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1. INTRODUCTION

The purpose of this paper is to obtain the existence of positive solutions to

discrete boundary value problems. We consider the second order problem
{

∆2y(k − 1) + f(k, y(k)) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0,
(1.1)

and the one-dimensional p-Laplacian problem
{

∆(φ(∆y(k − 1))) + f(k, y(k)) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0,
(1.2)

where T is a positive integer, N is the discrete interval {1, 2, . . . , T}, φ(s) = |s|p−2s, p >

1 and ∆y(k) = y(k + 1) − y(k) is the forward difference operator. Also we consider

the second order system
{

∆2yi(k − 1) + f i(k, y(k)) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0, i = 1, 2, . . . , n,
(1.3)

and the p-Laplacian system
{

∆(φ(∆yi(k − 1))) + f i(k, y(k)) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0, i = 1, 2, . . . , n,
(1.4)

where y = (y1, y2, . . . , yn).
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Recently, discrete boundary value problems have been studied by many authors

[1, 4, 10, 15]. In [4], positive solutions for nonpositone second order discrete problems

were considered using a conical shell fixed point theorem. Multiple positive solutions

of singular discrete problems were also studied in [6, 7] using variational methods.

Moreover, discrete p−Laplacian problems have been considered in [9, 10, 15]. We

refer the reader to [2] for a broad introduction to difference equations.

The main results in this paper are proved by employing a fixed point theorem

(see Theorem 2.6) for compact maps on conical shells. To do this, we extend the ideas

introduced by Lan in [18] to the discrete case. In the continuous case, this approach

was also used to prove the existence of positive periodic solutions for systems of

second order differential equations in [12]. The same problems for scalar functional

differential equation were studied in [13]. The results obtained in [13] improve some

results in [21]. Here we mention that the systems of integral equations or differential

equations have been studied in [8, 14, 19, 20] by employing another fixed point theorem

in cones (see Theorem 1.1 in [10]).

As applications, we characterize the eigenvalue intervals for problems
{

∆2y(k − 1) + λh(k)g(y(k)) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0,
(1.5)

{
∆(φ(∆y(k − 1))) + λh(k)g(y(k)) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0,
(1.6)

and the n−dimensional systems
{

∆2yi(k − 1) + λhi(k)g
i(y(k)) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0, i = 1, 2, . . . , n,
(1.7)

{
∆(φ(∆yi(k − 1))) + λhi(k)g

i(y(k)) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0, i = 1, 2, . . . , n.
(1.8)

Here λ > 0 is a positive parameter. We prove that the above eigenvalue problems have

at least one positive solution for each λ in an explicit eigenvalue interval. Recently,

several eigenvalue characterizations for different kinds of boundary value problems

have appeared and we refer the reader to [3, 5, 10, 11, 20].

The notation used is as follows. R+ = [0,∞), R
n
+ =

∏n
i=1

R+, N+ = {0, 1, . . . , T+

1}. Recall that a map f : N+ × R+ → R+ is continuous if it is continuous as a map

of the topological space N+ × R+ into the topological space R+. In this paper, the

topology on N+ will be the discrete topology. Let C(N+,R) denote the class of map

y continuous on N+ (discrete topology), with norm |y|0 = max
k∈N+

|y(k)|, then C(N+,R)

is a Banach space. For any y = (y1, y2, . . . , yn) ∈ R
n
+, ‖y‖ = max

i=1,2,...,n
|yi|.

The remaining part of the paper is organized as follows. In Section 2 some prelim-

inary results will be given. In Section 3, we study the existence of positive solutions
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for problem (1.1) and characterize the eigenvalue intervals for (1.5). Positive solu-

tions of the second order system (1.3) and eigenvalue intervals for (1.7) are considered

in section 4. In section 5, we study the existence of positive solutions for problem

(1.2) and characterize the eigenvalue intervals for (1.6). Finally, section 6 studies the

p-Laplacian system (1.4) and (1.8). It is worth remarking here that, Lemma 3.2 and

Lemma 4.2 play a fundamental role in the proof of our main results.

2. PRELIMINARIES

In this section, we present some results, which will be needed in the following

four sections. First we state some well-known results.

Lemma 2.1 ([4]). Let u ∈ C(N+,R) satisfy u(k) ≥ 0 for k ∈ N+. If y ∈ C(N+,R)

satisfies {
∆2y(k − 1) + u(k) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0,

then

y(k) ≥ q(k)‖y‖ for k ∈ N+;

here

q(k) = min{
T + 1 − k

T + 1
,
k

T
}. (2.1)

Remark 2.2. From the definition of q(k), we have q(k) ≥ 1

T+1
for k ∈ N .

Lemma 2.3 ([15]). If y ∈ C(N+,R) satisfies
{

∆(φ(∆y(k − 1))) ≤ 0, k ∈ N,

y(0) = 0, y(T + 1) = 0,

then y(k) ≥ q(k)‖y‖ for k ∈ N+; here q(k) is defined in Lemma 2.1.

Lemma 2.4 ([15]). If u, v ∈ C(N+,R) satisfies
{

∆(φ(∆u(k − 1))) ≤ ∆(φ(∆v(k − 1))), k ∈ N,

u(0) ≥ v(0), u(T + 1) ≥ v(T + 1),

then u(k) ≥ v(k) for k ∈ N+.

As indicated in the introduction, the proof of our main results is based on a fixed

point theorem for compact maps on conical shells. We recall the statement of this

result below, after introducing the definition of a cone.

Definition 2.5. Let X be a Banach space and K be a closed, nonempty subset of

X. K is a cone if

(i) αu+ βv ∈ K for all u, v ∈ K and all α, β > 0.

(ii) u,−u ∈ K implies u = 0.
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We also recall that a completely continuous operator means a continuous operator

which transforms every bounded set into a relatively compact set. If D is a subset

X, we write DK = D ∩K and ∂KD = (∂D) ∩K.

Theorem 2.6 ([17]). Let X be a Banach space and K a cone in X. Assume Ω1, Ω2

are open bounded subsets of X with Ω1
K 6= ∅, Ω1

K ⊂ Ω2
K . Let

T : Ω2
K → K

be a continuous and compact operator such that

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ ∂KΩ1, and

(ii) there exists e ∈ K\{0} such that x 6= Tx+ λe for all x ∈ ∂KΩ2 and all λ > 0.

Then T has a fixed point in Ω2
K \Ω1

K . The same conclusion remains valid if (i) holds

on ∂KΩ2 and (ii) holds on ∂KΩ1.

3. SECOND ORDER PROBLEMS

In this section we study the existence of positive solutions to second order discrete

boundary value problem (1.1) and characterize the eigenvalue intervals for (1.5).

Define the operator

Ty(k) =
T∑

j=1

G(k, j)f(j, y(j));

here G(k, j) is defined by

G(k, j) =





j(T + 1 − k)

T + 1
, 0 ≤ j ≤ k − 1,

k(T + 1 − j)

T + 1
, k ≤ j ≤ T + 1.

(3.1)

In order to apply Theorem 2.6, we take X1 = C(N+,R) with norm |y|0 =

max
k∈N+

|y(k)|. Define a cone K1 in X1 by

K1 = {y ∈ X1 : y(k) ≥ q(k)‖y‖ for k ∈ N+}. (3.2)

Lemma 3.1 ([1]). Assume that f : N+ × R+ → R+ is continuous. Then T is well

defined and maps K1 into K1. Moreover, T is continuous and completely continuous.

Following the ideas in [13, 18], we define the open sets

Ωr = {y ∈ X1 : min
k∈N

y(k) <
r

T + 1
} and Br = {y ∈ X1 : |y|0 < r}.

Lemma 3.2. Ωr, Br defined above have the following properties:

(a) Ωr
K1

and Br
K1

are open relative to K1.

(b) B
r/T+1

K1
⊂ Ωr

K1
⊂ Br

K1
.
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(c) y ∈ ∂K1
Ωr if and only if y ∈ K1 and min

k∈N
y(k) =

r

T + 1
.

(d) If y ∈ ∂K1
Ωr, then r

T+1
≤ y(k) ≤ r for k ∈ N and |y|0 ≤ r.

Proof. (a) holds since min
k∈N

y(k) is continuous (discrete topology). (c) is clear. Let

y ∈ ∂K1
Ωr, so by (c), we have min

k∈N
y(k) =

r

T + 1
and y(k) ≥ q(k)|y|0 ≥ 1

T+1
|y|0 for

k ∈ N . Thus 1

T+1
|y|0 ≤ min

k∈N
y(k) =

r

T + 1
, so |y|0 ≤ r and r

T+1
≤ y(k) ≤ r for k ∈ N ,

i.e., (d) holds.

Finally we prove (b). Let y ∈ B
r/T+1

K1
, then |y|0 <

r
T+1

, so min
k∈N

y(k) <
r

T + 1
and

y ∈ Ωr
K1

. If y ∈ Ωr
K1

. Then min
k∈N

y(k) <
r

T + 1
and y(k) ≥ q(k)|y|0 ≥ 1

T+1
|y|0 for

k ∈ N . This implies |y|0 < r, i. e., Ωr
K1

⊂ Br
K1

. Hence (b) holds. �

It is clear that the sets Ωr are unbounded sets for each r > 0, so we cannot use

Theorem 2.6 with Ωr. However we will be able to apply Theorem 2.6 taking into

account that, for each δ > r, the following relations hold:

Ωr
K1

= (Ωr ∩Bδ)K1
and Ωr

K1
= (Ωr ∩ Bδ)K1

.

The first equality follows immediately from Lemma 3.2 (b). For the second let y ∈

Ωr
K1

, then from Lemma 3.2 (c), we have that

1

T + 1
|y|0 ≤ min

k∈N
y(k) ≤

r

T + 1
<

δ

T + 1
,

so y ∈ (Ωr∩Bδ)∩K1. Now, since Ωr and Bδ are open sets we have Ωr∩Bδ ⊂ Ωr ∩ Bδ.

Thus y ∈ (Ωr ∩ Bδ)K1
, and therefore Ωr

K1
⊆ (Ωr ∩Bδ)K1

. The reverse inclusion is

trivial.

Theorem 3.3. Assume that f : N+ × R+ → R+ is continuous. Furthermore, it is

assumed that the following two hypotheses hold:

(D1) there exist a constant α > 0 and a continuous function ψ : N → (0,∞) such

that

f(j, y) ≥
1

T + 1
αψ(j), for all j ∈ N,

α

T + 1
≤ y ≤ α

and

min
k∈N

T∑

j=1

G(k, j)ψ(j) ≥ 1;

(D2) there exist a constant β > 0 and a continuous function χ : N → (0,∞) such

that

f(j, y) ≤ βχ(j) for all j ∈ N, 0 < y ≤ β

and

max
k∈N

T∑

j=1

G(k, j)χ(j) ≤ 1.
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Then, the following results hold:

(a) if β < α
T+1

, then problem (1.1) has at least one positive solution y satisfying

β ≤ |y|0 ≤ α;

(b) if α < β, then problem (1.1) has at least one positive solution y satisfying

1

T + 1
α ≤ |y|0 ≤ β.

Proof. Since y = y(k) is a solution of (1.1) whenever y is a fixed point of T , we

only need to prove that T has at least one positive fixed point. To do this, we show

that :

(i) |Ty|0 ≤ |y|0 for y ∈ ∂K1
Bβ, and

(ii) there exists e ∈ K1\{0} such that y 6= Ty+ λe, for all y ∈ ∂K1
Ωα and all λ > 0.

We start with (i). Now for any y ∈ ∂K1
Bβ , we have |y|0 = β. Then from (D2) we

obtain, for each k ∈ N ,

Ty(k) =
T∑

j=1

G(k, j)f(j, y(j)) ≤ β
T∑

j=1

G(k, j)χ(j)

≤βmax
k∈N

T∑

j=1

G(k, j)χ(j) ≤ β.

Hence, |Ty|0 ≤ |y|0 for each y ∈ ∂K1
Bβ and so (i) holds.

Next we consider part (ii). Let e(t) ≡ 1, so e ∈ K1 \ {0}. Next, suppose that

there exists y ∈ ∂K1
Ωα and λ > 0 such that y = Ty+λe. Since y ∈ ∂K1

Ωα, then from

Lemma 3.2 (d), we have 1

T+1
α ≤ y(k) ≤ α, k ∈ N .

From (D1) we have, for k ∈ N , that

y(k)= Ty(k) + λ =
T∑

j=1

G(k, j)f(j, y(j)) + λ

≥
1

T + 1
α

T∑

j=1

G(k, j)ψ(j) + λ

≥
1

T + 1
αmin

k∈N

T∑

j=1

G(k, j)ψ(j) + λ ≥
1

T + 1
α + λ.

Hence min
k∈N

y(k) ≥
1

T + 1
α + λ >

1

T + 1
α, contradicting the statement of Lemma 3.2

(c). This contradiction proves part (ii) above.

Now suppose that β < 1

T+1
α. Then one has from Lemma 3.2 that Bβ

K1
⊂

B
α/T+1

K1
⊂ Ωα

K1
and therefore it follows from Theorem 2.6 that T has at least one fixed
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point y ∈ Ωα
K1

\Bβ
K1

. Hence |y|0 ≥ β and 1

T+1
β ≤ min

k∈N
y(k) ≤

1

T + 1
α. On the other

hand, 1

T+1
|y|0 ≤ min

k∈N
y(k) ≤

1

T + 1
α. This implies that |y|0 ≤ α.

Finally, if α < β one has Ωα
K1

⊂ Bβ
K1

, and then Theorem 2.6 guarantees the

existence of at least one fixed point y ∈ Bβ
K1

\ Ωα
K1

of T . Hence we obtain the

inequality 1

T+1
α ≤ |y|0 ≤ β. �

Next we employ Theorem 3.3 to establish the existence of positive solutions to

the following discrete boundary value problem
{

∆2y(k − 1) + h(k)g(y(k)) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0.
(3.3)

We assume that

(H1) g : R+ → R+ is continuous with g(y) > 0 for y > 0.

(H2) h(j) : N → R+ is continuous and

T∑

j=1

G(k, j)h(j) > 0.

Theorem 3.4. Suppose that conditions (H1)-(H2) hold. Then problem (3.3) has at least

one positive solution y with y(k) 6≡ 0 for k ∈ N if one of the following conditions

holds.

(h1) 0 ≤ g0 < A−1 and B−1 < g∞ ≤ ∞;

(h2) 0 ≤ g∞ < A−1 and B−1 < g0 ≤ ∞;

here g0 = lim
y→0+

g(y)

y
, g∞ = lim

y→∞

g(y)

y
, and

A = max
k∈N

T∑

j=1

G(k, j)h(j), B = min
k∈N

T∑

j=1

G(k, j)h(j).

Proof. To see this, we will apply Theorem 3.3 with f(k, y) = h(k)g(y). We assume

that (h1) holds. The case when (h2) holds is similar.

From the first part of (h1), there exists β > 0 such that g(y) ≤ A−1β for 0 < y ≤

β. Choose χ(k) = A−1h(k). Then

f(k, y) = h(k)g(y) ≤ A−1βh(k) = βχ(k) if k ∈ N, 0 < y ≤ β,

and

T∑

j=1

G(k, j)χ(j) = A−1

T∑

j=1

G(k, j)h(j) ≤ A−1 max
k∈N

T∑

j=1

G(k, j)h(j) = 1.

Thus hypothesis (D2) holds.
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From the second part of (h1), there exists α > 0 such that 1

T+1
α > β and

g(y) ≥ B−1 1

T+1
α for y ≥ 1

T+1
α. Choose ψ(k) = B−1h(k), then

f(k, y) = h(k)g(y) ≥ B−1
1

T + 1
αh(k) =

1

T + 1
αψ(k), if k ∈ N, y ≥

1

T + 1
α,

(so in particular for 1

T+1
α ≤ y ≤ α) and

T∑

j=1

G(k, j)ψ(j) = B−1

T∑

j=1

G(k, j)h(j) ≥ B−1 min
k∈N

T∑

j=1

G(k, j)h(j) = 1.

This implies that hypothesis (D1) holds. The result now follows from Theorem 3.3. �

By employing Theorem 3.4, we can easily characterize the eigenvalue intervals

for problem (1.5). Since the proof is easy, we only state the results here.

Theorem 3.5. Suppose that conditions (H1)-(H2) hold. Then problem (1.5) has at

least one positive solution for each

λ ∈ (
1

Bg∞
,

1

Ag0

) (3.4)

if
1

Bg∞
<

1

Ag0

. The same result remains valid for each

λ ∈ (
1

Bg0

,
1

Ag∞
) (3.5)

if
1

Bg0

<
1

Ag∞
. Here we write 1/gα = 0 if gα = ∞ and 1/gα = ∞ if gα = 0, where

α = 0,∞.

4. SECOND ORDER SYSTEMS

In this section we establish the existence of positive solutions to the discrete

system (1.3) and characterize the eigenvalue intervals for (1.7).

We take X2 = C(N+,R) ×C(N+,R)× . . .× C(N+,R) (n times) with the norm

‖y‖ = max
i=1,2,...,n

|yi|0 for y = (y1, y2, . . . , yn) ∈ X2, here |y|0 = max
i∈N+

|y(i)|. Then X2 is a

Banach space. Define

K2 = {y = (y1, y2, . . . , yn) ∈ X2 : min
k∈N

yi(k) ≥ q(k)|yi|0 for all i = 1, 2, . . . , n}. (4.1)

One can easily verify that K2 is a cone in X2. Moreover, let T : K2 → X2 be a map

with components (T 1, . . . , T n), where T i, i = 1, 2, . . . , n, is defined by

(Tiy)(k) =

T∑

j=1

G(k, j)f i(j, y(j)), i = 1, 2, . . . , n;

here G(k, j) is given as (3.1).
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Lemma 4.1. Assume that f i : N+ × R
n
+ → R+ is continuous, i = 1, 2, . . . , n. Then

T is well defined and maps K2 into K2. Moreover, T is continuous and completely

continuous.

Following the ideas in [12, 14], we define the open sets

Ωr = {y ∈ X2 : min
k∈N

yi(k) <
r

T + 1
for all i = 1, 2, . . . , n}

and

Br = {y ∈ X2 : ‖y‖ < r}.

Lemma 4.2. Ωr, Br defined above have the following properties:

(a) Ωr
K2

and Br
K2

are open relative to K2.

(b) B
r/T+1

K2
⊂ Ωr

K2
⊂ Br

K2
.

(c) y ∈ ∂K2
Ωr if and only if y ∈ K2 and min

k∈N
yj(k) =

r

T + 1
for some j ∈

{1, 2, . . . , n} and min
k∈N

yi(k) ≤
r

T + 1
for each i ∈ {1, 2, . . . , n}.

(d) If y ∈ ∂K2
Ωr, then

r

T + 1
≤ yj(k) ≤ r, k ∈ N for some j ∈ {1, 2, . . . , n} and

0 ≤ yi(k) ≤ r, k ∈ N for each i ∈ {1, 2, . . . , n}. Moreover, |yi|0 ≤ r.

Proof. (a) is true since min
k∈N

yi(k) is continuous (discrete topology) for each i ∈ {1, 2, . . . , n}.

(c) is clear. Let y ∈ ∂K2
Ωr, so we have from (c) that there exists j ∈ {1, 2, . . . , n}

such that
1

T + 1
|yj|0 ≤ q(k)|yj|0 ≤ min

k∈N
yj(k) =

r

T + 1
.

Thus |yj|0 ≤ r and
r

T + 1
≤ yj(k) ≤ r, k ∈ N . In addition notice for each

i ∈ {1, 2, . . . , n} that
1

T + 1
|yi|0 ≤ q(k)|yi|0 ≤ min

k∈N
yi(k) ≤

r

T + 1
, so |yi|0 ≤ r and

0 ≤ yi(k) ≤ r for k ∈ N , i. e., (d) holds.

Finally we prove (b). Let y ∈ B
r/T+1

K2
, then for each i ∈ {1, 2, . . . , n}, we have

|yi|0 < r
T+1

, so min
k∈N

yi(k) <
r

T + 1
and y ∈ Ωr

K2
. If y ∈ Ωr

K2
, then for each i ∈

{1, 2, . . . , n}, we have min
k∈N

yi(k) <
r

T + 1
and yi(k) ≥ q(k)|yi|0 ≥ 1

T+1
|yi|0 for k ∈ N .

This implies |yi|0 < r, i. e., Ωr
K2

⊂ Br
K2

. Hence (b) holds. �

Moreover, it is easy to verify that, for each δ > r, the following relations hold:

Ωr
K2

= (Ωr ∩Bδ)K2
and Ωr

K2
= (Ωr ∩ Bδ)K2

.

Theorem 4.3. Assume that f i : N+ × R
n
+ → R+ is continuous, i = 1, 2, . . . , n.

Furthermore, it is assumed that the following two hypotheses hold:

(D3) For each i = 1, 2, . . . , n, there exist a constant α > 0 and a continuous function

ψi : N → (0,∞) such that

f i(j, y) ≥
1

T + 1
αψi(j), for all j ∈ N, 0 ≤ yl ≤ α (l ∈ {1, 2, . . . , n}\{i})
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and α
T+1

≤ yi ≤ α and

min
k∈N

T∑

j=1

G(k, j)ψi(j) ≥ 1;

(D4) For each i = 1, 2, . . . , n, there exist a constant β > 0 and a continuous function

χi : N → (0,∞) such that

f i(j, y) ≤ βχi(j) for all j ∈ N, 0 < yk ≤ β, k ∈ N

and

max
k∈N

T∑

j=1

G(k, j)χi(j) ≤ 1.

Then, the following results hold:

(a) if β < α
T+1

, then problem (1.3) has at least one positive solution y satisfying

β ≤ ‖y‖ = max
i∈{1,...,n}

max
k∈N+

|yi(k)| ≤ α;

(b) if α < β, then problem (1.3) has at least one positive solution y satisfying

1

T + 1
α ≤ ‖y‖ ≤ β.

Proof. We show that:

(i) ‖Ty‖ ≤ ‖y‖ for y ∈ ∂K2
Bβ , and

(ii) there exists e ∈ K2\{0} such that y 6= Ty+ λe, for all y ∈ ∂K2
Ωα and all λ > 0.

We start with (i). Now for any y ∈ ∂K2
Bβ , we have |yi|0 ≤ β for each i ∈ {1, . . . , n}.

Fix i ∈ {1, . . . , n}. Then from (D4) we obtain, for each k ∈ N ,

(Tiy)(k) =
T∑

j=1

G(k, j)f i(j, y(j)) ≤ β
T∑

j=1

G(k, j)χi(j)

≤βmax
k∈N

T∑

j=1

G(k, j)χi(j) ≤ β.

Hence, |Tiy|0 ≤ ‖y‖ for each i ∈ {1, . . . , n}. This implies that (i) holds.

Next we consider part (ii). Let e(t) ≡ 1, so e ∈ K2 \ {0}. Next, suppose that

there exists y ∈ ∂K2
Ωα and λ > 0 such that y = Ty + λe. Since y ∈ ∂K2

Ωα, then

from Lemma 4.2 (d) there exists i ∈ {1, 2, . . . , n} with α
T+1

≤ yi(k) ≤ α, k ∈ N , and

0 ≤ yj(k) ≤ α for k ∈ N and j ∈ {1, 2, . . . , n}\{i}.
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From (D3) we have, for k ∈ N , that

yi(k) = (Tiy)(k) + λ =
T∑

j=1

G(k, j)f i(j, y(j)) + λ

≥
1

T + 1
α

T∑

j=1

G(k, j)ψi(j) + λ

≥
1

T + 1
αmin

k∈N

T∑

j=1

G(k, j)ψi(j) + λ ≥
1

T + 1
α + λ.

Hence min
k∈N

yi(k) ≥
1

T + 1
α+ λ >

1

T + 1
α, contradicting the statement of Lemma 4.2

(c). This contradiction proves part (ii) above.

Now suppose that β < α
T+1

. Then one has from Lemma 4.2 that Bβ
K2

⊂ B
α

T+1

K2
⊂

Ωα
K2

and therefore it follows from Theorem 2.6 that T has at least one fixed point

y ∈ Ωα
K2

\ Bβ
K2

. Hence ‖y‖ ≥ β and 1

T+1
β ≤ min

k∈N
yi(k) ≤

α

T + 1
. On the other hand,

1

T+1
|yi|0 ≤ min

k∈N
yi(k) ≤

α

T + 1
and therefore |yi|0 ≤ α for each i ∈ {1, 2, . . . , n}. This

implies that ‖y‖ ≤ α.

Finally, if α < β one has Ωα
K2

⊂ Bβ
K2

, and then Theorem 2.6 guarantees the

existence of at least one fixed point y ∈ Bβ
K2

\ Ωα
K2

of T . Hence we obtain the

inequality α
T+1

≤ ‖y‖ ≤ β. �

Next we employ Theorem 4.3 to establish the existence of positive solutions to

the following second order discrete system
{

∆2yi(k − 1) + hi(k)g
i(y(k)) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0, i = 1, 2, . . . , n.
(4.2)

We assume that

(H3) g
i : R

n
+ → R+ is continuous with gi(y) > 0 for ‖y‖ > 0, i = 1, 2, . . . , n

(H4) hi(j) : N → R+ is continuous and

T∑

j=1

G(k, j)hi(j) > 0, i = 1, 2, . . . , n

Theorem 4.4. Suppose that conditions (H3)–(H4) hold. Then problem (4.2) has at

least one positive solution y with y(k) 6≡ 0 for k ∈ N if one of the following conditions

holds.

(h3) 0 ≤ gi
0 < A−1

i and B−1

i < gi
∞ ≤ ∞, i = 1, 2, . . . , n;

(h4) 0 ≤ gi
∞ < A−1

i and B−1

i < gi
0 ≤ ∞, i = 1, 2, . . . , n;

here gi
0 = lim

y→0+

g(y)

‖y‖
, gi

∞ = lim
y→∞

g(y)

‖y‖
, i = 1, 2, . . . , n, and

Ai = max
k∈N

T∑

j=1

G(k, j)hi(j), Bi = min
k∈N

T∑

j=1

G(k, j)hi(j).
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Proof. To see this, we will apply Theorem 4.3 with f i(k, y) = hi(k)g
i(y), i =

1, 2, . . . , n. We assume that (h3) holds. The case when (h4) holds is similar.

From the first part of (h3), there exists β > 0 such that gi(y) ≤ A−1

i β for

0 < ‖y‖ ≤ β. Choose χi(k) = A−1

i hi(k) for i = 1, 2, . . . , n. Fix i ∈ {1, . . . , n}. Then

f i(k, y) = hi(k)g
i(y) ≤ A−1

i βhi(k) = βχi(k) if k ∈ N and 0 < yj ≤ β,

for j ∈ {1, . . . , n} and

T∑

j=1

G(k, j)χi(j) = A−1

i

T∑

j=1

G(k, j)hi(j) ≤ A−1

i max
k∈N

T∑

j=1

G(k, j)hi(j) = 1.

Thus hypothesis (D4) holds.

From the second part of (h3), there exists α > 0 such that 1

T+1
α > β and

gi(y) ≥ B−1

i
1

T+1
α for ‖y‖ ≥ 1

T+1
α, i = 1, 2, . . . , n.

Thus gi(y) ≥ B−1

i
1

T+1
α for yi ≥

1

T+1
α, i = 1, 2, . . . , n. Choose ψi(k) = B−1

i hi(k),

then

f i(k, y) = hi(k)g
i(y) ≥ B−1

i

1

T + 1
αhi(k) =

1

T + 1
αψi(k), if k ∈ N, yi ≥

1

T + 1
α,

(so in particular for 1

T+1
α ≤ yi ≤ α) and

T∑

j=1

G(k, j)ψi(j) = B−1

i

T∑

j=1

G(k, j)hi(j) ≥ B−1

i min
k∈N

T∑

j=1

G(k, j)hi(j) = 1.

This implies that hypothesis (D3) holds. The result now follows from Theorem 4.3. �

Now we characterize the eigenvalue intervals for the systems (1.7). Let

A = max{Ai, i = 1, 2, . . . , n}, B = min{Bi, i = 1, 2, . . . , n}.

Theorem 4.5. Suppose that conditions (H3)-(H4) hold. Then problem (1.7) has at

least one positive solution for each

λ ∈ (
1

B min
i=1,2,...,n

{gi
∞}

,
1

A max
i=1,2,...,n

{gi
0}

) (4.3)

if
1

B min
i=1,2,...,n

{gi
∞}

<
1

A max
i=1,2,...,n

{gi
0}

. The same result remains valid for each

λ ∈ (
1

B min
i=1,2,...,n

{gi
0}
,

1

A max
i=1,2,...,n

{gi
∞}

) (4.4)

if
1

B min
i=1,2,...,n

{gi
0}

<
1

A max
i=1,2,...,n

{gi
∞}

. Here we write 1/gi
α = 0 if gi

α = ∞ and 1/gi
α = ∞

if gi
α = 0, where α = 0,∞.
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Proof. We consider the case (4.3). The case (4.4) is similar. If λ satisfies (4.3),

then

λgi
0 ≤ λ max

i=1,2,...,n
{gi

0} <
1

A
≤

1

Ai
, i = 1, 2, . . . , n,

and

λgi
∞ ≥ λ min

i=1,2,...,n
{gi

∞} >
1

B
≥

1

Bi

, i = 1, 2, . . . , n.

So Theorem 4.4 applies directly. �

5. ONE-DIMENSIONAL p-LAPLACIAN

In this section we establish the existence of positive solutions to the one-dimensional

discrete p−Laplacian problem (1.2) and characterize the eigenvalue intervals for sys-

tems (1.6).

Define the operator

Ty(k) =





0, k = 0 or T + 1,
T∑

s=k

φ−1(τ +
s∑

r=1

f(r, y(r))), k ∈ N,

where τ is a solution of the equation

φ−1(τ) +

T∑

k=1

φ−1(τ +

k∑

r=1

f(r, u(r))) = 0.

Lemma 5.1 ([10]). Assume that f : N+ × R+ → R+ is continuous. Then T is well

defined and maps K1 into K1. Moreover, T is continuous and completely continuous;

here K1 is defined by (3.2).

Theorem 5.2. Assume that f : N+ × R+ → R+ is continuous. Furthermore, it is

assumed that the following two hypotheses hold:

(F1) there exist a constant α > 0 and a continuous function ψ : N → (0,∞) such

that

f(j, y) ≥ φ(
1

T + 1
α)ψ(j), for all j ∈ N,

α

T + 1
≤ y ≤ α

and

min
k∈N

P (k) ≥ 1;

here we assume P (k) is the unique solution of

{
∆(φ(∆P (k − 1))) + ψ(k) = 0, k ∈ N,

P (0) = 0, P (T + 1) = 0;
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(F2) there exist a constant β > 0 and a continuous function χ : N → (0,∞) such

that

f(j, y) ≤ φ(β)χ(j) for all j ∈ N, 0 < y ≤ β

and

max
k∈N

Q(k) ≤ 1;

here we assume Q(k) is the unique solution of

{
∆(φ(∆Q(k − 1))) + χ(k) = 0, k ∈ N,

Q(0) = 0, Q(T + 1) = 0.

Then, the following results hold:

(a) if β < α
T+1

, then problem (1.2) has at least one positive solution y satisfying

β ≤ |y|0 ≤ α;

(b) if α < β, then problem (1.2) has at least one positive solution y satisfying

1

T + 1
α ≤ |y|0 ≤ β.

Remark 5.3 ([7, 16]). For each continuous function α : N → (0,∞), the linear

problem {
∆(φ(∆y(k − 1))) + α(k) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0,

has exactly one positive solution. This guarantees the existence and uniqueness of

P (k) and Q(k).

Proof of Theorem 5.2. We show that :

(i) |Ty|0 ≤ |y|0 for y ∈ ∂K1
Bβ, and

(ii) there exists e ∈ K1\{0} such that y 6= Ty+ λe, for all y ∈ ∂K1
Ωα and all λ > 0.

We start with (i). Now for any y ∈ ∂K1
Bβ, we have |y|0 = β. Then from (F2),

f(k, y) ≤ φ(β)χ(k)for each k ∈ N . By Lemma 2.4, we obtain

Ty(k) ≤ βQ(k) ≤ βmax
k∈N

Q(k) ≤ β.

Hence, |Ty|0 ≤ |y|0 for each y ∈ ∂K1
Bβ and so (i) holds.

Next we consider part (ii). Let e(t) ≡ 1, so e ∈ K1 \ {0}. Next, suppose that

there exists y ∈ ∂K1
Ωα and λ > 0 such that y = Ty+λe. Since y ∈ ∂K1

Ωα, then from

Lemma 3.2 (d), we have 1

T+1
α ≤ y(k) ≤ α, k ∈ N .
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From (F1), f(k, y(k)) ≥ φ( 1

T+1
α)ψ(k) for k ∈ N . By Lemma 2.4, for each k ∈ N ,

we have

y(k)= Ty(k) + λ ≥
1

T + 1
αP (k) + λ

≥
1

T + 1
αmin

k∈N
P (k) + λ ≥

1

T + 1
α + λ.

Hence min
k∈N

y(k) ≥
1

T + 1
α + λ >

1

T + 1
α, contradicting the statement of Lemma 3.2

(c). This contradiction proves part (ii) of our claim.

The rest of the proof is similar to that in the proof of Theorem 3.3, so we omit

the details. �

Next we employ Theorem 5.2 to establish the existence of positive solutions to

the following discrete problem
{

∆(φ(∆y(k − 1))) + h(k)g(y(k)) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0.
(5.1)

We assume (H1) holds. Moreover, it is assumed that

(H5) H(k) > 0 for k ∈ N ; here we assume H(k) is the unique solution of
{

∆(φ(∆y(k − 1))) + h(k) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0.

Theorem 5.4. Suppose that conditions (H1) and (H5) hold. Then problem (5.1) has at

least one positive solution y with y(k) 6≡ 0 for k ∈ N if one of the following conditions

holds.

(f1) 0 ≤ g0 < ( 1

M
)p−1 and ( 1

m
)p−1 < g∞ ≤ ∞;

(f2) 0 ≤ g∞ < ( 1

M
)p−1 and ( 1

m
)p−1 < g0 ≤ ∞;

here g0 = lim
y→0+

g(y)

yp−1
, g∞ = lim

y→∞

g(y)

yp−1
, and

M = max
k∈N

H(k), m = min
k∈N

H(k).

Proof. To see this, we will apply Theorem 5.2 with f(k, y) = h(k)g(y). We assume

that (f1) holds. The case when (f2) holds is similar.

From the first part of (f1), there exists β > 0 such that g(y) ≤ ( 1

M
)p−1βp−1 for

0 < y ≤ β. Choose χ(k) = ( 1

M
)p−1h(k). Then

f(k, y) = h(k)g(y) ≤ (
1

M
)p−1βp−1h(k) = βp−1χ(k) if k ∈ N and 0 < y ≤ β,

and

Q(k) = M−1H(k) ≤M−1 max
k∈N

H(k) = 1.

Thus hypothesis (F2) holds.
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From the second part of (f1), there exists α > 0 such that 1

T+1
α > β and

g(y) ≥ ( 1

m
)p−1( 1

T+1
α)p−1 for y ≥ 1

T+1
α. Choose ψ(k) = ( 1

m
)p−1h(k), then

f(k, y) = h(k)g(y) ≥ (
1

m
)p−1(

1

T + 1
α)p−1h(k) = (

1

T + 1
α)p−1ψ(k),

k ∈ N, y ≥ 1

T+1
α, (so in particular for 1

T+1
α ≤ y ≤ α) and

P (k) = m−1H(k) ≥ m−1 min
k∈N

H(k) = 1.

This implies that hypothesis (F1) holds. The result now follows from Theorem 5.2. �

By employing Theorem 5.4, we can easily characterize the eigenvalue intervals

for (1.6).

Theorem 5.5. Suppose that conditions (H1) and (H5) hold. Then problem (1.6) has

at least one positive solution for each

λ ∈ (
1

mp−1g∞
,

1

Mp−1g0

)

if
1

mp−1g∞
<

1

Mp−1g0

. The same result remains valid for each

λ ∈ (
1

mp−1g0

,
1

Mp−1g∞
)

if
1

mp−1g0

<
1

Mp−1g∞
.

6. p-LAPLACIAN SYSTEMS

In this section we consider the discrete p-Laplacian system (1.4) and (1.8). Define

the operator T : X2 → X2 by

Ty = (T1y, T2y, . . . , Tny);

here

(Tiy)(k) =





0, k = 0 or T + 1,
T∑

s=k

φ−1(τi +

s∑

r=1

f i(r, y(r))), k ∈ N,
i = 1, 2, . . . , n,

and τi is a solution of the equation

φ−1(τ) +
T∑

k=1

φ−1(τ +
k∑

r=1

f i(r, u(r))) = 0, i = 1, 2, . . . , n.

Lemma 6.1. Assume that f i : N+ × R
n
+ → R+ is continuous, i = 1, 2, . . . , n. Then

T is well defined and maps K2 into K2. Moreover, T is continuous and completely

continuous; here K2 is defined by (4.1).

Theorem 6.2. Assume that f i : N+ × R
n
+ → R+ is continuous, i = 1, 2, . . . , n.

Furthermore, it is assumed that the following two hypotheses hold:
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(F3) For each i = 1, 2, . . . , n, there exist a constant α > 0 and a continuous function

ψi : N → (0,∞) such that

f i(j, y) ≥ φ(
1

T + 1
α)ψi(j), for all j ∈ N, 0 ≤ yl ≤ α (l ∈ {1, 2, . . . , n}\{i})

and α
T+1

≤ yi ≤ α and

min
k∈N

Pi(k) ≥ 1;

here we assume Pi(k) is the unique solution of
{

∆(φ(∆P (k − 1))) + ψi(k) = 0, k ∈ N,

P (0) = 0, P (T + 1) = 0;

(F4) For each i = 1, 2, . . . , n, there exist a constant β > 0 and a continuous function

χi : N → (0,∞) such that

f i(j, y) ≤ φ(β)χi(j) for all j ∈ N, 0 < yk ≤ β, k ∈ N

and

max
k∈N

Qi(k) ≤ 1;

here we assume Qi(k) is the unique solution of
{

∆(φ(∆Q(k − 1))) + χi(k) = 0, k ∈ N,

Q(0) = 0, Q(T + 1) = 0.

Then, the following results hold:

(a) if β < α
T+1

, then problem (1.4) has at least one positive solution y satisfying

β ≤ ‖y‖ = max
i∈{1,...,n}

max
k∈N+

|yi(k)| ≤ α;

(b) if α < β, then problem (1.4) has at least one positive solution y satisfying

1

T + 1
α ≤ ‖y‖ ≤ β.

Proof. We show that :

(i) ‖Ty‖ ≤ ‖y‖ for y ∈ ∂K2
Bβ , and

(ii) there exists e ∈ K2\{0} such that y 6= Ty+ λe, for all y ∈ ∂K2
Ωα and all λ > 0.

We start with (i). Now for any y ∈ ∂K2
Bβ, we have |yi|0 ≤ β for each i ∈ {1, 2, . . . , n}.

Fix i ∈ {1, 2, . . . , n}. Then from (F4), f
i(k, y) ≤ φ(β)χi(k)for each k ∈ N . By Lemma

2.4, we obtain

(Tiy)(k) ≤ βQi(k) ≤ βmax
k∈N

Qi(k) ≤ β.

Hence, |Tiy|0 ≤ ‖y‖ for each i ∈ {1, 2, . . . , n}. This implies that (i) holds.

Next we consider inequality (ii). Let e(t) ≡ 1, so e ∈ K2 \ {0}. Next, suppose

that there exists y ∈ ∂K2
Ωα and λ > 0 such that y = Ty+ λe. Since y ∈ ∂K2

Ωα, then
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from Lemma 4.2 (d), there exists i ∈ {1, 2, . . . , n} with 1

T+1
α ≤ yi(k) ≤ α, k ∈ N

and 0 ≤ yj(k) ≤ α for j ∈ {1, 2, . . . , n}\{i}.

From (F3), f
i(k, y(k)) ≥ φ( 1

T+1
α)ψi(k) for k ∈ N . By Lemma 2.4, for each

k ∈ N , we have

yi(k) = (Tiy)(k) + λ ≥
1

T + 1
αPi(k) + λ

≥
1

T + 1
αmin

k∈N
Pi(k) + λ ≥

1

T + 1
α + λ.

Hence min
k∈N

yi(k) ≥
1

T + 1
α+ λ >

1

T + 1
α, contradicting the statement of Lemma 4.2

(c). This contradiction proves part (ii) above.

The rest of the proof is similar to that in the proof of Theorem 4.3, so we omit

the details. �

Next we employ Theorem 5.2 to establish the existence of positive solutions to

the following discrete system
{

∆(φ(∆y(k − 1))) + hi(k)g
i(y(k)) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0.
(6.1)

We assume that (H3) holds. Moreover, it is assumed that

(H6) H̃i(k) > 0 for k ∈ N, i = 1, 2, . . . , n; here we assume H̃i(k) is the unique solution

of {
∆(φ(∆y(k − 1))) + hi(k) = 0, k ∈ N,

y(0) = 0, y(T + 1) = 0.

Theorem 6.3. Suppose that conditions (H3) and (H6) hold. Then problem (6.1) has at

least one positive solution y with y(k) 6≡ 0 for k ∈ N if one of the following conditions

holds.

(f3) 0 ≤ gi
0 < ( 1

Mi

)p−1 and ( 1

mi

)p−1 < gi
∞ ≤ ∞, i = 1, 2, . . . , n;

(f4) 0 ≤ gi
∞ < ( 1

Mi

)p−1 and ( 1

mi

)p−1 < gi
0 ≤ ∞, i = 1, 2, . . . , n;

here gi
0 = lim

y→0+

gi(y)

yp−1
, gi

∞ = lim
y→∞

gi(y)

yp−1
, and

Mi = max
k∈N

H̃i(k), mi = min
k∈N

H̃i(k).

Proof. To see this, we will apply Theorem 6.2 with f i(k, y) = hi(k)g
i(y), i =

1, 2, . . . , n. We assume that (f3) holds. The case when (f4) holds is similar.

From the first part of (f3), there exists β > 0 such that gi(y) ≤ ( 1

Mi

)p−1βp−1 for

0 < ‖y‖ ≤ β. Choose χi(k) = ( 1

Mi

)p−1hi(k) for i = 1, 2, . . . , n. Fix i ∈ {1, . . . , n}.

Choose χi(k) = ( 1

Mi

)p−1. Then

f i(k, y) = hi(k)g
i(y) ≤ (

1

Mi

)p−1βp−1hi(k) = βp−1χi(k) if k ∈ N
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and 0 < yj ≤ β, j ∈ {1, . . . , n} and

Qi(k) = M−1

i H̃i(k) ≤M−1

i max
k∈N

H̃i(k) = 1.

Thus hypothesis (F4) holds.

From the second part of (f3), there exists α > 0 such that 1

T+1
α > β and gi(y) ≥

( 1

mi

)p−1( 1

T+1
α)p−1 for ‖y‖ ≥ 1

T+1
α, i = 1, 2, . . . , n. Thus gi(y) ≥ ( 1

mi

)p−1( 1

T+1
α)p−1

for yi ≥
1

T+1
α, i = 1, 2, . . . , n. Fix i ∈ {1, . . . , n}. Choose ψi(k) = ( 1

mi

)p−1hi(k), then

f i(k, y) = hi(k)g
i(y) ≥ (

1

mi
)p−1(

1

T + 1
α)p−1hi(k) = (

1

T + 1
α)p−1ψi(k), k ∈ N,

yi ≥
1

T+1
α, (so in particular for 1

T+1
α ≤ yi ≤ α) and

Pi(k) = m−1

i H̃i(k) ≥ m−1

i min
k∈N

H̃i(k) = 1.

This implies that hypothesis (F3) holds. The result now follows from Theorem 6.2. �

Finally we employ Theorem 6.3 we characterize the eigenvalue intervals for system

(1.8). Here we only state the results and omit the proof since it is similar to that of

Theorem 4.5.

Let

M = max{Mi, i = 1, 2, . . . , n}, m = min{mi, i = 1, 2, . . . , n}.

Theorem 6.4. Suppose that conditions (H3) and (H6) hold. Then problem (1.8) has

at least one positive solution for each

λ ∈ (
1

mp−1 min
i=1,2,...,n

{gi
∞}

,
1

Mp−1 max
i=1,2,...,n

{gi
0}

)

if
1

mp−1 min
i=1,2,...,n

{gi
∞}

<
1

Mp−1 max
i=1,2,...,n

{gi
0}

. The same result remains valid for each

λ ∈ (
1

mp−1 min
i=1,2,...,n

{gi
0}
,

1

Mp−1 max
i=1,2,...,n

{gi
∞}

)

if
1

mp−1 min
i=1,2,...,n

{gi
0}

<
1

Mp−1 max
i=1,2,...,n

{gi
∞}

.
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