the conclusions of

Lemma 2.1 still true for (2.27). We introduce the following notations

p∗ := lim
t→∞

inf tγ
∫

∞

σ(t)

P (s)∆s and q∗ := lim
t→∞

inf
1

t

∫ t

t0

sγ+1P (s)∆s, (2.28)

where P (s) = [p(s) − q(s)]
(

τ(s)
s

)γ

.

Theorem 2.2. Assume that (H1)–(H3), (H5) and (2.1) hold. Let x(t) be a nonoscil-

latory solution of (2.27) such that x(t) and x(τ(t)) > 0 for t ≥ t1 > t0. Let

u(t) =
(

x∆(t)
x(t)

)γ

and

r := lim
t→∞

inf tγuσ, and R := lim
t→∞

sup tγuσ. (2.29)

Then

p∗ ≤ r − lγr1+ 1
γ and p∗ + q∗ ≤

1

lγ(γ+1)
. (2.30)

where l := lim inft→∞

t
σ(t)

≤ 1.

Proof. From the definition of u(t) and using Lemma 2.1, we see that u(t) is

positive. Follows the proof of Theorem 2.1, we get

u∆(t) ≤ −

(

τ(t)

t

)γ

[p(t) − q(t)] −
(
(

x∆
)γ

)σ(xγ(t))∆

xγ(t) (xγ)σ . (2.31)

Using the chain rule, and the fact that x∆(t) > 0, we see that (xγ(t))∆ ≥ γ(x(t))γ−1x∆(t).

Using this in the inequality (2.34), we get

u∆(t) ≤ −

(

τ(t)

t

)γ

[p(t) − q(t)] −

((

x∆
)γ)σ

γ(x(t))γ−1x∆(t)

xγ(t)(xγ)σ

= −

(

τ(t)

t

)γ

p(t) − γuσu
1
γ (t). (2.32)

Thus u(t) satisfies the dynamic inequality

u∆(t) + P (t) + γuσu
1
γ (t) ≤ 0, for t ≥ t2. (2.33)

Since P (t) > 0 and u(t) > 0 for t ≥ t2, we have from (2.35) that u∆(t) < 0 and

−
(

u∆(t)/γuσu
1
γ (t)

)

> 1, for t ≥ t2. (2.34)

Since
(

1/u
1
γ (t)

)∆

= −1
γ

(

u
1
γ
−1(η)u∆(t)/u

1
γ (t)(uσ)

1
γ

)

, where η ∈ [t, σ(t)], we have

(

1/u
1
γ (t)

)∆

≥
−1

γ

(

(uσ)
1
γ
−1u∆(t)/u

1
γ (t)(uσ)

1
γ

)

.
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This and (2.34) imply (since u(t) is nonincreasing), that
(

1/u
1
γ (t)

)∆

> 1. (2.35)

Integrating (2.35) from t2 to t, we obtain

u(t) <
1

(t − t2)γ
, t ≥ t2, (2.36)

which implies that limt→∞ u(t) = 0. By (2.29) and (2.36), we have

0 < r ≤ 1, and 0 < R ≤ 1.

First, we prove that (2.30) holds. Integrating (2.33) from σ(t) to ∞ (σ(t) ≥ t2) and

using limt→∞ u(t) = 0, we have

uσ ≥

∫

∞

σ(t)

P (s)∆s + γ

∫

∞

σ(t)

u
1
γ (s)uσ∆s for t ≥ t2.

The remainder of the proof is similar to the proof of Theorem 2.1 in [20] and hence

is omitted.

Theorem 2.3. Assume that (H1)–(H3), (H5) and (2.1) hold. If

p∗ = lim inf
t→∞

tγ
∫

∞

σ(t)

[p(s) − q(s)]

(

τ(s)

s

)γ

∆s >
γγ

(γ + 1)γ+1

1

lγ2 , (2.37)

then every solution of (2.27) is oscillatory on [t0,∞)T.

Proof. Let x(t) be a nonoscillatory solution of (2.37) such that x(t) and x(τ(t)) > 0

for t ≥ t1 > t0. Let u(t) be as defined in Theorem 2.2 and let r = lim inft→∞ tγuσ.

Then from Theorem 2.2, we see that p∗ and r satisfy the inequality p∗ ≤ r − lγr1+ 1
γ .

Using the fact that Bu − Au
γ+1

γ ≤ γγ

(γ+1)γ+1
Bγ+1

Aγ , for A > 0, we see that

p∗ ≤
γγ

(γ + 1)γ+1

1

lγ2 ,

which contradicts (2.37). Thus every solution of (2.27) oscillates. The proof is com-

plete.

Theorem 2.4. Assume that (H1)–(H4) and (2.1) hold. If

p∗ + q∗ >
1

lγ(γ+1)
,

then (2.7) is oscillatory on [t0,∞)T.

As a consequence of Theorem 2.3, we have the following result.

Corollary 2.3. Assume that (H1)–(H3), (H5) and (2.1) hold. If

p∗ >
1

lγ(γ+1)
, or q∗ >

1

lγ(γ+1)
, (2.38)

then (2.27) is oscillatory on [t0,∞)T.
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Remark 2. It is clear that the inequality (2.35) is similar to the inequality (2.10) in

Theorem 2.1 in [20]. So as a consequence of Theorem 2.2 and as proved in Theorem 2.2

and Theorem 2.3 in [20], we can prove the similar results for equation (2.27) in the

case when 0 < γ < 1. So the results in Theorem 2.3 and Theorem 2.4 can be applied

in the case when 0 < γ < 1 as well as in the case when γ > 1.

Example 2.2. Consider the delay perturbed dynamic equation

((

x∆(t)
)γ)∆

+

(

α

tτγ(t)
+ t2x2(τ(t))

)

xγ(τ(t)) =
βx

γ+2
(τ(t))

tτγ(t)(1 + x2(τ(t)))(1 + (x∆(t))2)
,

(2.39)

for t ∈ [t0,∞)T. We consider p(t) = α
tτγ(t)

and q(t) = β

tτγ(t)
such that τ(t) ≤ t and

limt→∞ τ(t) = ∞, γ ≥ 1 is a ratio of odd positive integers and α and β are positive

constants such that (α − β) > 0. It is clear that the conditions (H1)–(H3), (H5) and

(2.1) hold. To apply Corollary 2.4, it remains to prove that (2.38) holds. For (2.39),

the condition (2.38) reads

q∗ = lim inf
t→∞

1

t

∫ t

t0

sγ+1P (s)∆s = lim inf
t→∞

1

t

∫ t

t0

sγ+1

(

τ(s)

s

)γ

[p(s) − q(s)]∆s

= (α − β) lim inf
t→∞

1

t

∫ t

t0

∆s = (α − β) .

Then by Corollary 2.4, every solution of (2.39) is oscillatory if (α − β) > 1
lγ(γ+1) .

Remark 3. Note the results that has been established in [3, 6, 22] cannot be applied

on (2.39).
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