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ABSTRACT. We consider the control of a porous media equation described by a class of degenerate

nonlinear partial differential equations. We formulate control problems for aquifers (under ground

water reservoirs) and present necessary conditions of optimality. The necessary conditions involve

simultaneous optimization of location of wells in aquifers and ground water extraction rate from

each of the wells. The method presented also applies to optimal extraction of other underground

resources.
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1. INTRODUCTION

In the study of hydrological systems, in particular reservoir engineering, the dy-

namics of flow through porous media plays an important role in the design of extrac-

tion programs of water resources from aquifers. In particular, it is necessary to design

and locate extraction wells and operate the program so as to maximize exploitation

of resources while avoiding or reducing contamination from nearby landfills and sea

water. Other applications include hi-tech methods of oil and gas recovery from under-

ground storage. The methodology developed here is generally applicable to mining

of underground resources like gas, oil, water etc.

The rest of the paper is organized as follows. In Section 2, the basic mathe-

matical model of flow through porous media described by a class of nonlinear partial

differential equations is presented along with the formulation of a control problem

considered in this paper. Existence and regularity properties of solutions are dis-

cussed in Section 3. In Section 4, necessary conditions of optimality are developed.

In the concluding remarks, the results of this paper are compared with those of our
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previous paper on the same topic [1]. The paper is concluded with an indication to

some open problems.

2. BASIC SYSTEM MODEL FOR EXPLOITED AQUIFERS

Let Σ denote a porous media filled with liquid or gas. The fluid can diffuse

through the media from locations of higher pressure to those of lower ones. Let

ρ(t)(·) ≡ ρ(t, ·) denote the spatial distribution of density of the fluid in Σ at time

t ≥ 0. In other words, ρ represents the amount of fluid contained in an unit volume of

the porous medium. The temporal and spatial evolution of the density ρ is governed

by a nonlinear partial differential equation of the form

(∂/∂t)(cρ) −△Φ(ρ) = f on I × Σ, (2.1)

Φ(ρ) = 0 on I × ∂Σ, (2.2)

ρ(0) = ρ0, ξ ∈ Σ, (2.3)

where c(ξ) is a scalar valued function defined on Σ and taking values 0 ≤ c(ξ) ≤ 1,

representing porosity of the medium. This is an initial-boundary value problem where

the operator △ is the Laplacian in Rn (n ≤ 3). The function Φ is related to the flux

of vector flow rate J ≡ ∇Φ. In general, Φ is a measurable function of ξ ∈ Σ and a

monotone increasing function of the density ρ. Without loss of generality, we may

assume that Φ is independent of the spatial variable ξ ∈ Σ. For porous media, the

typical form of Φ is Φ(ρ) ≡ βργ , β > 0, γ = 1 + (1/α), 0 < α < ∞, and the

pressure P ≡ F (ρ) = bργ−1, b > 0. The exact expression for Φ is dependent on

Darcy’s law [1, 4]. The function f represents the natural source term giving the

rate at which resources are replenished. Detailed construction of the model based on

physical arguments can be found in [4, p. 253] and also [5].

Remark 2.1 Since Φ
′

(0) = 0, the system is degenerate parabolic (not strictly par-

abolic). Further, if the set Σo ≡ {ξ ∈ Σ : c(ξ) = 0} is nonempty and has positive

Lebesgue measure, the system (2.1)–(2.3) may change type. It is elliptic on Σo and

parabolic on Σ \ Σo. [See also Remark 3.3.]

Aquifers are natural underground sources of water. Water can be extracted by

drilling wells into the aquifer and pumping it on to the surface. For exploitation

of water or other resources, a number of wells are drilled at strategically important

locations {Zi} ∈ Σ. Suppose there are N wells occupying spatial domains ∪N
i=1Gi(Zi)

in Σ with Gi(Zi) ∩Gj(Zj) = ∅ for i 6= j. Let ui, i = 1, 2, . . . , N, denote the pumping

or extraction rate of the i-th well. Thus, the total extraction rate is given by the

sum of the rates of individual wells. The system equation, representing the controlled

aquifer, is then given by

(∂/∂t)(cρ) −△Φ(ρ) = f −B(Z, u) for (t, ξ) ∈ I × Σ, (2.4)
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Φ(ρ) = 0, for (t, ξ) ∈ I × ∂Σ, (2.5)

ρ(0, x) = ρ0(ξ), for ξ ∈ Σ, (2.6)

where the operator B is given by

B(Z, u)(t, ξ) ≡
N
∑

i=1

ΥGi(Zi)(ξ)ui(t), ξ ∈ Σ, t ∈ I, (2.7)

with ΥGi
denoting the characteristic function of the set Gi.

Equation (2.4) describes the flow dynamics subject to controlled withdrawal of

resources, equation (2.5) specifies the required boundary condition, and equation (2.6)

gives the initial distribution of the density. It is important to protect coastal aquifers

from contamination by sea (salt) water. One way of achieving this is to maintain

the internal pressure close to a desired level which is determined by the hydrostatic

pressure on the outer boundary of the reservoir. Salt water intrusion is expected if

the external boundary pressure is higher than that of the internal pressure. Thus, an

appropriate objective functional can be chosen as follows:

J(u) =

∫

I

{

−
N
∑

i=1

γiui(t) + (λ/2)

∫

Σ

(

F (ρ) − F (ρd)
)2
dξ

}

dt, (2.8)

for γi ≥ 0 and λ > 0, where ρ is the solution of the system (2.4)–(2.6) corresponding

to the control policy u, and ρd is the desirable density giving the pressure Pd ≡ F (ρd).

This is the desirable internal pressure level that is expected to prevent intrusion of

salt water, or in general, contamination by external toxic sources. The objective is

to find the best locations {Zo
i } of the wells and an withdrawal rate (water extraction

program) uo ≡ {uo
i} with values uo(t) ∈ U ⊂ RN

+ ≡ {v ∈ RN : 0 ≤ vi < ∞, t ∈ I,

i = 1, 2, . . . , N} that minimizes the cost functional J . This problem was partially

solved in a recent paper [1] of the author where the locations of wells were assumed

to be given (fixed) and U assumed to be compact and convex. In this note, we include

also the location of wells as decision variables like the extraction rates. Examining

the objective functional, it is clear that minimizing this functional is equivalent to

finding a balance between extraction of resources and avoidance of contamination.

This is due to the fact that excessive withdrawal of water reduces the water table

and the internal pressure leading to penetration of salt water from the surrounding

region.

3. EXISTENCE AND REGULARITY OF SOLUTIONS

Define the operator:

E ≡ (−△)−1 (3.1)
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subject to homogeneous Dirichlet boundary condition. Using this operator, system

(2.4)–(2.6) can be written as an abstract differential equation

(d/dt)(E(cρ)) + Φ(ρ) = Ef̃ ≡ E(f −B(Z, u)), ρ(0) = ρ0, (3.2)

on suitable Banach spaces where we have set f̃ ≡ (f − B(Z, u)). For this problem,

suitable Banach spaces are the Gelfand triple V →֒ H →֒ V ∗ where H = L2(Σ) and

it is identified with its dual, V ≡ W 1,p
0 (Σ) and V ∗ = W−1,q(Σ), with q being the

conjugate of p, that is, (1/p + 1/q) = 1), and 1 < q ≤ 2 ≤ p < ∞. Since E is a

positive self adjoint operator in H ≡ L2(Σ), its square root is well defined and hence

the operator E
1/2
c (ϕ) ≡ E1/2(cϕ) is well defined. We introduce the vector space W

as follows

W ≡ {ρ : E1/2
c ρ ∈ Lp(I, V ) & E1/2

c ρ̇ ∈ Lq(I, V
∗)}.

Furnished with the norm topology given by

‖ ρ ‖W≡‖ E1/2
c ρ ‖Lp(I,V ) + ‖ E1/2

c ρ̇ ‖Lq(I,V ∗),

it is a Banach space, and the embedding E
1/2
c W →֒ C(I,H) is continuous. The proof

of this embedding is similar to that given in [3, Theorem 1.2.15, p. 27].

Following similar approach as given in [2, Theorem 1, p. 90], [3, Theorem 2.5.1,

p. 107], it may be possible to give an operator theoretic proof for existence of solution

for the system (3.2). In Showalter [4], considering c(ξ) ≡ 1, a simple and elegant

proof is given on page 142, Example 6.6. Here we present a different and construc-

tive proof based on finite dimensional projections and limiting arguments without

assuming c(ξ) ≡ 1. This classical approach is also useful both for approximation and

computation as required for real physical applications.

Theorem 3.1 Consider the system (3.2) and suppose

(A1): there exists a constant c1 ∈ (0, 1] such that infξ∈Σ c(ξ) = c1.

(A2): The function Φ : R −→ R is continuous and maximal monotone.

(A3): There exists a number p ≥ 2 and constants c2 > 0, c3 > 0, such that

(1) : Φ(r)r ≥ c2|r|
p and (2) : |Φ(r)| ≤ c3|r|

p−1 ∀ r ∈ R.

Then, for each ρ0 ∈ V ∗ satisfying E
1/2
c ρ0 ∈ H and f̃ ∈ Lq(I, V

∗) satisfying E1/2f̃ ∈

L2(I,H), system (3.2) has a unique weak solution ρ ∈ Lp(I, Lp(Σc)), in the sense that

the following identity

−

∫

I

〈ρ, (d/dt)Ecφ〉dt+

∫

I

〈Φ(ρ), φ〉V ∗,V dt = (E1/2
c ρ(0), E1/2

c φ(0))H

+

∫

I

〈E1/2f̃ , φ〉V ∗,V dt (3.3)

holds for all φ ∈ Lp(I, V ) satisfying φ(T ) = 0. Further, the solution has the regularity

properties E
1/2
c ρ̇ ∈ Lq(I, V

∗) and E
1/2
c ρ ∈ L∞(I,H) ∩ C(I,H).
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Proof. Our proof is based on a-priori bounds, Galerkin approximation, and limiting

arguments. We start with the following a-priori bounds. Let

Lp(Σc) ≡

{

ϕ :

∫

Σ

c(ξ)|ϕ(ξ)|pdξ ≡ |ϕ|pLp(Σc
<∞

}

.

This is a Banach space with the dual given by Lq(Σc), (1/p) + (1/q) = 1, ∞ > p ≥

q > 1. Scalar multiplying equation (3.2) by cρ and integrating by parts, it is easy to

derive the following estimates: there exist positive constants c4, c5 dependent possibly

on the parameters {c1, c2, c3, p, q, T} so that

|E1/2
c ρ(t)|2H ≤ c4

{

|E1/2
c ρ0|

2
H +

∫

I

|E1/2f̃ |2Hdt

}

<∞, ∀ t ∈ I, (3.4)

|E1/2
c ρ(t)|2H + 2c2

∫ t

0

|ρ(s)|pLp(Σc)
ds ≤ c5

{

|E1/2
c ρ0|

2
H +

∫

I

|E1/2f̃ |2Hdt

}

<∞, ∀ t ∈ I.

(3.5)

Straight computation shows that one can take c4 = eT and c5 = (1 + TeT ). Further,

there exists a positive number c6, dependent possibly on the parameters mentioned

above, so that

‖ E1/2
c ρ̇ ‖Lq(I,V ∗)≤ c6

{

‖ ρ ‖
p/q
Lp(I,Lp(Σ)) + ‖ E1/2f̃ ‖Lq(I,V ∗)

}

. (3.6)

By virtue of assumption (A1), and the fact that 0 ≤ c(ξ) ≤ 1 for ξ ∈ Σ, Lp(Σc) is

equivalent to Lp(Σ) and hence it follows from the above estimates that if ρ is any

solution of equation (3.2), then

E1/2
c ρ ∈ L∞(I,H), ρ ∈ Lp(I, Lp(Σc)), E1/2

c ρ̇ ∈ Lq(I, V
∗).

Let ρ1, ρ2 be two solutions corresponding, respectively to the data ρ1
0, ρ

2
0 with E1/2ρi

0 ∈

H(i = 1, 2), and f̃i, (i = 1, 2) ∈ Lq(I, V
∗) with E1/2f̃i ∈ L2(I,H), i = 1, 2. Then using

the assumption that Φ is monotone, it follows from similar computations that there

exists a positive constant c7 such that

sup
t∈I

{|E1/2
c ρ1(t) − E1/2

c ρ2(t)]|2H}

≤ c7

{

|E1/2
c ρ1

0 − E1/2
c ρ2

0]|
2
H +

∫

I

|E1/2f̃1 − E1/2f̃2]|
2
Hdt

}

. (3.7)

From this follows Lipschitz continuity of the solution map with respect to input data

and hence the uniqueness. Now we prove existence. Since the embedding V →֒ H

is compact, there exists a sequence {vi} ∈ V which is a complete basis for the triple

{V,H, V ∗}. Using this basis and projecting the infinite dimensional system (3.2) to

the sequence of finite dimensional systems,
〈

(d/dt)E
1/2
c

(

n
∑

i=1

xn
i vi

)

, E
1/2
c vj

〉

+

〈

Φ

(

n
∑

i=1

xn
i vi

)

, cvj

〉

= 〈f̃ , cvj〉, 1 ≤ j ≤ n, n ∈ N, (3.8)
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we obtain the following ordinary differential equation in Rn, n ∈ N , given by

Γẋ = −Φ̃(x) + g, t ∈ I, x(0) = x0 (3.9)

where x(t) ∈ Rn is given by the vector x(t) ≡ (xn
i (t), i = 1, 2, . . . , n),

Γ ≡ {γj,i ≡ (E1/2
c vj , E

1/2
c vi), 1 ≤ j, i ≤ n}

is a symmetric positive matrix of dimension n, Φ̃ is a n-vector valued function given

by

Φ̃(x) ≡

{〈

Φ

(

n
∑

i=1

xn
i vi

)

, cvj

〉

, 1 ≤ j ≤ n

}

,

and

g = {〈f̃ , cvj〉, j = 1, 2, . . . , n} and x0 = {(ρ0, vj), 1 ≤ j ≤ n}.

Note that equation (3.9) is the finite dimensional approximation of the infinite dimen-

sional system (3.2). The finite dimensional space here is given by the closure of the

linear span of {vi, 1 ≤ i ≤ n} which is evidently isomorphic to Rn. Since Γ is a sym-

metric positive matrix and Φ̃ is maximal monotone fromRn toRn, for every β > 0, the

operator (Γ + βΦ̃) is a maximal monotone map in Rn and hence equation (3.9) has a

unique solution x ∈ C(I, Rn). This is easily justified as follows. Partition the interval

I into a finite number, say m, of disjoint intervals {Ii ≡ (ti, ti+1], i = 0, 1, . . . , m− 1}

with (Lebesgue measure) ℓ(Ii) = βm for all i = 0, 1, . . . , m−1. Use the implicit scheme

and interpolation to construct the approximate solution defined by the expression

xm(t) ≡ ((ti+1 − t)/βm)νm(ti) + ((t− ti)/βm)νm(ti+1), t ∈ Ii, i = 0, 1, . . . , m− 1,

where the nodes {νm(ti), i = 0, 1, . . . , m− 1}, with νm(t0) = νm(0) = x0, are given by

νm(ti+1) ≡ (Γ + βmΦ̃)−1

(

Γνm(ti) +

∫ ti+1

ti

g(s)ds

)

, i = 0, 1, . . . , m− 1. (3.10)

Since g is locally integrable, it is easy to verify that {xm} ∈ C(I, Rn) and that it is a

Cauchy sequence, and so there exists a function x ∈ C(I, Rn) to which the sequence

converges uniformly on I as m→ ∞. The components of this vector valued function

x are denoted by xn
i , i = 1, 2, . . . n. Thus the function given by ρn ≡

∑n
i=1 x

n
i (t)vi

is the unique solution of the system of finite dimensional equations (3.8) which is

equivalent to

〈(d/dt)E1/2
c ρn, E1/2

c vj〉 + 〈Φ(ρn), cvj〉 = 〈f̃ , cvj〉, 1 ≤ j ≤ n. (3.11)

Now using the a-priori bounds (3.4)–(3.5), and the fact that the Banach spaces in-

volved are reflexive, there exists a subsequence relabeled, as the original sequence,

and an element ρo ∈ Lp(I, Lp(Σc)) satisfying E
1/2
c ρo ∈ L∞(I,H), E

1/2
c ρ̇o ∈ Lq(I, V

∗)

such that

E1/2
c ρn w∗

−→ E1/2
c ρo in L∞(I,H), (3.12)
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E1/2
c ρ̇n w

−→ E1/2
c ρ̇o in Lq(I, V

∗), (3.13)

Φ(ρn)
w

−→ Φ(ρo) in Lq(I × Σc). (3.14)

Since Φ is a nonlinear function, the proof of the convergence result (3.14) is nontrivial.

However, it follows from the assumptions (A2), (A3), continuity and monotonicity of

the function Φ, and the well known Mazur’s theorem that states that every weakly

convergent sequence has a suitable convex combination that converges strongly. In-

deed, from the a-priori bound (3.5) it is clear {ρn} is contained in a bounded subset

of Lp(I × Σc) and further it follows from assumption (A3)(2) that {Φ(ρn)} is con-

tained in a bounded subset of Lq(I × Σc). Since 1 < q ≤ 2 ≤ p < ∞, these are

reflexive Banach spaces and therefore there exist ρo ∈ Lp(I ×Σc) and η ∈ Lq(I ×Σc)

such that, along a subsequence if necessary, ρn w
−→ ρo and Φ(ρn)

w
−→ η. By Mazur’s

theorem, there exists {αn
k , 1 ≤ k ≤ n, αn

k ≥ 0,
∑

αn
k = 1} for all n ∈ N such that

ζn ≡
∑n

k=1 α
n
kρ

k s
−→ ρo in Lp(I ×Σc). On the other hand, for any ρ ∈ Lp(I ×Σc), it

follows from monotonicity of Φ that
∫

I

〈Φ(ρ) − Φ(ζn), ρ− ζn〉dt ≥ 0.

Letting n→ ∞, we obtain
∫

I

〈Φ(ρ) − η, ρ− ρo〉dt ≥ 0, ∀ ρ ∈ Lp(I × Σc).

Take ρ = ρo + εw for arbitrary w ∈ Lp(I × Σc) and ε > 0. Using this ρ in the above

inequality, we have
∫

I

〈Φ(ρo + εw) − η, w〉dt ≥ 0, ∀ w ∈ Lp(I × Σc),

and ε > 0. Letting ε ↓ 0 it follows from continuity of Φ that
∫

I

< Φ(ρo) − η, w > dt ≥ 0, ∀ w ∈ Lp(I × Σc).

This implies that η = Φ(ρo) proving (3.14). Multiplying equation (3.8) by z ∈ C1(I)

with z(T ) = 0, and integrating by parts over I, one has

−

∫

I

〈E1/2
c ρn, (d/dt)E1/2

c z(t)cvj〉dt+

∫

I

〈Φ(ρn), z(t)cvj〉V ∗,V dt

= (E1/2
c ρn(0), E1/2

c z(0)vj)H +

∫

I

〈f̃ , z(t)cvj〉V ∗,V dt (3.15)

for 1 ≤ j ≤ n, where ρn(0) =
∑n

i=1 x
n
i (0)vi =

∑n
i=1(ρ0, vi)vi. Letting n → ∞

in (3.15), along a subsequence if necessary, it follows from the convergence results

(3.12)–(3.14) that

−

∫

I

〈E1/2
c ρo, (d/dt)E1/2

c z(t)vj〉dt+

∫

I

〈Φ(ρo), z(t)cvj〉V ∗,V dt

= (E1/2
c ρ0, E

1/2
c z(0)vj)H +

∫

I

〈E1/2f̃ , z(t)cvj〉V ∗,V dt.
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This is true for all j ∈ N , and since {vj} is a basis, it follows from this identity

that ρo is the unique weak solution of equation (3.2). Since ρo ∈ Lp(I, Lp(Σc)) and

Lp(Σc) ∼= Lp(Σ) ⊂ L2(Σ) ≡ H and E1/2 : H → V , we have E
1/2
c ρo ∈ Lp(I, V ).

We have already seen that E
1/2
c ρ̇o ∈ Lq(I, V

∗). Thus, it follows from the embedding

theorem stated in the introduction of this section that E
1/2
c ρo ∈ C(I,H). Hence, we

have all the regularity properties as stated. This completes our proof. •

Remark 3.2 We have assumed that the porosity coefficient c(ξ), ξ ∈ Σ, is bounded

away from zero. This is used to ensure that Lp(Σc) ∼= Lp(Σ), which, in turn, is used

to prove the regularity of solutions as stated in the theorem. It would be interesting

to relax this assumption.

Remark 3.3 Recall the set Σo as introduced in Remark 2.1. On this set the system

is elliptic. Since Φ is strictly monotone, the solution in the elliptic phase is given by

ρ(t, ξ) ≡ Φ−1(Ef̃)(t, ξ), (t, ξ) ∈ I × Σo

provided the data satisfies the compatibility condition

lim
t↓0

Φ−1(Ef̃)(t, ξ) = ρ0(ξ)

for ξ ∈ Σo. On the other hand, for physical reasons, it is evident that the fluid

content of any part of the medium that has zero porosity must be zero. Hence the

initial condition and the data f̃ must be identically zero on Σo.

4. NECESSARY CONDITIONS OF OPTIMALITY

As stated earlier, our objective is to find optimal locations {Zo
i , i = 1, 2, . . .N}

for the wells, and the corresponding optimal extraction rates {uo
i , i = 1, 2, . . . , N}

which minimize the cost functional (2.8) subject to dynamic constraints (2.4)–(2.6).

Following a similar procedure as given in [1, Theorem 4.1], we can prove existence of

optimal control for the problem (2.8). Here, we assume that the optimization problem

has a solution and concentrate only on the necessary conditions of optimality. By use

of these necessary conditions one can determine the locations of wells and formulate

optimum extraction policies.

Without loss of generality, we may assume that the aquifer body represented

by Σ is an open connected convex domain. It suffices if it is only given by a finite

union of such convex bodies. Let the sets introduced in the introduction be given by

Gi(Zi) ≡ Cr(Zi) where Cr denotes a cylindrical well of radius r > 0 vertically installed

at the point Zi ∈ Σ through which the central axis of the well passes. We let Cr(Zi)

denote only the part inside the aquifer body. Let Σ0 denote a closed bounded convex

subset of Σ contained entirely in its interior with d(ξ, ∂Σ) ≥ r, for all ξ ∈ Σ0. Clearly,

we may choose Zi ∈ Σ0 and take r > 0 sufficiently small, so that
⋃N

i=1Cr(Zi) ⊂ Σ.
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For convenience of notation, we write Z ∈ ΣN (cartesian product of N copies of Σ)

for {Zi, i = 1, 2, . . . , N} with each component Zi ∈ Σ ⊂ Rn.

Theorem 4.1 Consider the system given by equations (2.4)–(2.6) with the control

(2.7) and the cost functional given by (2.8). Suppose the assumptions of Theorem 3.1

hold and Σ0 ⊂ Σ is a closed bounded convex set away from the boundary ∂Σ by at

least a distance r > 0, and
⋃

Cr(Zi) ⊂ Σ. Suppose U is a compact convex subset

of RN
+ and let Uad ≡ L∞(I, U) denote the class of admissible controls and suppose

{p, q} is the conjugate pair satisfying 5/2 < p ≤ 4. Then for the triple (Zo, uo, ρo) ∈

ΣN
0 × Uad × Lp(I, V ) to be optimal it is necessary that there exists a ψ ∈ Lp(I, V )

with E
1/2
c ψ ∈ C(I,H) satisfying the following inequalities and equations:

dJ(Zo, Z − Zo; uo, u− uo) ≡ −

∫

I

{

∑

(

ri +

∫

Cr(0)

ψ(t, Zo
i + e)de

)

(ui − uo
i )

}

dt

+

∫

I

{ N
∑

i=1

(

∫

Cr(0)

∇ψ(t, Zo
i + e)de, Zi − Zo

i

)

uo
i

}

dt ≥ 0, ∀ u ∈ Uad, Zi ∈ Σ0, (4.1)

where ψ is the solution of the adjoint evolution equation given by

(∂/∂t)(cψ) + Φ
′

(ρo)△ψ = −λF
′

(ρo)
(

F (ρo) − F (ρd)
)

, on I × Σ, (4.2)

ψ|∂Σ
= 0, on I × ∂Σ, (4.3)

ψ(T ) = 0, on Σ, (4.4)

and ρo is the solution of the state equation corresponding to the optimal pair (Zo, uo)

(∂/∂t)(cρo) −△Φ(ρo) = f −B(Zo, uo), (t, ξ) ∈ I × Σ, (4.5)

Φ(ρo)|∂Σ = 0, (t, x) ∈ I × ∂Σ, (4.6)

ρo(0, ξ) = ρ0, ξ ∈ Σ. (4.7)

Proof. Let (Zo, uo) ∈ ΣN
0 × Uad be the optimal location-control pair and (Z, u) an

arbitrary element of the admissible set ∈ ΣN
0 × Uad. Clearly, by convexity, Zε ≡

Zo + ε(Z − Zo) ∈ ΣN
0 and uε ≡ uo + ε(u − uo) ∈ Uad for all 0 ≤ ε ≤ 1. Let

{ρε, ρo} denote the solutions of the system (2.4)–(2.6) corresponding to the pairs

(Zε, uε) and (Zo, uo) respectively. Since the pair (Zo, uo) is optimal, it is evident that

J(Zε, uε) − J(Zo, uo) ≥ 0. Dividing this by ε and letting ε ↓ 0, it is easy to verify

that the Gateaux differential dJ of J at (Zo, uo) in the direction (Z − Zo, u − uo)

must satisfy the following inequality,

dJ(Zo, Z − Zo; uo, u− uo)

=

∫

I

{ N
∑

i=1

−γi(ui − uo
i ) + λ

∫

Σ

{(F (ρo) − F (ρd))}(F
′

(ρo)ϕ)dξ

}

dt ≥ 0 (4.8)
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for all (Z, u) ∈ ΣN
0 × Uad, where ϕ is the weak solution of the variational equation

given by

(∂/∂t)(cϕ) −△(Φ
′

(ρo)ϕ) = −g in I × Σ, (4.9)

Φ
′

(ρo)ϕ|∂Σ = 0, in I × ∂Σ, (4.10)

ϕ(0) = 0, in Σ, (4.11)

with the function g given by

g(t, ξ) ≡
N
∑

i=1

uo
i (t)(∇ΥCr(Zo

i )(ξ), Zi − Zo
i )Rn +

N
∑

i=1

(ui(t) − uo
i (t))ΥCr(Zo

i )(ξ)

≡ G(Z − Zo, u− uo). (4.12)

The derivative of the characteristic function is understood in the sense of distri-

butions. It is a simple exercise to verify that for every u ∈ Uad and Z ∈ Σ,

B(Z, u) ∈ L∞(I, L∞(Σ)) ≡ L∞(I × Σ), and since the set Σ has finite Lebesgue

measure, L∞(Σ) ⊂ Lq(Σ) ⊂ W−1,q(Σ) = V ∗, and therefore g ∈ Lq(I, V
∗). Indeed,

the reader can easily verify that for any h ∈ Lp(I, V ), the pairing
∫

I

〈g(t, ·), h(t, ·)〉V ∗,V dt =

∫

I×Σ

g(t, ξ)h(t, ξ)dξdt

is well defined. Note that G is the Gateaux derivative of the operator B at (Zo, uo)

in the direction (Z − Zo, u− uo) with value g which is an element of Lq(I, V
∗). The

system (4.9)–(4.11) is a linear homogenous boundary value problem, a special case of

the nonlinear system equation (3.2). Thus existence of a unique weak solution follows

from Theorem 3.1 as a corollary. Clearly, the expression (4.12) defines a linear map

from ΣN × Uad to Lq(I, V
∗). Emphasizing this dependence we observe that the map

−G(Z − Zo, u− uo) −→ ϕ

is a continuous linear map from the Banach space Lq(I, V
∗) to the Banach space W as

introduced in section 3. Considering the expression (4.8), we may denote the second

term by the functional

L(ϕ) ≡

∫

I

∫

∂Σ

λ{F (ρo) − F (ρd)}{F
′

(ρo)ϕ}dx dt. (4.13)

Clearly, it is a linear functional in ϕ ∈ Lp(I, V ) and it follows from our assumption

on p given by, 5/2 < p ≤ 4, that F
′

(ρo)(F (ρo) − F (ρd)) ∈ Lq(I, V
∗). Thus, L is a

bounded linear functional on Lp(I, V ). Then, the composition map

−G(Z − Zo, u− uo) −→ ϕ −→ L(ϕ)

is a continuous linear functional on Lq(I, V
∗). Hence, there exists a ψ (not necessarily

unique) in the dual (Lq(I, V
∗))∗ = Lp(I, V ) such that

L(ϕ) =

∫

I

〈−G(Z − Zo, u− uo), ψ〉V ∗,V dt. (4.14)
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Thus, the inequality (4.8) can be written as

dJ(Zo, Z − Zo; uo, u− uo)

=

∫

I

{

∑

−γi(ui − uo
i ) + 〈−G(Z − Zo, u− uo), ψ〉V ∗,V

}

dt ≥ 0, (4.15)

for all (Z, u) ∈ ΣN
0 × Uad. Now integrating by parts, the second term of the above

expression yields

〈−G(Z − Zo, u− uo), ψ〉V ∗,V = −
N
∑

i=1

(ui(t) − uo
i (t))

∫

Cr(0)

ψ(t, Zo
i + e)de

+

N
∑

i+1

uo
i (t)

(

Zi − Zo
i ,

∫

Cr(0)

∇ψ(t, Zo
i + e)de

)

. (4.16)

Since ψ ∈ Lp(I, V ), both the integrals displayed in the above expression are well

defined for almost all t ∈ I. For example, considering the second term, it follows

from Holder’s inequality that

|

∫

Cr(0)

∇ψ(t, Zo
i + e)de|Rn ≤ ℓ(Cr(0))1/q

(
∫

Cr(0)

|∇ψ(t, Zo
i + e)|pRnde

)1/p

,

where ℓ(Cr(0)) denotes the Lebesgue measure (volume) of the cylinder Cr(0). Since

V = W 1,p
0 and ψ ∈ Lp(I, V ), it is clear that the righthand integral is in Lp(I) ⊂

L1(I). Substituting the expression (4.16) in equation (4.15), we obtain the necessary

condition (4.1). Now we show that ψ is determined by the weak solution of the adjoint

system(4.2)–(4.4). Using the variational equation (4.9)–(4.11) and carrying out the

necessary integration by parts, one can easily arrive at the following expression for

L(ϕ), given by (4.14),

L(ϕ) = −

∫

I

〈G(Zo, Z − Zo; uo, u− uo), ψ〉V ∗,V dt = 〈cϕ, ψ〉|T0

+

∫

I

〈ϕ,−{(∂/∂t)(cψ) + Φ
′

(ρo)△ψ}〉V,V ∗dt

+

∫

I×∂Σ

(Φ
′

(ρo)ϕ)(∂/∂ν)ψdξ dt−

∫

I×∂Σ

(∂/∂ν)(Φ
′

(ρo)ϕ)ψdξ dt. (4.17)

For ψ(T, ·) = 0, it follows from (4.11) that the first term on the right hand side

of equation (4.17) vanishes. The boundary condition (4.10) forces the third term

to vanish. Setting the adjoint boundary condition, ψ|I×∂Σ = 0, the last term also

vanishes leaving only the second term. Finally, setting

(∂/∂t)(cψ) + Φ
′

(ρo)△ψ = −λF
′

(ρo)(F (ρo) − F (ρd))

it follows from the expression (4.17) that the functional L(ϕ), so obtained, coincides

with the expression given by (4.13) as required. In conclusion, the function ψ, whose
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existence is proved above, is given by the solution of the following initial (final)

boundary value problem,

(∂/∂t)(cψ) + Φ
′

(ρo)△ψ = −λF
′

(ρo)(F (ρo) − F (ρd)), on I × Σ,

ψ|I×∂Σ = 0 on I × ∂Σ,

ψ(T, ·) = 0, on Σ.

Thus, we have the adjoint system given by the equations (4.2)–(4.4) where ρo is the

solution of the system equation (4.5)–(4.7) corresponding to the optimal pair (Zo, uo).

For p as specified, the function h ≡ λF
′

(ρo)(F (ρo) − F (ρd)) belongs to Lq(I, V
∗).

Hence, it follows from theorem 3.1, that it has a weak solution ψ ∈ W . Thus, we

have demonstrated all the necessary conditions of optimality. This completes the

proof. •

Remark 4.2 Taking λ = 0, it follows from the adjoint system (4.2)–(4.4) that ψ ≡ 0.

In this situation the optimality condition (4.1) reduces to

dJ(uo, u− uo) = −

∫

I

∑

ri(ui − uo
i )dt ≥ 0, ∀u ∈ Uad.

This means that the cost is minimal when the extraction rate is set to the maximum

limit. Intuitively, this is what is expected when there are no (side effects) penalty for

extraction.

Remark 4.3 If the locations are fixed a-priori at {Zo
i } ∈ Σ0, we expect to revert

back to optimal policies obtained for given locations. If no variation in positions is

permitted, the first term in the expression for g given by (4.12) vanishes leaving only

the second term. As a consequence, the optimality condition (4.1) reduces to

dJ(uo, u−uo) ≡ −

∫

I

{

∑

(

ri+

∫

Cr(Zo
i )

ψ(t, ξ)dξ
)

(ui−u
o
i )

}

dt ≥ 0, ∀ u ∈ Uad. (4.18)

This is precisely the result given in [1, Theorem 5.1] where Gi(Zi) takes the place of

Cr(Z
o
i ).

Remark 4.4 For the resource extraction problem considered here, point wise control

does not make physical sense though it has significant theoretical interest because

it poses some interesting mathematical difficulties. Reffering to equation (4.1) and

dividing the spatial integrals by the volume of the set Cr(0) and letting r ↓ 0, we

obtain the following necessary condition

dJ(Zo, Z − Zo; uo, u− uo) ≡ −

∫

I

{

∑

(

ri + ψ(t, Zo
i )
)

(ui − uo
i )

}

dt

+

∫

I

{ N
∑

i=1

(

∇ψ(t, Zo
i ), Zi − Zo

i

)

uo
i

}

dt ≥ 0, ∀ u ∈ Uad, Zi ∈ Σ0. (4.19)

This derivation is formal and mathematically is not always justifiable. Consider the

spatial dimension to be n = 3 and p = 5/2 and V ≡ W 1,p
0 (Σ). By the Sobolev
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embedding theorem, Wm,p
0 ⊂ Cα(Σ) provided m ≥ (n/p) +α. In case V = W 1,p

0 , this

is not satisfied and hence for ψ(t, ·) ∈ W 1,p
0 , the point values may not be finite let

alone those of its gradient.

Some Open Problems. An interesting direction of future research is inclusion of

stochastic terms to account for randomness in the natural source term, for example,

the recharge process of aquifers. Additive noise is not admissible because the solution

must be nonnegative. However, one can use any bounded Lipschitz function satisfying

σ(r) ≥ 0 for r ≥ 0 and σ(r) = 0 for r ≤ 0. Using σ as the volatility of the recharge

process (source process), one can introduce the following model

d(cρ) −△Φ(ρ)dt = fdt+ σ(ρ)dW, (t, ξ) ∈ I × Σ,

Φ(ρ) = 0, (t, ξ) ∈ I × ∂Σ,

ρ(0) = ρ0, ξ ∈ Σ, (4.20)

where W is a space time Brownian motion.

Remark 4.5 We believe that the methodology developed here is also applicable to

mining of underground resources such as gas, oil etc.
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